annotate dsp/rateconversion/Resampler.cpp @ 150:23558405a7d1

Integrate resampler and tests into build system etc
author Chris Cannam
date Mon, 21 Oct 2013 09:40:22 +0100
parents 734e5fa6f731
children edb86e0d850c
rev   line source
Chris@137 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@150 2 /*
Chris@150 3 QM DSP Library
Chris@150 4
Chris@150 5 Centre for Digital Music, Queen Mary, University of London.
Chris@150 6 This file by Chris Cannam.
Chris@150 7
Chris@150 8 This program is free software; you can redistribute it and/or
Chris@150 9 modify it under the terms of the GNU General Public License as
Chris@150 10 published by the Free Software Foundation; either version 2 of the
Chris@150 11 License, or (at your option) any later version. See the file
Chris@150 12 COPYING included with this distribution for more information.
Chris@150 13 */
Chris@137 14
Chris@137 15 #include "Resampler.h"
Chris@137 16
Chris@150 17 #include "maths/MathUtilities.h"
Chris@150 18 #include "base/KaiserWindow.h"
Chris@150 19 #include "base/SincWindow.h"
Chris@150 20 #include "thread/Thread.h"
Chris@137 21
Chris@137 22 #include <iostream>
Chris@138 23 #include <vector>
Chris@145 24 #include <map>
Chris@147 25 #include <cassert>
Chris@138 26
Chris@138 27 using std::vector;
Chris@145 28 using std::map;
Chris@137 29
Chris@141 30 //#define DEBUG_RESAMPLER 1
Chris@141 31
Chris@137 32 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@137 33 m_sourceRate(sourceRate),
Chris@137 34 m_targetRate(targetRate)
Chris@137 35 {
Chris@149 36 initialise(100, 0.02);
Chris@149 37 }
Chris@149 38
Chris@149 39 Resampler::Resampler(int sourceRate, int targetRate,
Chris@149 40 double snr, double bandwidth) :
Chris@149 41 m_sourceRate(sourceRate),
Chris@149 42 m_targetRate(targetRate)
Chris@149 43 {
Chris@149 44 initialise(snr, bandwidth);
Chris@137 45 }
Chris@137 46
Chris@137 47 Resampler::~Resampler()
Chris@137 48 {
Chris@137 49 delete[] m_phaseData;
Chris@137 50 }
Chris@137 51
Chris@146 52 // peakToPole -> length -> beta -> window
Chris@146 53 static map<int, map<int, map<double, vector<double> > > >
Chris@146 54 knownFilters;
Chris@146 55
Chris@146 56 static Mutex
Chris@146 57 knownFilterMutex;
Chris@146 58
Chris@137 59 void
Chris@149 60 Resampler::initialise(double snr, double bandwidth)
Chris@137 61 {
Chris@137 62 int higher = std::max(m_sourceRate, m_targetRate);
Chris@137 63 int lower = std::min(m_sourceRate, m_targetRate);
Chris@137 64
Chris@137 65 m_gcd = MathUtilities::gcd(lower, higher);
Chris@137 66
Chris@137 67 int peakToPole = higher / m_gcd;
Chris@137 68
Chris@137 69 KaiserWindow::Parameters params =
Chris@149 70 KaiserWindow::parametersForBandwidth(snr, bandwidth, peakToPole);
Chris@137 71
Chris@137 72 params.length =
Chris@137 73 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@137 74
Chris@147 75 params.length =
Chris@147 76 (params.length > 200001 ? 200001 : params.length);
Chris@147 77
Chris@137 78 m_filterLength = params.length;
Chris@145 79
Chris@146 80 vector<double> filter;
Chris@146 81 knownFilterMutex.lock();
Chris@137 82
Chris@146 83 if (knownFilters[peakToPole][m_filterLength].find(params.beta) ==
Chris@146 84 knownFilters[peakToPole][m_filterLength].end()) {
Chris@146 85
Chris@146 86 KaiserWindow kw(params);
Chris@146 87 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@146 88
Chris@146 89 filter = vector<double>(m_filterLength, 0.0);
Chris@146 90 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@146 91 sw.cut(filter.data());
Chris@146 92 kw.cut(filter.data());
Chris@146 93
Chris@146 94 knownFilters[peakToPole][m_filterLength][params.beta] = filter;
Chris@146 95 }
Chris@146 96
Chris@146 97 filter = knownFilters[peakToPole][m_filterLength][params.beta];
Chris@146 98 knownFilterMutex.unlock();
Chris@137 99
Chris@137 100 int inputSpacing = m_targetRate / m_gcd;
Chris@137 101 int outputSpacing = m_sourceRate / m_gcd;
Chris@137 102
Chris@141 103 #ifdef DEBUG_RESAMPLER
Chris@141 104 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
Chris@141 105 << ": inputSpacing " << inputSpacing << ", outputSpacing "
Chris@141 106 << outputSpacing << ": filter length " << m_filterLength
Chris@141 107 << std::endl;
Chris@141 108 #endif
Chris@137 109
Chris@147 110 // Now we have a filter of (odd) length flen in which the lower
Chris@147 111 // sample rate corresponds to every n'th point and the higher rate
Chris@147 112 // to every m'th where n and m are higher and lower rates divided
Chris@147 113 // by their gcd respectively. So if x coordinates are on the same
Chris@147 114 // scale as our filter resolution, then source sample i is at i *
Chris@147 115 // (targetRate / gcd) and target sample j is at j * (sourceRate /
Chris@147 116 // gcd).
