annotate dsp/rateconversion/Resampler.cpp @ 148:9db2712b3ce4

Avoid int overflow in resample; tidy
author Chris Cannam
date Fri, 18 Oct 2013 11:11:41 +0100
parents c1e98c18628a
children 734e5fa6f731
rev   line source
Chris@137 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@137 2
Chris@137 3 #include "Resampler.h"
Chris@137 4
Chris@137 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@137 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@137 7 #include "qm-dsp/base/SincWindow.h"
Chris@146 8 #include "qm-dsp/thread/Thread.h"
Chris@137 9
Chris@137 10 #include <iostream>
Chris@138 11 #include <vector>
Chris@145 12 #include <map>
Chris@147 13 #include <cassert>
Chris@138 14
Chris@138 15 using std::vector;
Chris@145 16 using std::map;
Chris@137 17
Chris@141 18 //#define DEBUG_RESAMPLER 1
Chris@141 19
Chris@137 20 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@137 21 m_sourceRate(sourceRate),
Chris@137 22 m_targetRate(targetRate)
Chris@137 23 {
Chris@137 24 initialise();
Chris@137 25 }
Chris@137 26
Chris@137 27 Resampler::~Resampler()
Chris@137 28 {
Chris@137 29 delete[] m_phaseData;
Chris@137 30 }
Chris@137 31
Chris@146 32 // peakToPole -> length -> beta -> window
Chris@146 33 static map<int, map<int, map<double, vector<double> > > >
Chris@146 34 knownFilters;
Chris@146 35
Chris@146 36 static Mutex
Chris@146 37 knownFilterMutex;
Chris@146 38
Chris@137 39 void
Chris@137 40 Resampler::initialise()
Chris@137 41 {
Chris@137 42 int higher = std::max(m_sourceRate, m_targetRate);
Chris@137 43 int lower = std::min(m_sourceRate, m_targetRate);
Chris@137 44
Chris@137 45 m_gcd = MathUtilities::gcd(lower, higher);
Chris@137 46
Chris@137 47 int peakToPole = higher / m_gcd;
Chris@137 48
Chris@137 49 KaiserWindow::Parameters params =
Chris@137 50 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@137 51
Chris@137 52 params.length =
Chris@137 53 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@137 54
Chris@147 55 params.length =
Chris@147 56 (params.length > 200001 ? 200001 : params.length);
Chris@147 57
Chris@137 58 m_filterLength = params.length;
Chris@145 59
Chris@146 60 vector<double> filter;
Chris@146 61 knownFilterMutex.lock();
Chris@137 62
Chris@146 63 if (knownFilters[peakToPole][m_filterLength].find(params.beta) ==
Chris@146 64 knownFilters[peakToPole][m_filterLength].end()) {
Chris@146 65
Chris@146 66 KaiserWindow kw(params);
Chris@146 67 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@146 68
Chris@146 69 filter = vector<double>(m_filterLength, 0.0);
Chris@146 70 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@146 71 sw.cut(filter.data());
Chris@146 72 kw.cut(filter.data());
Chris@146 73
Chris@146 74 knownFilters[peakToPole][m_filterLength][params.beta] = filter;
Chris@146 75 }
Chris@146 76
Chris@146 77 filter = knownFilters[peakToPole][m_filterLength][params.beta];
Chris@146 78 knownFilterMutex.unlock();
Chris@137 79
Chris@137 80 int inputSpacing = m_targetRate / m_gcd;
Chris@137 81 int outputSpacing = m_sourceRate / m_gcd;
Chris@137 82
Chris@141 83 #ifdef DEBUG_RESAMPLER
Chris@141 84 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
Chris@141 85 << ": inputSpacing " << inputSpacing << ", outputSpacing "
Chris@141 86 << outputSpacing << ": filter length " << m_filterLength
Chris@141 87 << std::endl;
Chris@141 88 #endif
Chris@137 89
Chris@147 90 // Now we have a filter of (odd) length flen in which the lower
Chris@147 91 // sample rate corresponds to every n'th point and the higher rate
Chris@147 92 // to every m'th where n and m are higher and lower rates divided
Chris@147 93 // by their gcd respectively. So if x coordinates are on the same
Chris@147 94 // scale as our filter resolution, then source sample i is at i *
Chris@147 95 // (targetRate / gcd) and target sample j is at j * (sourceRate /
Chris@147 96 // gcd).
