Chris@137: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ Chris@137: Chris@137: #include "Resampler.h" Chris@137: Chris@137: #include "qm-dsp/maths/MathUtilities.h" Chris@137: #include "qm-dsp/base/KaiserWindow.h" Chris@137: #include "qm-dsp/base/SincWindow.h" Chris@137: Chris@137: #include Chris@138: #include Chris@138: Chris@138: using std::vector; Chris@137: Chris@137: Resampler::Resampler(int sourceRate, int targetRate) : Chris@137: m_sourceRate(sourceRate), Chris@137: m_targetRate(targetRate) Chris@137: { Chris@137: initialise(); Chris@137: } Chris@137: Chris@137: Resampler::~Resampler() Chris@137: { Chris@137: delete[] m_buffer; Chris@137: delete[] m_phaseData; Chris@137: } Chris@137: Chris@137: void Chris@137: Resampler::initialise() Chris@137: { Chris@137: int higher = std::max(m_sourceRate, m_targetRate); Chris@137: int lower = std::min(m_sourceRate, m_targetRate); Chris@137: Chris@137: m_gcd = MathUtilities::gcd(lower, higher); Chris@137: Chris@137: int peakToPole = higher / m_gcd; Chris@137: Chris@137: KaiserWindow::Parameters params = Chris@137: KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole); Chris@137: Chris@137: params.length = Chris@137: (params.length % 2 == 0 ? params.length + 1 : params.length); Chris@137: Chris@137: m_filterLength = params.length; Chris@137: Chris@137: KaiserWindow kw(params); Chris@137: SincWindow sw(m_filterLength, peakToPole * 2); Chris@137: Chris@137: double *filter = new double[m_filterLength]; Chris@137: for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0; Chris@137: sw.cut(filter); Chris@137: kw.cut(filter); Chris@137: Chris@137: int inputSpacing = m_targetRate / m_gcd; Chris@137: int outputSpacing = m_sourceRate / m_gcd; Chris@137: Chris@137: m_latency = int((m_filterLength / 2) / outputSpacing); Chris@137: Chris@137: m_bufferLength = 0; Chris@137: Chris@137: m_phaseData = new Phase[inputSpacing]; Chris@137: Chris@137: for (int phase = 0; phase < inputSpacing; ++phase) { Chris@137: Chris@137: Phase p; Chris@137: Chris@137: p.nextPhase = phase - outputSpacing; Chris@137: while (p.nextPhase < 0) p.nextPhase += inputSpacing; Chris@137: p.nextPhase %= inputSpacing; Chris@137: Chris@137: p.drop = int(ceil(std::max(0, outputSpacing - phase) / inputSpacing)); Chris@137: p.take = int((outputSpacing + Chris@137: ((m_filterLength - 1 - phase) % inputSpacing)) Chris@137: / outputSpacing); Chris@137: Chris@137: int filtZipLength = int(ceil((m_filterLength - phase) / inputSpacing)); Chris@137: if (filtZipLength > m_bufferLength) { Chris@137: m_bufferLength = filtZipLength; Chris@137: } Chris@137: Chris@137: for (int i = 0; i < filtZipLength; ++i) { Chris@137: p.filter.push_back(filter[i * inputSpacing + phase]); Chris@137: } Chris@137: Chris@137: m_phaseData[phase] = p; Chris@137: } Chris@137: Chris@137: delete[] filter; Chris@137: Chris@137: // The May implementation of this uses a pull model -- we ask the Chris@137: // resampler for a certain number of output samples, and it asks Chris@137: // its source stream for as many as it needs to calculate Chris@137: // those. This means (among other things) that the source stream Chris@137: // can be asked for enough samples up-front to fill the buffer Chris@137: // before the first output sample is generated. Chris@137: // Chris@137: // In this implementation we're using a push model in which a Chris@137: // certain number of source samples is provided and we're asked Chris@137: // for as many output samples as that makes available. But we Chris@137: // can't return any samples from the beginning until half the Chris@137: // filter length has been provided as input. This means we must Chris@137: // either return a very variable number of samples (none at all Chris@137: // until the filter fills, then half the filter length at once) or Chris@137: // else have a lengthy declared latency on the output. We do the Chris@137: // latter. (What do other implementations do?) Chris@137: Chris@137: m_phase = m_filterLength % inputSpacing; Chris@137: m_buffer = new double[m_bufferLength]; Chris@137: for (int i = 0; i < m_bufferLength; ++i) m_buffer[i] = 0.0; Chris@137: } Chris@137: Chris@137: double Chris@137: Resampler::reconstructOne(const double **srcptr) Chris@137: { Chris@137: Phase &pd = m_phaseData[m_phase]; Chris@137: double *filt = pd.filter.data(); Chris@137: int n = pd.filter.size(); Chris@137: double v = 0.0; Chris@137: for (int i = 0; i < n; ++i) { Chris@137: v += m_buffer[i] * filt[i]; Chris@137: } Chris@137: for (int i = pd.drop; i < n; ++i) { Chris@137: m_buffer[i - pd.drop] = m_buffer[i]; Chris@137: } Chris@137: for (int i = 0; i < pd.take; ++i) { Chris@137: m_buffer[n - pd.drop + i] = **srcptr; Chris@137: ++ *srcptr; Chris@137: } Chris@137: m_phase = pd.nextPhase; Chris@137: return v; Chris@137: } Chris@137: Chris@137: int Chris@137: Resampler::process(const double *src, double *dst, int n) Chris@137: { Chris@137: int m = 0; Chris@137: const double *srcptr = src; Chris@137: Chris@137: while (n > m_phaseData[m_phase].take) { Chris@137: std::cerr << "n = " << n << ", m = " << m << ", take = " << m_phaseData[m_phase].take << std::endl; Chris@137: n -= m_phaseData[m_phase].take; Chris@137: dst[m] = reconstructOne(&srcptr); Chris@137: std::cerr << "n -> " << n << std::endl; Chris@137: ++m; Chris@137: } Chris@137: Chris@137: //!!! save any excess Chris@137: Chris@137: return m; Chris@137: } Chris@137: Chris@138: std::vector Chris@138: Resampler::resample(int sourceRate, int targetRate, const double *data, int n) Chris@138: { Chris@138: Resampler r(sourceRate, targetRate); Chris@138: Chris@138: int latency = r.getLatency(); Chris@138: Chris@138: int m = int(ceil((n * targetRate) / sourceRate)); Chris@138: int m1 = m + latency; Chris@138: int n1 = int((m1 * sourceRate) / targetRate); Chris@138: Chris@138: vector pad(n1 - n, 0.0); Chris@138: vector out(m1, 0.0); Chris@138: Chris@138: int got = r.process(data, out.data(), n); Chris@138: got += r.process(pad.data(), out.data() + got, pad.size()); Chris@138: Chris@138: return vector(out.begin() + latency, out.begin() + got); Chris@138: } Chris@138: