Chris@137
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@137
|
2
|
Chris@137
|
3 #include "Resampler.h"
|
Chris@137
|
4
|
Chris@137
|
5 #include "qm-dsp/maths/MathUtilities.h"
|
Chris@137
|
6 #include "qm-dsp/base/KaiserWindow.h"
|
Chris@137
|
7 #include "qm-dsp/base/SincWindow.h"
|
Chris@137
|
8
|
Chris@137
|
9 #include <iostream>
|
Chris@138
|
10 #include <vector>
|
Chris@138
|
11
|
Chris@138
|
12 using std::vector;
|
Chris@137
|
13
|
Chris@141
|
14 //#define DEBUG_RESAMPLER 1
|
Chris@141
|
15
|
Chris@137
|
16 Resampler::Resampler(int sourceRate, int targetRate) :
|
Chris@137
|
17 m_sourceRate(sourceRate),
|
Chris@137
|
18 m_targetRate(targetRate)
|
Chris@137
|
19 {
|
Chris@137
|
20 initialise();
|
Chris@137
|
21 }
|
Chris@137
|
22
|
Chris@137
|
23 Resampler::~Resampler()
|
Chris@137
|
24 {
|
Chris@137
|
25 delete[] m_phaseData;
|
Chris@137
|
26 }
|
Chris@137
|
27
|
Chris@137
|
28 void
|
Chris@137
|
29 Resampler::initialise()
|
Chris@137
|
30 {
|
Chris@137
|
31 int higher = std::max(m_sourceRate, m_targetRate);
|
Chris@137
|
32 int lower = std::min(m_sourceRate, m_targetRate);
|
Chris@137
|
33
|
Chris@137
|
34 m_gcd = MathUtilities::gcd(lower, higher);
|
Chris@137
|
35
|
Chris@137
|
36 int peakToPole = higher / m_gcd;
|
Chris@137
|
37
|
Chris@137
|
38 KaiserWindow::Parameters params =
|
Chris@137
|
39 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
|
Chris@137
|
40
|
Chris@137
|
41 params.length =
|
Chris@137
|
42 (params.length % 2 == 0 ? params.length + 1 : params.length);
|
Chris@137
|
43
|
Chris@137
|
44 m_filterLength = params.length;
|
Chris@137
|
45
|
Chris@137
|
46 KaiserWindow kw(params);
|
Chris@137
|
47 SincWindow sw(m_filterLength, peakToPole * 2);
|
Chris@137
|
48
|
Chris@137
|
49 double *filter = new double[m_filterLength];
|
Chris@137
|
50 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
|
Chris@137
|
51 sw.cut(filter);
|
Chris@137
|
52 kw.cut(filter);
|
Chris@137
|
53
|
Chris@137
|
54 int inputSpacing = m_targetRate / m_gcd;
|
Chris@137
|
55 int outputSpacing = m_sourceRate / m_gcd;
|
Chris@137
|
56
|
Chris@141
|
57 #ifdef DEBUG_RESAMPLER
|
Chris@141
|
58 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
|
Chris@141
|
59 << ": inputSpacing " << inputSpacing << ", outputSpacing "
|
Chris@141
|
60 << outputSpacing << ": filter length " << m_filterLength
|
Chris@141
|
61 << std::endl;
|
Chris@141
|
62 #endif
|
Chris@137
|
63
|
Chris@137
|
64 m_phaseData = new Phase[inputSpacing];
|
Chris@137
|
65
|
Chris@137
|
66 for (int phase = 0; phase < inputSpacing; ++phase) {
|
Chris@137
|
67
|
Chris@137
|
68 Phase p;
|
Chris@137
|
69
|
Chris@137
|
70 p.nextPhase = phase - outputSpacing;
|
Chris@137