Chris@147 97
Chris@147 98 // To reconstruct a single target sample, we want a buffer (real
Chris@147 99 // or virtual) of flen values formed of source samples spaced at
Chris@147 100 // intervals of (targetRate / gcd), in our example case 3. This
Chris@147 101 // is initially formed with the first sample at the filter peak.
Chris@147 102 //
Chris@147 103 // 0 0 0 0 a 0 0 b 0
Chris@147 104 //
Chris@147 105 // and of course we have our filter
Chris@147 106 //
Chris@147 107 // f1 f2 f3 f4 f5 f6 f7 f8 f9
Chris@147 108 //
Chris@147 109 // We take the sum of products of non-zero values from this buffer
Chris@147 110 // with corresponding values in the filter
Chris@147 111 //
Chris@147 112 // a * f5 + b * f8
Chris@147 113 //
Chris@147 114 // Then we drop (sourceRate / gcd) values, in our example case 4,
Chris@147 115 // from the start of the buffer and fill until it has flen values
Chris@147 116 // again
Chris@147 117 //
Chris@147 118 // a 0 0 b 0 0 c 0 0
Chris@147 119 //
Chris@147 120 // repeat to reconstruct the next target sample
Chris@147 121 //
Chris@147 122 // a * f1 + b * f4 + c * f7
Chris@147 123 //
Chris@147 124 // and so on.
Chris@147 125 //
Chris@147 126 // Above I said the buffer could be "real or virtual" -- ours is
Chris@147 127 // virtual. We don't actually store all the zero spacing values,
Chris@147 128 // except for padding at the start; normally we store only the
Chris@147 129 // values that actually came from the source stream, along with a
Chris@147 130 // phase value that tells us how many virtual zeroes there are at
Chris@147 131 // the start of the virtual buffer. So the two examples above are
Chris@147 132 //
Chris@147 133 // 0 a b [ with phase 1 ]
Chris@147 134 // a b c [ with phase 0 ]
Chris@147 135 //
Chris@147 136 // Having thus broken down the buffer so that only the elements we
Chris@147 137 // need to multiply are present, we can also unzip the filter into
Chris@147 138 // every-nth-element subsets at each phase, allowing us to do the
Chris@147 139 // filter multiplication as a simply vector multiply. That is, rather
Chris@147 140 // than store
Chris@147 141 //
Chris@147 142 // f1 f2 f3 f4 f5 f6 f7 f8 f9
Chris@147 143 //
Chris@147 144 // we store separately
Chris@147 145 //
Chris@147 146 // f1 f4 f7
Chris@147 147 // f2 f5 f8
Chris@147 148 // f3 f6 f9
Chris@147 149 //
Chris@147 150 // Each time we complete a multiply-and-sum, we need to work out
Chris@147 151 // how many (real) samples to drop from the start of our buffer,
Chris@147 152 // and how many to add at the end of it for the next multiply. We
Chris@147 153 // know we want to drop enough real samples to move along by one
Chris@147 154 // computed output sample, which is our outputSpacing number of
Chris@147 155 // virtual buffer samples. Depending on the relationship between
Chris@147 156 // input and output spacings, this may mean dropping several real
Chris@147 157 // samples, one real sample, or none at all (and simply moving to
Chris@147 158 // a different "phase").
Chris@147 159
Chris@137 160 m_phaseData = new Phase[inputSpacing];
Chris@137 161
Chris@137 162 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@137 163
Chris@137 164 Phase p;
Chris@137 165
Chris@137 166 p.nextPhase = phase - outputSpacing;
Chris@137 167 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@137 168 p.nextPhase %= inputSpacing;
Chris@137 169
Chris@141 170 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
Chris@141 171 / inputSpacing));
Chris@137 172
Chris@141 173 int filtZipLength = int(ceil(double(m_filterLength - phase)
Chris@141 174 / inputSpacing));
Chris@147 175
Chris@137 176 for (int i = 0; i < filtZipLength; ++i) {
Chris@137 177 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@137 178 }
Chris@137 179
Chris@137 180 m_phaseData[phase] = p;
Chris@137 181 }
Chris@137 182
Chris@137 183 // The May implementation of this uses a pull model -- we ask the
Chris@137 184 // resampler for a certain number of output samples, and it asks
Chris@137 185 // its source stream for as many as it needs to calculate
Chris@137 186 // those. This means (among other things) that the source stream
Chris@137 187 // can be asked for enough samples up-front to fill the buffer
Chris@137 188 // before the first output sample is generated.
