annotate dsp/rateconversion/Resampler.cpp @ 138:e89d489af128

Add one-shot resample function
author Chris Cannam
date Sun, 13 Oct 2013 12:47:50 +0100
parents dce8337a83c8
children 7fe0da91e9c3
rev   line source
Chris@137 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@137 2
Chris@137 3 #include "Resampler.h"
Chris@137 4
Chris@137 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@137 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@137 7 #include "qm-dsp/base/SincWindow.h"
Chris@137 8
Chris@137 9 #include <iostream>
Chris@138 10 #include <vector>
Chris@138 11
Chris@138 12 using std::vector;
Chris@137 13
Chris@137 14 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@137 15 m_sourceRate(sourceRate),
Chris@137 16 m_targetRate(targetRate)
Chris@137 17 {
Chris@137 18 initialise();
Chris@137 19 }
Chris@137 20
Chris@137 21 Resampler::~Resampler()
Chris@137 22 {
Chris@137 23 delete[] m_buffer;
Chris@137 24 delete[] m_phaseData;
Chris@137 25 }
Chris@137 26
Chris@137 27 void
Chris@137 28 Resampler::initialise()
Chris@137 29 {
Chris@137 30 int higher = std::max(m_sourceRate, m_targetRate);
Chris@137 31 int lower = std::min(m_sourceRate, m_targetRate);
Chris@137 32
Chris@137 33 m_gcd = MathUtilities::gcd(lower, higher);
Chris@137 34
Chris@137 35 int peakToPole = higher / m_gcd;
Chris@137 36
Chris@137 37 KaiserWindow::Parameters params =
Chris@137 38 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@137 39
Chris@137 40 params.length =
Chris@137 41 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@137 42
Chris@137 43 m_filterLength = params.length;
Chris@137 44
Chris@137 45 KaiserWindow kw(params);
Chris@137 46 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@137 47
Chris@137 48 double *filter = new double[m_filterLength];
Chris@137 49 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@137 50 sw.cut(filter);
Chris@137 51 kw.cut(filter);
Chris@137 52
Chris@137 53 int inputSpacing = m_targetRate / m_gcd;
Chris@137 54 int outputSpacing = m_sourceRate / m_gcd;
Chris@137 55
Chris@137 56 m_latency = int((m_filterLength / 2) / outputSpacing);
Chris@137 57
Chris@137 58 m_bufferLength = 0;
Chris@137 59
Chris@137 60 m_phaseData = new Phase[inputSpacing];
Chris@137 61
Chris@137 62 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@137 63
Chris@137 64 Phase p;
Chris@137 65
Chris@137 66 p.nextPhase = phase - outputSpacing;
Chris@137 67 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@137 68 p.nextPhase %= inputSpacing;
Chris@137 69
Chris@137 70 p.drop = int(ceil(std::max(0, outputSpacing - phase) / inputSpacing));
Chris@137 71 p.take = int((outputSpacing +
Chris@137 72 ((m_filterLength - 1 - phase) % inputSpacing))
Chris@137 73 / outputSpacing);
Chris@137 74
Chris@137 75 int filtZipLength = int(ceil((m_filterLength - phase) / inputSpacing));
Chris@137 76 if (filtZipLength > m_bufferLength) {
Chris@137 77 m_bufferLength = filtZipLength;
Chris@137 78 }
Chris@137 79
Chris@137 80 for (int i = 0; i < filtZipLength; ++i) {
Chris@137 81 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@137 82 }
Chris@137 83
Chris@137 84 m_phaseData[phase] = p;
Chris@137 85 }
Chris@137 86
Chris@137 87 delete[] filter;
Chris@137 88
Chris@137 89 // The May implementation of this uses a pull model -- we ask the
Chris@137 90 // resampler for a certain number of output samples, and it asks
Chris@137 91 // its source stream for as many as it needs to calculate
Chris@137 92 // those. This means (among other things) that the source stream
Chris@137 93 // can be asked for enough samples up-front to fill the buffer
Chris@137 94 // before the first output sample is generated.
Chris@137 95 //
Chris@137 96 // In this implementation we're using a push model in which a
Chris@137 97 // certain number of source samples is provided and we're asked
Chris@137 98 // for as many output samples as that makes available. But we
Chris@137 99 // can't return any samples from the beginning until half the
Chris@137 100 // filter length has been provided as input. This means we must
Chris@137 101 // either return a very variable number of samples (none at all
Chris@137 102 // until the filter fills, then half the filter length at once) or
Chris@137 103 // else have a lengthy declared latency on the output. We do the
Chris@137 104 // latter. (What do other implementations do?)
Chris@137 105
Chris@137 106 m_phase = m_filterLength % inputSpacing;
Chris@137 107 m_buffer = new double[m_bufferLength];
Chris@137 108 for (int i = 0; i < m_bufferLength; ++i) m_buffer[i] = 0.0;
Chris@137 109 }
Chris@137 110
Chris@137 111 double
Chris@137 112 Resampler::reconstructOne(const double **srcptr)
Chris@137 113 {
Chris@137 114 Phase &pd = m_phaseData[m_phase];
Chris@137 115 double *filt = pd.filter.data();
Chris@137 116 int n = pd.filter.size();
Chris@137 117 double v = 0.0;
Chris@137 118 for (int i = 0; i < n; ++i) {
Chris@137 119 v += m_buffer[i] * filt[i];
Chris@137 120 }
Chris@137 121 for (int i = pd.drop; i < n; ++i) {
Chris@137 122 m_buffer[i - pd.drop] = m_buffer[i];
Chris@137 123 }
Chris@137 124 for (int i = 0; i < pd.take; ++i) {
Chris@137 125 m_buffer[n - pd.drop + i] = **srcptr;
Chris@137 126 ++ *srcptr;
Chris@137 127 }
Chris@137 128 m_phase = pd.nextPhase;
Chris@137 129 return v;
Chris@137 130 }
Chris@137 131
Chris@137 132 int
Chris@137 133 Resampler::process(const double *src, double *dst, int n)
Chris@137 134 {
Chris@137 135 int m = 0;
Chris@137 136 const double *srcptr = src;
Chris@137 137
Chris@137 138 while (n > m_phaseData[m_phase].take) {
Chris@137 139 std::cerr << "n = " << n << ", m = " << m << ", take = " << m_phaseData[m_phase].take << std::endl;
Chris@137 140 n -= m_phaseData[m_phase].take;
Chris@137 141 dst[m] = reconstructOne(&srcptr);
Chris@137 142 std::cerr << "n -> " << n << std::endl;
Chris@137 143 ++m;
Chris@137 144 }
Chris@137 145
Chris@137 146 //!!! save any excess
Chris@137 147
Chris@137 148 return m;
Chris@137 149 }
Chris@137 150
Chris@138 151 std::vector<double>
Chris@138 152 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@138 153 {
Chris@138 154 Resampler r(sourceRate, targetRate);
Chris@138 155
Chris@138 156 int latency = r.getLatency();
Chris@138 157
Chris@138 158 int m = int(ceil((n * targetRate) / sourceRate));
Chris@138 159 int m1 = m + latency;
Chris@138 160 int n1 = int((m1 * sourceRate) / targetRate);
Chris@138 161
Chris@138 162 vector<double> pad(n1 - n, 0.0);
Chris@138 163 vector<double> out(m1, 0.0);
Chris@138 164
Chris@138 165 int got = r.process(data, out.data(), n);
Chris@138 166 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@138 167
Chris@138 168 return vector<double>(out.begin() + latency, out.begin() + got);
Chris@138 169 }
Chris@138 170