annotate dsp/rateconversion/Resampler.cpp @ 142:f8fc21365a8c

Fix scaling on downsampling, another test
author Chris Cannam
date Mon, 14 Oct 2013 16:20:00 +0100
parents 54c9e0811ae7
children a4aa37f7af28
rev   line source
Chris@137 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@137 2
Chris@137 3 #include "Resampler.h"
Chris@137 4
Chris@137 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@137 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@137 7 #include "qm-dsp/base/SincWindow.h"
Chris@137 8
Chris@137 9 #include <iostream>
Chris@138 10 #include <vector>
Chris@138 11
Chris@138 12 using std::vector;
Chris@137 13
Chris@141 14 //#define DEBUG_RESAMPLER 1
Chris@141 15
Chris@137 16 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@137 17 m_sourceRate(sourceRate),
Chris@137 18 m_targetRate(targetRate)
Chris@137 19 {
Chris@137 20 initialise();
Chris@137 21 }
Chris@137 22
Chris@137 23 Resampler::~Resampler()
Chris@137 24 {
Chris@137 25 delete[] m_phaseData;
Chris@137 26 }
Chris@137 27
Chris@137 28 void
Chris@137 29 Resampler::initialise()
Chris@137 30 {
Chris@137 31 int higher = std::max(m_sourceRate, m_targetRate);
Chris@137 32 int lower = std::min(m_sourceRate, m_targetRate);
Chris@137 33
Chris@137 34 m_gcd = MathUtilities::gcd(lower, higher);
Chris@137 35
Chris@137 36 int peakToPole = higher / m_gcd;
Chris@137 37
Chris@137 38 KaiserWindow::Parameters params =
Chris@137 39 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@137 40
Chris@137 41 params.length =
Chris@137 42 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@137 43
Chris@137 44 m_filterLength = params.length;
Chris@137 45
Chris@137 46 KaiserWindow kw(params);
Chris@137 47 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@137 48
Chris@137 49 double *filter = new double[m_filterLength];
Chris@137 50 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@137 51 sw.cut(filter);
Chris@137 52 kw.cut(filter);
Chris@137 53
Chris@137 54 int inputSpacing = m_targetRate / m_gcd;
Chris@137 55 int outputSpacing = m_sourceRate / m_gcd;
Chris@137 56
Chris@141 57 #ifdef DEBUG_RESAMPLER
Chris@141 58 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
Chris@141 59 << ": inputSpacing " << inputSpacing << ", outputSpacing "
Chris@141 60 << outputSpacing << ": filter length " << m_filterLength
Chris@141 61 << std::endl;
Chris@141 62 #endif
Chris@137 63
Chris@137 64 m_phaseData = new Phase[inputSpacing];
Chris@137 65
Chris@137 66 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@137 67
Chris@137 68 Phase p;
Chris@137 69
Chris@137 70 p.nextPhase = phase - outputSpacing;
Chris@137 71 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@137 72 p.nextPhase %= inputSpacing;
Chris@137 73
Chris@141 74 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
Chris@141 75 / inputSpacing));
Chris@137 76
Chris@141 77 int filtZipLength = int(ceil(double(m_filterLength - phase)
Chris@141 78 / inputSpacing));
Chris@137 79 for (int i = 0; i < filtZipLength; ++i) {
Chris@137 80 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@137 81 }
Chris@137 82
Chris@137 83 m_phaseData[phase] = p;
Chris@137 84 }
Chris@137 85
Chris@141 86 #ifdef DEBUG_RESAMPLER
Chris@141 87 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@141 88 std::cerr << "filter for phase " << phase << " of " << inputSpacing << " (with length " << m_phaseData[phase].filter.size() << "):";
Chris@141 89 for (int i = 0; i < m_phaseData[phase].filter.size(); ++i) {
Chris@141 90 if (i % 4 == 0) {
Chris@141 91 std::cerr << std::endl << i << ": ";
Chris@141 92 }
Chris@141 93 float v = m_phaseData[phase].filter[i];
Chris@141 94 if (v == 1) {
Chris@141 95 std::cerr << " *** " << v << " *** ";
Chris@141 96 } else {
Chris@141 97 std::cerr << v << " ";
Chris@141 98 }
Chris@141 99 }
Chris@141 100 std::cerr << std::endl;
Chris@141 101 }
Chris@141 102 #endif
Chris@141 103
Chris@137 104 delete[] filter;
Chris@137 105
Chris@137 106 // The May implementation of this uses a pull model -- we ask the
Chris@137 107 // resampler for a certain number of output samples, and it asks
Chris@137 108 // its source stream for as many as it needs to calculate
Chris@137 109 // those. This means (among other things) that the source stream
Chris@137 110 // can be asked for enough samples up-front to fill the buffer
Chris@137 111 // before the first output sample is generated.
