annotate dsp/rateconversion/Resampler.cpp @ 146:235b99c7d4ce

Cache calculated filters
author Chris Cannam
date Wed, 16 Oct 2013 13:33:36 +0100
parents fe267879e022
children c1e98c18628a
rev   line source
Chris@137 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@137 2
Chris@137 3 #include "Resampler.h"
Chris@137 4
Chris@137 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@137 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@137 7 #include "qm-dsp/base/SincWindow.h"
Chris@146 8 #include "qm-dsp/thread/Thread.h"
Chris@137 9
Chris@137 10 #include <iostream>
Chris@138 11 #include <vector>
Chris@145 12 #include <map>
Chris@138 13
Chris@138 14 using std::vector;
Chris@145 15 using std::map;
Chris@137 16
Chris@141 17 //#define DEBUG_RESAMPLER 1
Chris@141 18
Chris@137 19 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@137 20 m_sourceRate(sourceRate),
Chris@137 21 m_targetRate(targetRate)
Chris@137 22 {
Chris@137 23 initialise();
Chris@137 24 }
Chris@137 25
Chris@137 26 Resampler::~Resampler()
Chris@137 27 {
Chris@137 28 delete[] m_phaseData;
Chris@137 29 }
Chris@137 30
Chris@146 31 // peakToPole -> length -> beta -> window
Chris@146 32 static map<int, map<int, map<double, vector<double> > > >
Chris@146 33 knownFilters;
Chris@146 34
Chris@146 35 static Mutex
Chris@146 36 knownFilterMutex;
Chris@146 37
Chris@137 38 void
Chris@137 39 Resampler::initialise()
Chris@137 40 {
Chris@137 41 int higher = std::max(m_sourceRate, m_targetRate);
Chris@137 42 int lower = std::min(m_sourceRate, m_targetRate);
Chris@137 43
Chris@137 44 m_gcd = MathUtilities::gcd(lower, higher);
Chris@137 45
Chris@137 46 int peakToPole = higher / m_gcd;
Chris@137 47
Chris@137 48 KaiserWindow::Parameters params =
Chris@137 49 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@137 50
Chris@137 51 params.length =
Chris@137 52 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@137 53
Chris@137 54 m_filterLength = params.length;
Chris@145 55
Chris@146 56 vector<double> filter;
Chris@146 57 knownFilterMutex.lock();
Chris@137 58
Chris@146 59 if (knownFilters[peakToPole][m_filterLength].find(params.beta) ==
Chris@146 60 knownFilters[peakToPole][m_filterLength].end()) {
Chris@146 61
Chris@146 62 KaiserWindow kw(params);
Chris@146 63 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@146 64
Chris@146 65 filter = vector<double>(m_filterLength, 0.0);
Chris@146 66 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@146 67 sw.cut(filter.data());
Chris@146 68 kw.cut(filter.data());
Chris@146 69
Chris@146 70 knownFilters[peakToPole][m_filterLength][params.beta] = filter;
Chris@146 71 }
Chris@146 72
Chris@146 73 filter = knownFilters[peakToPole][m_filterLength][params.beta];
Chris@146 74 knownFilterMutex.unlock();
Chris@137 75
Chris@137 76 int inputSpacing = m_targetRate / m_gcd;
Chris@137 77 int outputSpacing = m_sourceRate / m_gcd;
Chris@137 78
Chris@141 79 #ifdef DEBUG_RESAMPLER
Chris@141 80 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
Chris@141 81 << ": inputSpacing " << inputSpacing << ", outputSpacing "
Chris@141 82 << outputSpacing << ": filter length " << m_filterLength
Chris@141 83 << std::endl;
Chris@141 84 #endif
Chris@137 85
Chris@137 86 m_phaseData = new Phase[inputSpacing];
Chris@137 87
Chris@137 88 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@137 89
Chris@137 90 Phase p;
Chris@137 91
Chris@137 92 p.nextPhase = phase - outputSpacing;
Chris@137 93 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@137 94 p.nextPhase %= inputSpacing;
Chris@137 95
Chris@141 96 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
Chris@141 97 / inputSpacing));
Chris@137 98
Chris@141 99 int filtZipLength = int(ceil(double(m_filterLength - phase)
Chris@141 100 / inputSpacing));
Chris@137 101 for (int i = 0; i < filtZipLength; ++i) {
Chris@137 102 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@137 103 }
Chris@137 104
Chris@137 105 m_phaseData[phase] = p;
Chris@137 106 }
Chris@137 107
Chris@137 108 // The May implementation of this uses a pull model -- we ask the
Chris@137 109 // resampler for a certain number of output samples, and it asks
Chris@137 110 // its source stream for as many as it needs to calculate
Chris@137 111 // those. This means (among other things) that the source stream
Chris@137 112 // can be asked for enough samples up-front to fill the buffer
Chris@137 113 // before the first output sample is generated.
