Chris@137
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@137
|
2
|
Chris@137
|
3 #include "Resampler.h"
|
Chris@137
|
4
|
Chris@137
|
5 #include "qm-dsp/maths/MathUtilities.h"
|
Chris@137
|
6 #include "qm-dsp/base/KaiserWindow.h"
|
Chris@137
|
7 #include "qm-dsp/base/SincWindow.h"
|
Chris@137
|
8
|
Chris@137
|
9 #include <iostream>
|
Chris@138
|
10 #include <vector>
|
Chris@138
|
11
|
Chris@138
|
12 using std::vector;
|
Chris@137
|
13
|
Chris@137
|
14 Resampler::Resampler(int sourceRate, int targetRate) :
|
Chris@137
|
15 m_sourceRate(sourceRate),
|
Chris@137
|
16 m_targetRate(targetRate)
|
Chris@137
|
17 {
|
Chris@137
|
18 initialise();
|
Chris@137
|
19 }
|
Chris@137
|
20
|
Chris@137
|
21 Resampler::~Resampler()
|
Chris@137
|
22 {
|
Chris@137
|
23 delete[] m_phaseData;
|
Chris@137
|
24 }
|
Chris@137
|
25
|
Chris@137
|
26 void
|
Chris@137
|
27 Resampler::initialise()
|
Chris@137
|
28 {
|
Chris@137
|
29 int higher = std::max(m_sourceRate, m_targetRate);
|
Chris@137
|
30 int lower = std::min(m_sourceRate, m_targetRate);
|
Chris@137
|
31
|
Chris@137
|
32 m_gcd = MathUtilities::gcd(lower, higher);
|
Chris@137
|
33
|
Chris@137
|
34 int peakToPole = higher / m_gcd;
|
Chris@137
|
35
|
Chris@137
|
36 KaiserWindow::Parameters params =
|
Chris@137
|
37 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
|
Chris@137
|
38
|
Chris@137
|
39 params.length =
|
Chris@137
|
40 (params.length % 2 == 0 ? params.length + 1 : params.length);
|
Chris@137
|
41
|
Chris@137
|
42 m_filterLength = params.length;
|
Chris@137
|
43
|
Chris@137
|
44 KaiserWindow kw(params);
|
Chris@137
|
45 SincWindow sw(m_filterLength, peakToPole * 2);
|
Chris@137
|
46
|
Chris@137
|
47 double *filter = new double[m_filterLength];
|
Chris@137
|
48 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
|
Chris@137
|
49 sw.cut(filter);
|
Chris@137
|
50 kw.cut(filter);
|
Chris@137
|
51
|
Chris@137
|
52 int inputSpacing = m_targetRate / m_gcd;
|
Chris@137
|
53 int outputSpacing = m_sourceRate / m_gcd;
|
Chris@137
|
54
|
Chris@137
|
55 m_latency = int((m_filterLength / 2) / outputSpacing);
|
Chris@137
|
56
|
Chris@139
|
57 int bufferLength = 0;
|
Chris@137
|
58
|
Chris@137
|
59 m_phaseData = new Phase[inputSpacing];
|
Chris@137
|
60
|
Chris@137
|
61 for (int phase = 0; phase < inputSpacing; ++phase) {
|
Chris@137
|
62
|
Chris@137
|
63 Phase p;
|
Chris@137
|
64
|
Chris@137
|
65 p.nextPhase = phase - outputSpacing;
|
Chris@137
|
66 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
|
Chris@137
|
67 p.nextPhase %= inputSpacing;
|
Chris@137
|
68
|
Chris@137
|
69 p.drop = int(ceil(std::max(0, outputSpacing - phase) / inputSpacing));
|
Chris@137
|
70 p.take = int((outputSpacing +
|
Chris@137
|
71 ((m_filterLength - 1 - phase) % inputSpacing))
|
Chris@137
|
72 / outputSpacing);
|
Chris@137
|
73
|
Chris@137
|
74 int filtZipLength = int(ceil((m_filterLength - phase) / inputSpacing));
|
Chris@139
|
75 if (filtZipLength > bufferLength) {
|
Chris@139
|
76 bufferLength = filtZipLength;
|
Chris@137
|
77 }
|
Chris@137
|
78
|
Chris@137
|
79 for (int i = 0; i < filtZipLength; ++i) {
|
Chris@137
|
80 p.filter.push_back(filter[i * inputSpacing + phase]);
|
Chris@137
|
81 }
|
Chris@137
|
82
|
Chris@137
|
83 m_phaseData[phase] = p;
|
Chris@137
|
84 }
|
Chris@137
|
85
|
Chris@137
|
86 delete[] filter;
|
Chris@137
|
87
|
Chris@137
|
88 // The May implementation of this uses a pull model -- we ask the
|
Chris@137
|
89 // resampler for a certain number of output samples, and it asks
|
Chris@137
|
90 // its source stream for as many as it needs to calculate
|
Chris@137
|
91 // those. This means (among other things) that the source stream
|
Chris@137
|
92 // can be asked for enough samples up-front to fill the buffer
|
Chris@137
|
93 // before the first output sample is generated.