|
71 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
|
Chris@137
|
72 p.nextPhase %= inputSpacing;
|
Chris@137
|
73
|
Chris@141
|
74 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
|
Chris@141
|
75 / inputSpacing));
|
Chris@137
|
76
|
Chris@141
|
77 int filtZipLength = int(ceil(double(m_filterLength - phase)
|
Chris@141
|
78 / inputSpacing));
|
Chris@137
|
79 for (int i = 0; i < filtZipLength; ++i) {
|
Chris@137
|
80 p.filter.push_back(filter[i * inputSpacing + phase]);
|
Chris@137
|
81 }
|
Chris@137
|
82
|
Chris@137
|
83 m_phaseData[phase] = p;
|
Chris@137
|
84 }
|
Chris@137
|
85
|
Chris@141
|
86 #ifdef DEBUG_RESAMPLER
|
Chris@141
|
87 for (int phase = 0; phase < inputSpacing; ++phase) {
|
Chris@141
|
88 std::cerr << "filter for phase " << phase << " of " << inputSpacing << " (with length " << m_phaseData[phase].filter.size() << "):";
|
Chris@141
|
89 for (int i = 0; i < m_phaseData[phase].filter.size(); ++i) {
|
Chris@141
|
90 if (i % 4 == 0) {
|
Chris@141
|
91 std::cerr << std::endl << i << ": ";
|
Chris@141
|
92 }
|
Chris@141
|
93 float v = m_phaseData[phase].filter[i];
|
Chris@141
|
94 if (v == 1) {
|
Chris@141
|
95 std::cerr << " *** " << v << " *** ";
|
Chris@141
|
96 } else {
|
Chris@141
|
97 std::cerr << v << " ";
|
Chris@141
|
98 }
|
Chris@141
|
99 }
|
Chris@141
|
100 std::cerr << std::endl;
|
Chris@141
|
101 }
|
Chris@141
|
102 #endif
|
Chris@141
|
103
|
Chris@137
|
104 delete[] filter;
|
Chris@137
|
105
|
Chris@137
|
106 // The May implementation of this uses a pull model -- we ask the
|
Chris@137
|
107 // resampler for a certain number of output samples, and it asks
|
Chris@137
|
108 // its source stream for as many as it needs to calculate
|
Chris@137
|
109 // those. This means (among other things) that the source stream
|
Chris@137
|
110 // can be asked for enough samples up-front to fill the buffer
|
Chris@137
|
111 // before the first output sample is generated.
|
Chris@137
|
112 //
|
Chris@137
|
113 // In this implementation we're using a push model in which a
|
Chris@137
|
114 // certain number of source samples is provided and we're asked
|
Chris@137
|
115 // for as many output samples as that makes available. But we
|
Chris@137
|
116 // can't return any samples from the beginning until half the
|
Chris@137
|
117 // filter length has been provided as input. This means we must
|
Chris@137
|
118 // either return a very variable number of samples (none at all
|
Chris@137
|
119 // until the filter fills, then half the filter length at once) or
|
Chris@137
|
120 // else have a lengthy declared latency on the output. We do the
|
Chris@137
|
121 // latter. (What do other implementations do?)
