annotate dsp/rateconversion/Resampler.cpp @ 139:7fe0da91e9c3

Save extra samples from one process to next (+ other fixes and debug out)
author Chris Cannam
date Mon, 14 Oct 2013 08:15:51 +0100
parents e89d489af128
children ce50eef47bdf
rev   line source
Chris@137 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@137 2
Chris@137 3 #include "Resampler.h"
Chris@137 4
Chris@137 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@137 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@137 7 #include "qm-dsp/base/SincWindow.h"
Chris@137 8
Chris@137 9 #include <iostream>
Chris@138 10 #include <vector>
Chris@138 11
Chris@138 12 using std::vector;
Chris@137 13
Chris@137 14 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@137 15 m_sourceRate(sourceRate),
Chris@137 16 m_targetRate(targetRate)
Chris@137 17 {
Chris@137 18 initialise();
Chris@137 19 }
Chris@137 20
Chris@137 21 Resampler::~Resampler()
Chris@137 22 {
Chris@137 23 delete[] m_phaseData;
Chris@137 24 }
Chris@137 25
Chris@137 26 void
Chris@137 27 Resampler::initialise()
Chris@137 28 {
Chris@137 29 int higher = std::max(m_sourceRate, m_targetRate);
Chris@137 30 int lower = std::min(m_sourceRate, m_targetRate);
Chris@137 31
Chris@137 32 m_gcd = MathUtilities::gcd(lower, higher);
Chris@137 33
Chris@137 34 int peakToPole = higher / m_gcd;
Chris@137 35
Chris@137 36 KaiserWindow::Parameters params =
Chris@137 37 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@137 38
Chris@137 39 params.length =
Chris@137 40 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@137 41
Chris@137 42 m_filterLength = params.length;
Chris@137 43
Chris@137 44 KaiserWindow kw(params);
Chris@137 45 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@137 46
Chris@137 47 double *filter = new double[m_filterLength];
Chris@137 48 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@137 49 sw.cut(filter);
Chris@137 50 kw.cut(filter);
Chris@137 51
Chris@137 52 int inputSpacing = m_targetRate / m_gcd;
Chris@137 53 int outputSpacing = m_sourceRate / m_gcd;
Chris@137 54
Chris@137 55 m_latency = int((m_filterLength / 2) / outputSpacing);
Chris@137 56
Chris@139 57 int bufferLength = 0;
Chris@137 58
Chris@137 59 m_phaseData = new Phase[inputSpacing];
Chris@137 60
Chris@137 61 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@137 62
Chris@137 63 Phase p;
Chris@137 64
Chris@137 65 p.nextPhase = phase - outputSpacing;
Chris@137 66 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@137 67 p.nextPhase %= inputSpacing;
Chris@137 68
Chris@137 69 p.drop = int(ceil(std::max(0, outputSpacing - phase) / inputSpacing));
Chris@137 70 p.take = int((outputSpacing +
Chris@137 71 ((m_filterLength - 1 - phase) % inputSpacing))
Chris@137 72 / outputSpacing);
Chris@137 73
Chris@137 74 int filtZipLength = int(ceil((m_filterLength - phase) / inputSpacing));
Chris@139 75 if (filtZipLength > bufferLength) {
Chris@139 76 bufferLength = filtZipLength;
Chris@137 77 }
Chris@137 78
Chris@137 79 for (int i = 0; i < filtZipLength; ++i) {
Chris@137 80 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@137 81 }
Chris@137 82
Chris@137 83 m_phaseData[phase] = p;
Chris@137 84 }
Chris@137 85
Chris@137 86 delete[] filter;
Chris@137 87
Chris@137 88 // The May implementation of this uses a pull model -- we ask the
Chris@137 89 // resampler for a certain number of output samples, and it asks
Chris@137 90 // its source stream for as many as it needs to calculate
Chris@137 91 // those. This means (among other things) that the source stream
Chris@137 92 // can be asked for enough samples up-front to fill the buffer
Chris@137 93 // before the first output sample is generated.