Chris@147 117
Chris@147 118 // To reconstruct a single target sample, we want a buffer (real
Chris@147 119 // or virtual) of flen values formed of source samples spaced at
Chris@147 120 // intervals of (targetRate / gcd), in our example case 3. This
Chris@147 121 // is initially formed with the first sample at the filter peak.
Chris@147 122 //
Chris@147 123 // 0 0 0 0 a 0 0 b 0
Chris@147 124 //
Chris@147 125 // and of course we have our filter
Chris@147 126 //
Chris@147 127 // f1 f2 f3 f4 f5 f6 f7 f8 f9
Chris@147 128 //
Chris@147 129 // We take the sum of products of non-zero values from this buffer
Chris@147 130 // with corresponding values in the filter
Chris@147 131 //
Chris@147 132 // a * f5 + b * f8
Chris@147 133 //
Chris@147 134 // Then we drop (sourceRate / gcd) values, in our example case 4,
Chris@147 135 // from the start of the buffer and fill until it has flen values
Chris@147 136 // again
Chris@147 137 //
Chris@147 138 // a 0 0 b 0 0 c 0 0
Chris@147 139 //
Chris@147 140 // repeat to reconstruct the next target sample
Chris@147 141 //
Chris@147 142 // a * f1 + b * f4 + c * f7
Chris@147 143 //
Chris@147 144 // and so on.
Chris@147 145 //
Chris@147 146 // Above I said the buffer could be "real or virtual" -- ours is
Chris@147 147 // virtual. We don't actually store all the zero spacing values,
Chris@147 148 // except for padding at the start; normally we store only the
Chris@147 149 // values that actually came from the source stream, along with a
Chris@147 150 // phase value that tells us how many virtual zeroes there are at
Chris@147 151 // the start of the virtual buffer. So the two examples above are
Chris@147 152 //
Chris@147 153 // 0 a b [ with phase 1 ]
Chris@147 154 // a b c [ with phase 0 ]
Chris@147 155 //
Chris@147 156 // Having thus broken down the buffer so that only the elements we
Chris@147 157 // need to multiply are present, we can also unzip the filter into
Chris@147 158 // every-nth-element subsets at each phase, allowing us to do the
Chris@147 159 // filter multiplication as a simply vector multiply. That is, rather
Chris@147 160 // than store
Chris@147 161 //
Chris@147 162 // f1 f2 f3 f4 f5 f6 f7 f8 f9
Chris@147 163 //
Chris@147 164 // we store separately
Chris@147 165 //
Chris@147 166 // f1 f4 f7
Chris@147 167 // f2 f5 f8
Chris@147 168 // f3 f6 f9
Chris@147 169 //
Chris@147 170 // Each time we complete a multiply-and-sum, we need to work out
Chris@147 171 // how many (real) samples to drop from the start of our buffer,
Chris@147 172 // and how many to add at the end of it for the next multiply. We
Chris@147 173 // know we want to drop enough real samples to move along by one
Chris@147 174 // computed output sample, which is our outputSpacing number of
Chris@147 175 // virtual buffer samples. Depending on the relationship between
Chris@147 176 // input and output spacings, this may mean dropping several real
Chris@147 177 // samples, one real sample, or none at all (and simply moving to
Chris@147 178 // a different "phase").