|
Chris@137
|
122
|
Chris@141
|
123 m_phase = (m_filterLength/2) % inputSpacing;
|
Chris@141
|
124
|
Chris@141
|
125 m_buffer = vector<double>(m_phaseData[0].filter.size(), 0);
|
Chris@141
|
126
|
Chris@141
|
127 m_latency =
|
Chris@141
|
128 ((m_buffer.size() * inputSpacing) - (m_filterLength/2)) / outputSpacing
|
Chris@141
|
129 + m_phase;
|
Chris@141
|
130
|
Chris@141
|
131 #ifdef DEBUG_RESAMPLER
|
Chris@141
|
132 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
|
Chris@141
|
133 << ", latency " << m_latency << std::endl;
|
Chris@141
|
134 #endif
|
Chris@137
|
135 }
|
Chris@137
|
136
|
Chris@137
|
137 double
|
Chris@141
|
138 Resampler::reconstructOne()
|
Chris@137
|
139 {
|
Chris@137
|
140 Phase &pd = m_phaseData[m_phase];
|
Chris@137
|
141 double *filt = pd.filter.data();
|
Chris@141
|
142 double v = 0.0;
|
Chris@137
|
143 int n = pd.filter.size();
|
Chris@137
|
144 for (int i = 0; i < n; ++i) {
|
Chris@137
|
145 v += m_buffer[i] * filt[i];
|
Chris@137
|
146 }
|
Chris@139
|
147 m_buffer = vector<double>(m_buffer.begin() + pd.drop, m_buffer.end());
|
Chris@141
|
148 m_phase = pd.nextPhase;
|
Chris@137
|
149 return v;
|
Chris@137
|
150 }
|
Chris@137
|
151
|
Chris@137
|
152 int
|
Chris@141
|
153 Resampler::process(const double *src, double *dst, int n)
|
Chris@137
|
154 {
|
Chris@141
|
155 for (int i = 0; i < n; ++i) {
|
Chris@141
|
156 m_buffer.push_back(src[i]);
|
Chris@137
|
157 }
|
Chris@137
|
158
|
Chris@141
|
159 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
|
Chris@141
|
160 int outidx = 0;
|
Chris@139
|
161
|
Chris@141
|
162 #ifdef DEBUG_RESAMPLER
|
Chris@141
|
163 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
|
Chris@141
|
164 #endif
|
Chris@141
|
165
|
Chris@142
|
166 double scaleFactor = 1.0;
|
Chris@142
|
167 if (m_targetRate < m_sourceRate) {
|
Chris@142
|
168 scaleFactor = double(m_targetRate) / double(m_sourceRate);
|
Chris@142
|
169 }
|
Chris@142
|
170
|
Chris@141
|
171 while (outidx < maxout &&
|
Chris@141
|
172 m_buffer.size() >= m_phaseData[m_phase].filter.size()) {
|
Chris@142
|
173 dst[outidx] = scaleFactor * reconstructOne();
|
Chris@141
|
174 outidx++;
|
Chris@139
|
175 }
|
Chris@141
|
176
|
Chris@141
|
177 return outidx;
|
Chris@137
|
178 }
|
Chris@141
|
179
|
Chris@138
|
180 std::vector<double>
|
Chris@138
|
181 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
|
Chris@138
|
182 {
|
Chris@138
|
183 Resampler r(sourceRate, targetRate);
|
Chris@138
|
184
|
Chris@138
|
185 int latency = r.getLatency();
|
Chris@138
|
186
|
Chris@141
|
187 int m = int(ceil(double(n * targetRate) / sourceRate));
|
Chris@138
|
188 int m1 = m + latency;
|
Chris@141
|
189 int n1 = int(double(m1 * sourceRate) / targetRate);
|
Chris@138
|
190
|
Chris@138
|
191 vector<double> pad(n1 - n, 0.0);
|
Chris@138
|
192 vector<double> out(m1, 0.0);
|
Chris@138
|
193
|
Chris@138
|
194 int got = r.process(data, out.data(), n);
|
Chris@138
|
195 got += r.process(pad.data(), out.data() + got, pad.size());
|
Chris@138
|
196
|
Chris@141
|
197 #ifdef DEBUG_RESAMPLER
|
Chris@141
|
198 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
|
Chris@141
|
199 for (int i = 0; i < got; ++i) {
|
Chris@141
|
200 if (i % 5 == 0) std::cout << std::endl << i << "... ";
|
Chris@141
|
201 std::cout << (float) out[i] << " ";
|
Chris@141
|
202 }
|
Chris@141
|
203 std::cout << std::endl;
|
Chris@141
|
204 #endif
|
Chris@141
|
205
|
Chris@138
|
206 return vector<double>(out.begin() + latency, out.begin() + got);
|
Chris@138
|
207 }
|
Chris@138
|
208
|