Chris@137 189 //
Chris@137 190 // In this implementation we're using a push model in which a
Chris@137 191 // certain number of source samples is provided and we're asked
Chris@137 192 // for as many output samples as that makes available. But we
Chris@137 193 // can't return any samples from the beginning until half the
Chris@137 194 // filter length has been provided as input. This means we must
Chris@137 195 // either return a very variable number of samples (none at all
Chris@137 196 // until the filter fills, then half the filter length at once) or
Chris@137 197 // else have a lengthy declared latency on the output. We do the
Chris@137 198 // latter. (What do other implementations do?)
Chris@148 199 //
Chris@147 200 // We want to make sure the first "real" sample will eventually be
Chris@147 201 // aligned with the centre sample in the filter (it's tidier, and
Chris@147 202 // easier to do diagnostic calculations that way). So we need to
Chris@147 203 // pick the initial phase and buffer fill accordingly.
Chris@147 204 //
Chris@147 205 // Example: if the inputSpacing is 2, outputSpacing is 3, and
Chris@147 206 // filter length is 7,
Chris@147 207 //
Chris@147 208 // x x x x a b c ... input samples
Chris@147 209 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
Chris@147 210 // i j k l ... output samples
Chris@147 211 // [--------|--------] <- filter with centre mark
Chris@147 212 //
Chris@147 213 // Let h be the index of the centre mark, here 3 (generally
Chris@147 214 // int(filterLength/2) for odd-length filters).
Chris@147 215 //
Chris@147 216 // The smallest n such that h + n * outputSpacing > filterLength
Chris@147 217 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
Chris@147 218 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
Chris@147 219 // phase is 1.
Chris@147 220 //
Chris@147 221 // To achieve our n, we need to pre-fill the "virtual" buffer with
Chris@147 222 // 4 zero samples: the x's above. This is int((h + n *
Chris@147 223 // outputSpacing) / inputSpacing). It's the phase that makes this
Chris@147 224 // buffer get dealt with in such a way as to give us an effective
Chris@147 225 // index for sample a of 9 rather than 8 or 10 or whatever.
Chris@147 226 //
Chris@147 227 // This gives us output latency of 2 (== n), i.e. output samples i
Chris@147 228 // and j will appear before the one in which input sample a is at
Chris@147 229 // the centre of the filter.
Chris@147 230
Chris@147 231 int h = int(m_filterLength / 2);
Chris@147 232 int n = ceil(double(m_filterLength - h) / outputSpacing);
Chris@141 233
Chris@147 234 m_phase = (h + n * outputSpacing) % inputSpacing;
Chris@147 235
Chris@147 236 int fill = (h + n * outputSpacing) / inputSpacing;
Chris@147 237
Chris@147 238 m_latency = n;
Chris@147 239
Chris@147 240 m_buffer = vector<double>(fill, 0);
Chris@145 241 m_bufferOrigin = 0;
Chris@141 242
Chris@141 243 #ifdef DEBUG_RESAMPLER
Chris@141 244 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
Chris@141 245 << ", latency " << m_latency << std::endl;
Chris@141 246 #endif
Chris@137 247 }
Chris@137 248
Chris@137 249 double
Chris@141 250 Resampler::reconstructOne()
Chris@137 251 {
Chris@137 252 Phase &pd = m_phaseData[m_phase];
Chris@141 253 double v = 0.0;
Chris@137 254 int n = pd.filter.size();
Chris@147 255
Chris@148 256 assert(n + m_bufferOrigin <= (int)m_buffer.size());
Chris@147 257
Chris@145 258 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
Chris@145 259 const double *const __restrict__ filt = pd.filter.data();
Chris@147 260
Chris@147 261 // std::cerr << "phase = " << m_phase << ", drop = " << pd.drop << ", buffer for reconstruction starts...";
Chris@147 262 // for (int i = 0; i < 20; ++i) {
Chris@147 263 // if (i % 5 == 0) std::cerr << "\n" << i << " ";
Chris@147 264 // std::cerr << buf[i] << " ";
