Chris@137
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@137
|
2
|
Chris@137
|
3 #include "Resampler.h"
|
Chris@137
|
4
|
Chris@137
|
5 #include "qm-dsp/maths/MathUtilities.h"
|
Chris@137
|
6 #include "qm-dsp/base/KaiserWindow.h"
|
Chris@137
|
7 #include "qm-dsp/base/SincWindow.h"
|
Chris@137
|
8
|
Chris@137
|
9 #include <iostream>
|
Chris@138
|
10 #include <vector>
|
Chris@138
|
11
|
Chris@138
|
12 using std::vector;
|
Chris@137
|
13
|
Chris@137
|
14 Resampler::Resampler(int sourceRate, int targetRate) :
|
Chris@137
|
15 m_sourceRate(sourceRate),
|
Chris@137
|
16 m_targetRate(targetRate)
|
Chris@137
|
17 {
|
Chris@137
|
18 initialise();
|
Chris@137
|
19 }
|
Chris@137
|
20
|
Chris@137
|
21 Resampler::~Resampler()
|
Chris@137
|
22 {
|
Chris@137
|
23 delete[] m_buffer;
|
Chris@137
|
24 delete[] m_phaseData;
|
Chris@137
|
25 }
|
Chris@137
|
26
|
Chris@137
|
27 void
|
Chris@137
|
28 Resampler::initialise()
|
Chris@137
|
29 {
|
Chris@137
|
30 int higher = std::max(m_sourceRate, m_targetRate);
|
Chris@137
|
31 int lower = std::min(m_sourceRate, m_targetRate);
|
Chris@137
|
32
|
Chris@137
|
33 m_gcd = MathUtilities::gcd(lower, higher);
|
Chris@137
|
34
|
Chris@137
|
35 int peakToPole = higher / m_gcd;
|
Chris@137
|
36
|
Chris@137
|
37 KaiserWindow::Parameters params =
|
Chris@137
|
38 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
|
Chris@137
|
39
|
Chris@137
|
40 params.length =
|
Chris@137
|
41 (params.length % 2 == 0 ? params.length + 1 : params.length);
|
Chris@137
|
42
|
Chris@137
|
43 m_filterLength = params.length;
|
Chris@137
|
44
|
Chris@137
|
45 KaiserWindow kw(params);
|
Chris@137
|
46 SincWindow sw(m_filterLength, peakToPole * 2);
|
Chris@137
|
47
|
Chris@137
|
48 double *filter = new double[m_filterLength];
|
Chris@137
|
49 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
|
Chris@137
|
50 sw.cut(filter);
|
Chris@137
|
51 kw.cut(filter);
|
Chris@137
|
52
|
Chris@137
|
53 int inputSpacing = m_targetRate / m_gcd;
|
Chris@137
|
54 int outputSpacing = m_sourceRate / m_gcd;
|
Chris@137
|
55
|
Chris@137
|
56 m_latency = int((m_filterLength / 2) / outputSpacing);
|
Chris@137
|
57
|
Chris@137
|
58 m_bufferLength = 0;
|
Chris@137
|
59
|
Chris@137
|
60 m_phaseData = new Phase[inputSpacing];
|
Chris@137
|
61
|
Chris@137
|
62 for (int phase = 0; phase < inputSpacing; ++phase) {
|
Chris@137
|
63
|
Chris@137
|
64 Phase p;
|
Chris@137
|
65
|
Chris@137
|
66 p.nextPhase = phase - outputSpacing;
|
Chris@137
|
67 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
|
Chris@137
|
68 p.nextPhase %= inputSpacing;
|
Chris@137
|
69
|
Chris@137
|
70 p.drop = int(ceil(std::max(0, outputSpacing - phase) / inputSpacing));
|
Chris@137
|
71 p.take = int((outputSpacing +
|
Chris@137
|
72 ((m_filterLength - 1 - phase) % inputSpacing))
|
Chris@137
|
73 / outputSpacing);
|
Chris@137
|
74
|
Chris@137
|
75 int filtZipLength = int(ceil((m_filterLength - phase) / inputSpacing));
|
Chris@137
|
76 if (filtZipLength > m_bufferLength) {
|
Chris@137
|
77 m_bufferLength = filtZipLength;
|
Chris@137
|
78 }
|
Chris@137
|
79
|
Chris@137
|
80 for (int i = 0; i < filtZipLength; ++i) {
|
Chris@137
|
81 p.filter.push_back(filter[i * inputSpacing + phase]);
|
Chris@137
|
82 }
|
Chris@137
|
83
|
Chris@137
|
84 m_phaseData[phase] = p;
|
Chris@137
|
85 }
|
Chris@137
|
86
|
Chris@137
|
87 delete[] filter;
|
Chris@137
|
88
|
Chris@137
|
89 // The May implementation of this uses a pull model -- we ask the
|
Chris@137
|
90 // resampler for a certain number of output samples, and it asks
|
Chris@137
|
91 // its source stream for as many as it needs to calculate
|
Chris@137
|
92 // those. This means (among other things) that the source stream
|
Chris@137
|
93 // can be asked for enough samples up-front to fill the buffer
|
Chris@137
|
94 // before the first output sample is generated.