|
Chris@137
|
94 //
|
Chris@137
|
95 // In this implementation we're using a push model in which a
|
Chris@137
|
96 // certain number of source samples is provided and we're asked
|
Chris@137
|
97 // for as many output samples as that makes available. But we
|
Chris@137
|
98 // can't return any samples from the beginning until half the
|
Chris@137
|
99 // filter length has been provided as input. This means we must
|
Chris@137
|
100 // either return a very variable number of samples (none at all
|
Chris@137
|
101 // until the filter fills, then half the filter length at once) or
|
Chris@137
|
102 // else have a lengthy declared latency on the output. We do the
|
Chris@137
|
103 // latter. (What do other implementations do?)
|
Chris@137
|
104
|
Chris@137
|
105 m_phase = m_filterLength % inputSpacing;
|
Chris@139
|
106 m_buffer = vector<double>(bufferLength, 0);
|
Chris@137
|
107 }
|
Chris@137
|
108
|
Chris@137
|
109 double
|
Chris@139
|
110 Resampler::reconstructOne(const double *src)
|
Chris@137
|
111 {
|
Chris@137
|
112 Phase &pd = m_phaseData[m_phase];
|
Chris@137
|
113 double *filt = pd.filter.data();
|
Chris@137
|
114 int n = pd.filter.size();
|
Chris@137
|
115 double v = 0.0;
|
Chris@137
|
116 for (int i = 0; i < n; ++i) {
|
Chris@137
|
117 v += m_buffer[i] * filt[i];
|
Chris@137
|
118 }
|
Chris@139
|
119 m_buffer = vector<double>(m_buffer.begin() + pd.drop, m_buffer.end());
|
Chris@139
|
120 for (int i = 0; i < pd.take; ++i) {
|
Chris@139
|
121 m_buffer.push_back(src[i]);
|
Chris@137
|
122 }
|
Chris@137
|
123 return v;
|
Chris@137
|
124 }
|
Chris@137
|
125
|
Chris@137
|
126 int
|
Chris@139
|
127 Resampler::process(const double *src, double *dst, int remaining)
|
Chris@137
|
128 {
|
Chris@137
|
129 int m = 0;
|
Chris@139
|
130 int offset = 0;
|
Chris@137
|
131
|
Chris@139
|
132 while (remaining >= m_phaseData[m_phase].take) {
|
Chris@139
|
133 std::cerr << "remaining = " << remaining << ", m = " << m << ", take = " << m_phaseData[m_phase].take << std::endl;
|
Chris@139
|
134 int advance = m_phaseData[m_phase].take;
|
Chris@139
|
135 dst[m] = reconstructOne(src + offset);
|
Chris@139
|
136 offset += advance;
|
Chris@139
|
137 remaining -= advance;
|
Chris@139
|
138 m_phase = m_phaseData[m_phase].nextPhase;
|
Chris@139
|
139 std::cerr << "remaining -> " << remaining << ", new phase has advance " << m_phaseData[m_phase].take << std::endl;
|
Chris@137
|
140 ++m;
|
Chris@137
|
141 }
|
Chris@137
|
142
|
Chris@139
|
143 if (remaining > 0) {
|
Chris@139
|
144 std::cerr << "have " << remaining << " spare, pushing to buffer" << std::endl;
|
Chris@139
|
145 }
|
Chris@139
|
146
|
Chris@139
|
147 for (int i = 0; i < remaining; ++i) {
|
Chris@139
|
148 m_buffer.push_back(src[offset + i]);
|
Chris@139
|
149 }
|
Chris@137
|
150
|
Chris@137
|
151 return m;
|
Chris@137
|
152 }
|
Chris@137
|
153
|
Chris@138
|
154 std::vector<double>
|
Chris@138
|
155 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
|
Chris@138
|
156 {
|
Chris@138
|
157 Resampler r(sourceRate, targetRate);
|
Chris@138
|
158
|
Chris@138
|
159 int latency = r.getLatency();
|
Chris@138
|
160
|
Chris@138
|
161 int m = int(ceil((n * targetRate) / sourceRate));
|
Chris@138
|
162 int m1 = m + latency;
|
Chris@138
|
163 int n1 = int((m1 * sourceRate) / targetRate);
|
Chris@138
|
164
|
Chris@138
|
165 vector<double> pad(n1 - n, 0.0);
|
Chris@138
|
166 vector<double> out(m1, 0.0);
|
Chris@138
|
167
|
Chris@138
|
168 int got = r.process(data, out.data(), n);
|
Chris@138
|
169 got += r.process(pad.data(), out.data() + got, pad.size());
|
Chris@138
|
170
|
Chris@138
|
171 return vector<double>(out.begin() + latency, out.begin() + got);
|
Chris@138
|
172 }
|
Chris@138
|
173
|