Chris@147 265 // }
Chris@147 266 // std::cerr << std::endl;
Chris@147 267
Chris@137 268 for (int i = 0; i < n; ++i) {
Chris@145 269 // NB gcc can only vectorize this with -ffast-math
Chris@145 270 v += buf[i] * filt[i];
Chris@137 271 }
Chris@145 272 m_bufferOrigin += pd.drop;
Chris@141 273 m_phase = pd.nextPhase;
Chris@137 274 return v;
Chris@137 275 }
Chris@137 276
Chris@137 277 int
Chris@141 278 Resampler::process(const double *src, double *dst, int n)
Chris@137 279 {
Chris@141 280 for (int i = 0; i < n; ++i) {
Chris@141 281 m_buffer.push_back(src[i]);
Chris@137 282 }
Chris@137 283
Chris@141 284 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
Chris@141 285 int outidx = 0;
Chris@139 286
Chris@141 287 #ifdef DEBUG_RESAMPLER
Chris@141 288 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
Chris@141 289 #endif
Chris@141 290
Chris@142 291 double scaleFactor = 1.0;
Chris@142 292 if (m_targetRate < m_sourceRate) {
Chris@142 293 scaleFactor = double(m_targetRate) / double(m_sourceRate);
Chris@142 294 }
Chris@142 295
Chris@141 296 while (outidx < maxout &&
Chris@145 297 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
Chris@142 298 dst[outidx] = scaleFactor * reconstructOne();
Chris@141 299 outidx++;
Chris@139 300 }
Chris@145 301
Chris@145 302 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
Chris@145 303 m_bufferOrigin = 0;
Chris@141 304
Chris@141 305 return outidx;
Chris@137 306 }
Chris@141 307
Chris@138 308 std::vector<double>
Chris@138 309 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@138 310 {
Chris@138 311 Resampler r(sourceRate, targetRate);
Chris@138 312
Chris@138 313 int latency = r.getLatency();
Chris@138 314
Chris@143 315 // latency is the output latency. We need to provide enough
Chris@143 316 // padding input samples at the end of input to guarantee at
Chris@143 317 // *least* the latency's worth of output samples. that is,
Chris@143 318
Chris@148 319 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
Chris@143 320
Chris@143 321 // that means we are providing this much input in total:
Chris@143 322
Chris@143 323 int n1 = n + inputPad;
Chris@143 324
Chris@143 325 // and obtaining this much output in total:
Chris@143 326
Chris@148 327 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
Chris@143 328
Chris@143 329 // in order to return this much output to the user:
Chris@143 330
Chris@148 331 int m = int(ceil((double(n) * targetRate) / sourceRate));
Chris@143 332
Chris@148 333 // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
Chris@138 334
Chris@138 335 vector<double> pad(n1 - n, 0.0);
Chris@143 336 vector<double> out(m1 + 1, 0.0);
Chris@138 337
Chris@138 338 int got = r.process(data, out.data(), n);
Chris@138 339 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@138 340
Chris@141 341 #ifdef DEBUG_RESAMPLER
Chris@141 342 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
Chris@147 343 std::cerr << "first 10 in:" << std::endl;
Chris@147 344 for (int i = 0; i < 10; ++i) {
Chris@147 345 std::cerr << data[i] << " ";
Chris@147 346 if (i == 5) std::cerr << std::endl;
Chris@141 347 }
Chris@147 348 std::cerr << std::endl;
Chris@141 349 #endif
Chris@141 350
Chris@143 351 int toReturn = got - latency;
Chris@143 352 if (toReturn > m) toReturn = m;
Chris@143 353
Chris@147 354 vector<double> sliced(out.begin() + latency,
Chris@143 355 out.begin() + latency + toReturn);
Chris@147 356
Chris@147 357 #ifdef DEBUG_RESAMPLER
Chris@147 358 std::cerr << "all out (after latency compensation), length " << sliced.size() << ":";
Chris@147 359 for (int i = 0; i < sliced.size(); ++i) {
Chris@147 360 if (i % 5 == 0) std::cerr << std::endl << i << "... ";
Chris@147 361 std::cerr << sliced[i] << " ";
Chris@147 362 }
Chris@147 363 std::cerr << std::endl;
Chris@147 364 #endif
Chris@147 365
Chris@147 366 return sliced;
Chris@138 367 }
Chris@138 368