Chris@147 179
Chris@137 180 m_phaseData = new Phase[inputSpacing];
Chris@137 181
Chris@137 182 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@137 183
Chris@137 184 Phase p;
Chris@137 185
Chris@137 186 p.nextPhase = phase - outputSpacing;
Chris@137 187 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@137 188 p.nextPhase %= inputSpacing;
Chris@137 189
Chris@141 190 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
Chris@141 191 / inputSpacing));
Chris@137 192
Chris@141 193 int filtZipLength = int(ceil(double(m_filterLength - phase)
Chris@141 194 / inputSpacing));
Chris@147 195
Chris@137 196 for (int i = 0; i < filtZipLength; ++i) {
Chris@137 197 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@137 198 }
Chris@137 199
Chris@137 200 m_phaseData[phase] = p;
Chris@137 201 }
Chris@137 202
Chris@137 203 // The May implementation of this uses a pull model -- we ask the
Chris@137 204 // resampler for a certain number of output samples, and it asks
Chris@137 205 // its source stream for as many as it needs to calculate
Chris@137 206 // those. This means (among other things) that the source stream
Chris@137 207 // can be asked for enough samples up-front to fill the buffer
Chris@137 208 // before the first output sample is generated.
Chris@137 209 //
Chris@137 210 // In this implementation we're using a push model in which a
Chris@137 211 // certain number of source samples is provided and we're asked
Chris@137 212 // for as many output samples as that makes available. But we
Chris@137 213 // can't return any samples from the beginning until half the
Chris@137 214 // filter length has been provided as input. This means we must
Chris@137 215 // either return a very variable number of samples (none at all
Chris@137 216 // until the filter fills, then half the filter length at once) or
Chris@137 217 // else have a lengthy declared latency on the output. We do the
Chris@137 218 // latter. (What do other implementations do?)
Chris@148 219 //
Chris@147 220 // We want to make sure the first "real" sample will eventually be
Chris@147 221 // aligned with the centre sample in the filter (it's tidier, and
Chris@147 222 // easier to do diagnostic calculations that way). So we need to
Chris@147 223 // pick the initial phase and buffer fill accordingly.
Chris@147 224 //
Chris@147 225 // Example: if the inputSpacing is 2, outputSpacing is 3, and
Chris@147 226 // filter length is 7,
Chris@147 227 //
Chris@147 228 // x x x x a b c ... input samples
Chris@147 229 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
Chris@147 230 // i j k l ... output samples
Chris@147 231 // [--------|--------] <- filter with centre mark
Chris@147 232 //
Chris@147 233 // Let h be the index of the centre mark, here 3 (generally
Chris@147 234 // int(filterLength/2) for odd-length filters).
Chris@147 235 //
Chris@147 236 // The smallest n such that h + n * outputSpacing > filterLength
Chris@147 237 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
Chris@147 238 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
Chris@147 239 // phase is 1.
Chris@147 240 //
Chris@147 241 // To achieve our n, we need to pre-fill the "virtual" buffer with
Chris@147 242 // 4 zero samples: the x's above. This is int((h + n *
Chris@147 243 // outputSpacing) / inputSpacing). It's the phase that makes this
Chris@147 244 // buffer get dealt with in such a way as to give us an effective
Chris@147 245 // index for sample a of 9 rather than 8 or 10 or whatever.
Chris@147 246 //
Chris@147 247 // This gives us output latency of 2 (== n), i.e. output samples i
Chris@147 248 // and j will appear before the one in which input sample a is at
Chris@147 249 // the centre of the filter.
Chris@147 250
Chris@147 251 int h = int(m_filterLength / 2);
Chris@147 252 int n = ceil(double(m_filterLength - h) / outputSpacing);
Chris@141 253
Chris@147 254 m_phase = (h + n * outputSpacing) % inputSpacing;
Chris@147 255
Chris@147 256 int fill = (h + n * outputSpacing) / inputSpacing;
Chris@147 257
Chris@147 258 m_latency = n;
Chris@147 259
Chris@147 260 m_buffer = vector<double>(fill, 0);
Chris@145 261 m_bufferOrigin = 0;
Chris@141 262
Chris@141 263 #ifdef DEBUG_RESAMPLER
Chris@141 264 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
Chris@141 265 << ", latency " << m_latency << std::endl;
Chris@141 266 #endif
Chris@137 267 }
Chris@137 268
Chris@137 269 double
Chris@141 270 Resampler::reconstructOne()
Chris@137 271 {
Chris@137 272 Phase &pd = m_phaseData[m_phase];