Chris@137 94 //
Chris@137 95 // In this implementation we're using a push model in which a
Chris@137 96 // certain number of source samples is provided and we're asked
Chris@137 97 // for as many output samples as that makes available. But we
Chris@137 98 // can't return any samples from the beginning until half the
Chris@137 99 // filter length has been provided as input. This means we must
Chris@137 100 // either return a very variable number of samples (none at all
Chris@137 101 // until the filter fills, then half the filter length at once) or
Chris@137 102 // else have a lengthy declared latency on the output. We do the
Chris@137 103 // latter. (What do other implementations do?)
Chris@137 104
Chris@137 105 m_phase = m_filterLength % inputSpacing;
Chris@139 106 m_buffer = vector<double>(bufferLength, 0);
Chris@137 107 }
Chris@137 108
Chris@137 109 double
Chris@139 110 Resampler::reconstructOne(const double *src)
Chris@137 111 {
Chris@137 112 Phase &pd = m_phaseData[m_phase];
Chris@137 113 double *filt = pd.filter.data();
Chris@137 114 int n = pd.filter.size();
Chris@137 115 double v = 0.0;
Chris@137 116 for (int i = 0; i < n; ++i) {
Chris@137 117 v += m_buffer[i] * filt[i];
Chris@137 118 }
Chris@139 119 m_buffer = vector<double>(m_buffer.begin() + pd.drop, m_buffer.end());
Chris@139 120 for (int i = 0; i < pd.take; ++i) {
Chris@139 121 m_buffer.push_back(src[i]);
Chris@137 122 }
Chris@137 123 return v;
Chris@137 124 }
Chris@137 125
Chris@137 126 int
Chris@139 127 Resampler::process(const double *src, double *dst, int remaining)
Chris@137 128 {
Chris@137 129 int m = 0;
Chris@139 130 int offset = 0;
Chris@137 131
Chris@139 132 while (remaining >= m_phaseData[m_phase].take) {
Chris@139 133 std::cerr << "remaining = " << remaining << ", m = " << m << ", take = " << m_phaseData[m_phase].take << std::endl;
Chris@139 134 int advance = m_phaseData[m_phase].take;
Chris@139 135 dst[m] = reconstructOne(src + offset);
Chris@139 136 offset += advance;
Chris@139 137 remaining -= advance;
Chris@139 138 m_phase = m_phaseData[m_phase].nextPhase;
Chris@139 139 std::cerr << "remaining -> " << remaining << ", new phase has advance " << m_phaseData[m_phase].take << std::endl;
Chris@137 140 ++m;
Chris@137 141 }
Chris@137 142
Chris@139 143 if (remaining > 0) {
Chris@139 144 std::cerr << "have " << remaining << " spare, pushing to buffer" << std::endl;
Chris@139 145 }
Chris@139 146
Chris@139 147 for (int i = 0; i < remaining; ++i) {
Chris@139 148 m_buffer.push_back(src[offset + i]);
Chris@139 149 }
Chris@137 150
Chris@137 151 return m;
Chris@137 152 }
Chris@137 153
Chris@138 154 std::vector<double>
Chris@138 155 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@138 156 {
Chris@138 157 Resampler r(sourceRate, targetRate);
Chris@138 158
Chris@138 159 int latency = r.getLatency();
Chris@138 160
Chris@138 161 int m = int(ceil((n * targetRate) / sourceRate));
Chris@138 162 int m1 = m + latency;
Chris@138 163 int n1 = int((m1 * sourceRate) / targetRate);
Chris@138 164
Chris@138 165 vector<double> pad(n1 - n, 0.0);
Chris@138 166 vector<double> out(m1, 0.0);
Chris@138 167
Chris@138 168 int got = r.process(data, out.data(), n);
Chris@138 169 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@138 170
Chris@138 171 return vector<double>(out.begin() + latency, out.begin() + got);
Chris@138 172 }
Chris@138 173