|
Chris@137
|
95 //
|
Chris@137
|
96 // In this implementation we're using a push model in which a
|
Chris@137
|
97 // certain number of source samples is provided and we're asked
|
Chris@137
|
98 // for as many output samples as that makes available. But we
|
Chris@137
|
99 // can't return any samples from the beginning until half the
|
Chris@137
|
100 // filter length has been provided as input. This means we must
|
Chris@137
|
101 // either return a very variable number of samples (none at all
|
Chris@137
|
102 // until the filter fills, then half the filter length at once) or
|
Chris@137
|
103 // else have a lengthy declared latency on the output. We do the
|
Chris@137
|
104 // latter. (What do other implementations do?)
|
Chris@137
|
105
|
Chris@137
|
106 m_phase = m_filterLength % inputSpacing;
|
Chris@137
|
107 m_buffer = new double[m_bufferLength];
|
Chris@137
|
108 for (int i = 0; i < m_bufferLength; ++i) m_buffer[i] = 0.0;
|
Chris@137
|
109 }
|
Chris@137
|
110
|
Chris@137
|
111 double
|
Chris@137
|
112 Resampler::reconstructOne(const double **srcptr)
|
Chris@137
|
113 {
|
Chris@137
|
114 Phase &pd = m_phaseData[m_phase];
|
Chris@137
|
115 double *filt = pd.filter.data();
|
Chris@137
|
116 int n = pd.filter.size();
|
Chris@137
|
117 double v = 0.0;
|
Chris@137
|
118 for (int i = 0; i < n; ++i) {
|
Chris@137
|
119 v += m_buffer[i] * filt[i];
|
Chris@137
|
120 }
|
Chris@137
|
121 for (int i = pd.drop; i < n; ++i) {
|
Chris@137
|
122 m_buffer[i - pd.drop] = m_buffer[i];
|
Chris@137
|
123 }
|
Chris@137
|
124 for (int i = 0; i < pd.take; ++i) {
|
Chris@137
|
125 m_buffer[n - pd.drop + i] = **srcptr;
|
Chris@137
|
126 ++ *srcptr;
|
Chris@137
|
127 }
|
Chris@137
|
128 m_phase = pd.nextPhase;
|
Chris@137
|
129 return v;
|
Chris@137
|
130 }
|
Chris@137
|
131
|
Chris@137
|
132 int
|
Chris@137
|
133 Resampler::process(const double *src, double *dst, int n)
|
Chris@137
|
134 {
|
Chris@137
|
135 int m = 0;
|
Chris@137
|
136 const double *srcptr = src;
|
Chris@137
|
137
|
Chris@137
|
138 while (n > m_phaseData[m_phase].take) {
|
Chris@137
|
139 std::cerr << "n = " << n << ", m = " << m << ", take = " << m_phaseData[m_phase].take << std::endl;
|
Chris@137
|
140 n -= m_phaseData[m_phase].take;
|
Chris@137
|
141 dst[m] = reconstructOne(&srcptr);
|
Chris@137
|
142 std::cerr << "n -> " << n << std::endl;
|
Chris@137
|
143 ++m;
|
Chris@137
|
144 }
|
Chris@137
|
145
|
Chris@137
|
146 //!!! save any excess
|
Chris@137
|
147
|
Chris@137
|
148 return m;
|
Chris@137
|
149 }
|
Chris@137
|
150
|
Chris@138
|
151 std::vector<double>
|
Chris@138
|
152 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
|
Chris@138
|
153 {
|
Chris@138
|
154 Resampler r(sourceRate, targetRate);
|
Chris@138
|
155
|
Chris@138
|
156 int latency = r.getLatency();
|
Chris@138
|
157
|
Chris@138
|
158 int m = int(ceil((n * targetRate) / sourceRate));
|
Chris@138
|
159 int m1 = m + latency;
|
Chris@138
|
160 int n1 = int((m1 * sourceRate) / targetRate);
|
Chris@138
|
161
|
Chris@138
|
162 vector<double> pad(n1 - n, 0.0);
|
Chris@138
|
163 vector<double> out(m1, 0.0);
|
Chris@138
|
164
|
Chris@138
|
165 int got = r.process(data, out.data(), n);
|
Chris@138
|
166 got += r.process(pad.data(), out.data() + got, pad.size());
|
Chris@138
|
167
|
Chris@138
|
168 return vector<double>(out.begin() + latency, out.begin() + got);
|
Chris@138
|
169 }
|
Chris@138
|
170
|