Chris@141 273 double v = 0.0;
Chris@137 274 int n = pd.filter.size();
Chris@147 275
Chris@148 276 assert(n + m_bufferOrigin <= (int)m_buffer.size());
Chris@147 277
Chris@145 278 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
Chris@145 279 const double *const __restrict__ filt = pd.filter.data();
Chris@147 280
Chris@147 281 // std::cerr << "phase = " << m_phase << ", drop = " << pd.drop << ", buffer for reconstruction starts...";
Chris@147 282 // for (int i = 0; i < 20; ++i) {
Chris@147 283 // if (i % 5 == 0) std::cerr << "\n" << i << " ";
Chris@147 284 // std::cerr << buf[i] << " ";
Chris@147 285 // }
Chris@147 286 // std::cerr << std::endl;
Chris@147 287
Chris@137 288 for (int i = 0; i < n; ++i) {
Chris@145 289 // NB gcc can only vectorize this with -ffast-math
Chris@145 290 v += buf[i] * filt[i];
Chris@137 291 }
Chris@149 292
Chris@145 293 m_bufferOrigin += pd.drop;
Chris@141 294 m_phase = pd.nextPhase;
Chris@137 295 return v;
Chris@137 296 }
Chris@137 297
Chris@137 298 int
Chris@141 299 Resampler::process(const double *src, double *dst, int n)
Chris@137 300 {
Chris@141 301 for (int i = 0; i < n; ++i) {
Chris@141 302 m_buffer.push_back(src[i]);
Chris@137 303 }
Chris@137 304
Chris@141 305 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
Chris@141 306 int outidx = 0;
Chris@139 307
Chris@141 308 #ifdef DEBUG_RESAMPLER
Chris@141 309 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
Chris@141 310 #endif
Chris@141 311
Chris@142 312 double scaleFactor = 1.0;
Chris@142 313 if (m_targetRate < m_sourceRate) {
Chris@142 314 scaleFactor = double(m_targetRate) / double(m_sourceRate);
Chris@142 315 }
Chris@142 316
Chris@141 317 while (outidx < maxout &&
Chris@145 318 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
Chris@142 319 dst[outidx] = scaleFactor * reconstructOne();
Chris@141 320 outidx++;
Chris@139 321 }
Chris@145 322
Chris@145 323 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
Chris@145 324 m_bufferOrigin = 0;
Chris@141 325
Chris@141 326 return outidx;
Chris@137 327 }
Chris@141 328
Chris@138 329 std::vector<double>
Chris@138 330 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@138 331 {
Chris@138 332 Resampler r(sourceRate, targetRate);
Chris@138 333
Chris@138 334 int latency = r.getLatency();
Chris@138 335
Chris@143 336 // latency is the output latency. We need to provide enough
Chris@143 337 // padding input samples at the end of input to guarantee at
Chris@143 338 // *least* the latency's worth of output samples. that is,
Chris@143 339
Chris@148 340 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
Chris@143 341
Chris@143 342 // that means we are providing this much input in total:
Chris@143 343
Chris@143 344 int n1 = n + inputPad;
Chris@143 345
Chris@143 346 // and obtaining this much output in total:
Chris@143 347
Chris@148 348 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
Chris@143 349
Chris@143 350 // in order to return this much output to the user:
Chris@143 351
Chris@148 352 int m = int(ceil((double(n) * targetRate) / sourceRate));
Chris@143 353
Chris@148 354 // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
Chris@138 355
Chris@138 356 vector<double> pad(n1 - n, 0.0);
Chris@143 357 vector<double> out(m1 + 1, 0.0);
Chris@138 358
Chris@138 359 int got = r.process(data, out.data(), n);
Chris@138 360 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@138 361
Chris@141 362 #ifdef DEBUG_RESAMPLER
Chris@141 363 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
Chris@147 364 std::cerr << "first 10 in:" << std::endl;
Chris@147 365 for (int i = 0; i < 10; ++i) {
Chris@147 366 std::cerr << data[i] << " ";
Chris@147 367 if (i == 5) std::cerr << std::endl;
Chris@141 368 }
Chris@147 369 std::cerr << std::endl;
Chris@141 370 #endif
Chris@141 371
Chris@143 372 int toReturn = got - latency;
Chris@143 373 if (toReturn > m) toReturn = m;
Chris@143 374
Chris@147 375 vector<double> sliced(out.begin() + latency,
Chris@143 376 out.begin() + latency + toReturn);
Chris@147 377
Chris@147 378 #ifdef DEBUG_RESAMPLER
Chris@147 379 std::cerr << "all out (after latency compensation), length " << sliced.size() << ":";
Chris@147 380 for (int i = 0; i < sliced.size(); ++i) {
Chris@147 381 if (i % 5 == 0) std::cerr << std::endl << i << "... ";
Chris@147 382 std::cerr << sliced[i] << " ";
Chris@147 383 }
Chris@147 384 std::cerr << std::endl;
Chris@147 385 #endif
Chris@147 386
Chris@147 387 return sliced;
Chris@138 388 }
Chris@138 389