Chris@137 114 //
Chris@137 115 // In this implementation we're using a push model in which a
Chris@137 116 // certain number of source samples is provided and we're asked
Chris@137 117 // for as many output samples as that makes available. But we
Chris@137 118 // can't return any samples from the beginning until half the
Chris@137 119 // filter length has been provided as input. This means we must
Chris@137 120 // either return a very variable number of samples (none at all
Chris@137 121 // until the filter fills, then half the filter length at once) or
Chris@137 122 // else have a lengthy declared latency on the output. We do the
Chris@137 123 // latter. (What do other implementations do?)
Chris@137 124
Chris@141 125 m_phase = (m_filterLength/2) % inputSpacing;
Chris@141 126
Chris@141 127 m_buffer = vector<double>(m_phaseData[0].filter.size(), 0);
Chris@145 128 m_bufferOrigin = 0;
Chris@141 129
Chris@141 130 m_latency =
Chris@141 131 ((m_buffer.size() * inputSpacing) - (m_filterLength/2)) / outputSpacing
Chris@141 132 + m_phase;
Chris@141 133
Chris@141 134 #ifdef DEBUG_RESAMPLER
Chris@141 135 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
Chris@141 136 << ", latency " << m_latency << std::endl;
Chris@141 137 #endif
Chris@137 138 }
Chris@137 139
Chris@137 140 double
Chris@141 141 Resampler::reconstructOne()
Chris@137 142 {
Chris@137 143 Phase &pd = m_phaseData[m_phase];
Chris@141 144 double v = 0.0;
Chris@137 145 int n = pd.filter.size();
Chris@145 146 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
Chris@145 147 const double *const __restrict__ filt = pd.filter.data();
Chris@137 148 for (int i = 0; i < n; ++i) {
Chris@145 149 // NB gcc can only vectorize this with -ffast-math
Chris@145 150 v += buf[i] * filt[i];
Chris@137 151 }
Chris@145 152 m_bufferOrigin += pd.drop;
Chris@141 153 m_phase = pd.nextPhase;
Chris@137 154 return v;
Chris@137 155 }
Chris@137 156
Chris@137 157 int
Chris@141 158 Resampler::process(const double *src, double *dst, int n)
Chris@137 159 {
Chris@141 160 for (int i = 0; i < n; ++i) {
Chris@141 161 m_buffer.push_back(src[i]);
Chris@137 162 }
Chris@137 163
Chris@141 164 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
Chris@141 165 int outidx = 0;
Chris@139 166
Chris@141 167 #ifdef DEBUG_RESAMPLER
Chris@141 168 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
Chris@141 169 #endif
Chris@141 170
Chris@142 171 double scaleFactor = 1.0;
Chris@142 172 if (m_targetRate < m_sourceRate) {
Chris@142 173 scaleFactor = double(m_targetRate) / double(m_sourceRate);
Chris@142 174 }
Chris@142 175
Chris@141 176 while (outidx < maxout &&
Chris@145 177 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
Chris@142 178 dst[outidx] = scaleFactor * reconstructOne();
Chris@141 179 outidx++;
Chris@139 180 }
Chris@145 181
Chris@145 182 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
Chris@145 183 m_bufferOrigin = 0;
Chris@141 184
Chris@141 185 return outidx;
Chris@137 186 }
Chris@141 187
Chris@138 188 std::vector<double>
Chris@138 189 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@138 190 {
Chris@138 191 Resampler r(sourceRate, targetRate);
Chris@138 192
Chris@138 193 int latency = r.getLatency();
Chris@138 194
Chris@143 195 // latency is the output latency. We need to provide enough
Chris@143 196 // padding input samples at the end of input to guarantee at
Chris@143 197 // *least* the latency's worth of output samples. that is,
Chris@143 198
Chris@143 199 int inputPad = int(ceil(double(latency * sourceRate) / targetRate));
Chris@143 200
Chris@143 201 // that means we are providing this much input in total:
Chris@143 202
Chris@143 203 int n1 = n + inputPad;
Chris@143 204
Chris@143 205 // and obtaining this much output in total:
Chris@143 206
Chris@143 207 int m1 = int(ceil(double(n1 * targetRate) / sourceRate));
Chris@143 208
Chris@143 209 // in order to return this much output to the user:
Chris@143 210
Chris@141 211 int m = int(ceil(double(n * targetRate) / sourceRate));
Chris@143 212
Chris@145 213 // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
Chris@138 214
Chris@138 215 vector<double> pad(n1 - n, 0.0);
Chris@143 216 vector<double> out(m1 + 1, 0.0);
Chris@138 217
Chris@138 218 int got = r.process(data, out.data(), n);
Chris@138 219 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@138 220
Chris@141 221 #ifdef DEBUG_RESAMPLER
Chris@141 222 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
Chris@141 223 for (int i = 0; i < got; ++i) {
Chris@141 224 if (i % 5 == 0) std::cout << std::endl << i << "... ";
Chris@141 225 std::cout << (float) out[i] << " ";
Chris@141 226 }
Chris@141 227 std::cout << std::endl;
Chris@141 228 #endif
Chris@141 229
Chris@143 230 int toReturn = got - latency;
Chris@143 231 if (toReturn > m) toReturn = m;
Chris@143 232
Chris@143 233 return vector<double>(out.begin() + latency,
Chris@143 234 out.begin() + latency + toReturn);
Chris@138 235 }
Chris@138 236