Chris@137 112 //
Chris@137 113 // In this implementation we're using a push model in which a
Chris@137 114 // certain number of source samples is provided and we're asked
Chris@137 115 // for as many output samples as that makes available. But we
Chris@137 116 // can't return any samples from the beginning until half the
Chris@137 117 // filter length has been provided as input. This means we must
Chris@137 118 // either return a very variable number of samples (none at all
Chris@137 119 // until the filter fills, then half the filter length at once) or
Chris@137 120 // else have a lengthy declared latency on the output. We do the
Chris@137 121 // latter. (What do other implementations do?)
Chris@137 122
Chris@141 123 m_phase = (m_filterLength/2) % inputSpacing;
Chris@141 124
Chris@141 125 m_buffer = vector<double>(m_phaseData[0].filter.size(), 0);
Chris@141 126
Chris@141 127 m_latency =
Chris@141 128 ((m_buffer.size() * inputSpacing) - (m_filterLength/2)) / outputSpacing
Chris@141 129 + m_phase;
Chris@141 130
Chris@141 131 #ifdef DEBUG_RESAMPLER
Chris@141 132 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
Chris@141 133 << ", latency " << m_latency << std::endl;
Chris@141 134 #endif
Chris@137 135 }
Chris@137 136
Chris@137 137 double
Chris@141 138 Resampler::reconstructOne()
Chris@137 139 {
Chris@137 140 Phase &pd = m_phaseData[m_phase];
Chris@137 141 double *filt = pd.filter.data();
Chris@141 142 double v = 0.0;
Chris@137 143 int n = pd.filter.size();
Chris@137 144 for (int i = 0; i < n; ++i) {
Chris@137 145 v += m_buffer[i] * filt[i];
Chris@137 146 }
Chris@139 147 m_buffer = vector<double>(m_buffer.begin() + pd.drop, m_buffer.end());
Chris@141 148 m_phase = pd.nextPhase;
Chris@137 149 return v;
Chris@137 150 }
Chris@137 151
Chris@137 152 int
Chris@141 153 Resampler::process(const double *src, double *dst, int n)
Chris@137 154 {
Chris@141 155 for (int i = 0; i < n; ++i) {
Chris@141 156 m_buffer.push_back(src[i]);
Chris@137 157 }
Chris@137 158
Chris@141 159 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
Chris@141 160 int outidx = 0;
Chris@139 161
Chris@141 162 #ifdef DEBUG_RESAMPLER
Chris@141 163 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
Chris@141 164 #endif
Chris@141 165
Chris@142 166 double scaleFactor = 1.0;
Chris@142 167 if (m_targetRate < m_sourceRate) {
Chris@142 168 scaleFactor = double(m_targetRate) / double(m_sourceRate);
Chris@142 169 }
Chris@142 170
Chris@141 171 while (outidx < maxout &&
Chris@141 172 m_buffer.size() >= m_phaseData[m_phase].filter.size()) {
Chris@142 173 dst[outidx] = scaleFactor * reconstructOne();
Chris@141 174 outidx++;
Chris@139 175 }
Chris@141 176
Chris@141 177 return outidx;
Chris@137 178 }
Chris@141 179
Chris@138 180 std::vector<double>
Chris@138 181 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@138 182 {
Chris@138 183 Resampler r(sourceRate, targetRate);
Chris@138 184
Chris@138 185 int latency = r.getLatency();
Chris@138 186
Chris@141 187 int m = int(ceil(double(n * targetRate) / sourceRate));
Chris@138 188 int m1 = m + latency;
Chris@141 189 int n1 = int(double(m1 * sourceRate) / targetRate);
Chris@138 190
Chris@138 191 vector<double> pad(n1 - n, 0.0);
Chris@138 192 vector<double> out(m1, 0.0);
Chris@138 193
Chris@138 194 int got = r.process(data, out.data(), n);
Chris@138 195 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@138 196
Chris@141 197 #ifdef DEBUG_RESAMPLER
Chris@141 198 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
Chris@141 199 for (int i = 0; i < got; ++i) {
Chris@141 200 if (i % 5 == 0) std::cout << std::endl << i << "... ";
Chris@141 201 std::cout << (float) out[i] << " ";
Chris@141 202 }
Chris@141 203 std::cout << std::endl;
Chris@141 204 #endif
Chris@141 205
Chris@138 206 return vector<double>(out.begin() + latency, out.begin() + got);
Chris@138 207 }
Chris@138 208