annotate dsp/rateconversion/Resampler.cpp @ 145:fe267879e022

Avoid vector reallocation on every reconstructed output sample
author Chris Cannam
date Wed, 16 Oct 2013 13:33:18 +0100
parents a4aa37f7af28
children 235b99c7d4ce
rev   line source
Chris@137 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@137 2
Chris@137 3 #include "Resampler.h"
Chris@137 4
Chris@137 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@137 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@137 7 #include "qm-dsp/base/SincWindow.h"
Chris@137 8
Chris@137 9 #include <iostream>
Chris@138 10 #include <vector>
Chris@145 11 #include <map>
Chris@138 12
Chris@138 13 using std::vector;
Chris@145 14 using std::map;
Chris@137 15
Chris@141 16 //#define DEBUG_RESAMPLER 1
Chris@141 17
Chris@137 18 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@137 19 m_sourceRate(sourceRate),
Chris@137 20 m_targetRate(targetRate)
Chris@137 21 {
Chris@137 22 initialise();
Chris@137 23 }
Chris@137 24
Chris@137 25 Resampler::~Resampler()
Chris@137 26 {
Chris@137 27 delete[] m_phaseData;
Chris@137 28 }
Chris@137 29
Chris@137 30 void
Chris@137 31 Resampler::initialise()
Chris@137 32 {
Chris@137 33 int higher = std::max(m_sourceRate, m_targetRate);
Chris@137 34 int lower = std::min(m_sourceRate, m_targetRate);
Chris@137 35
Chris@137 36 m_gcd = MathUtilities::gcd(lower, higher);
Chris@137 37
Chris@137 38 int peakToPole = higher / m_gcd;
Chris@137 39
Chris@137 40 KaiserWindow::Parameters params =
Chris@137 41 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@137 42
Chris@137 43 params.length =
Chris@137 44 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@137 45
Chris@137 46 m_filterLength = params.length;
Chris@145 47
Chris@137 48 KaiserWindow kw(params);
Chris@137 49 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@137 50
Chris@145 51 vector<double> filter(m_filterLength, 0.0);
Chris@137 52 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@145 53 sw.cut(filter.data());
Chris@145 54 kw.cut(filter.data());
Chris@137 55
Chris@137 56 int inputSpacing = m_targetRate / m_gcd;
Chris@137 57 int outputSpacing = m_sourceRate / m_gcd;
Chris@137 58
Chris@141 59 #ifdef DEBUG_RESAMPLER
Chris@141 60 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
Chris@141 61 << ": inputSpacing " << inputSpacing << ", outputSpacing "
Chris@141 62 << outputSpacing << ": filter length " << m_filterLength
Chris@141 63 << std::endl;
Chris@141 64 #endif
Chris@137 65
Chris@137 66 m_phaseData = new Phase[inputSpacing];
Chris@137 67
Chris@137 68 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@137 69
Chris@137 70 Phase p;
Chris@137 71
Chris@137 72 p.nextPhase = phase - outputSpacing;
Chris@137 73 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@137 74 p.nextPhase %= inputSpacing;
Chris@137 75
Chris@141 76 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
Chris@141 77 / inputSpacing));
Chris@137 78
Chris@141 79 int filtZipLength = int(ceil(double(m_filterLength - phase)
Chris@141 80 / inputSpacing));
Chris@137 81 for (int i = 0; i < filtZipLength; ++i) {
Chris@137 82 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@137 83 }
Chris@137 84
Chris@137 85 m_phaseData[phase] = p;
Chris@137 86 }
Chris@137 87
Chris@137 88 // The May implementation of this uses a pull model -- we ask the
Chris@137 89 // resampler for a certain number of output samples, and it asks
Chris@137 90 // its source stream for as many as it needs to calculate
Chris@137 91 // those. This means (among other things) that the source stream
Chris@137 92 // can be asked for enough samples up-front to fill the buffer
Chris@137 93 // before the first output sample is generated.
Chris@137 94 //
Chris@137 95 // In this implementation we're using a push model in which a
Chris@137 96 // certain number of source samples is provided and we're asked
Chris@137 97 // for as many output samples as that makes available. But we
Chris@137 98 // can't return any samples from the beginning until half the
Chris@137 99 // filter length has been provided as input. This means we must
Chris@137 100 // either return a very variable number of samples (none at all
Chris@137 101 // until the filter fills, then half the filter length at once) or
Chris@137 102 // else have a lengthy declared latency on the output. We do the
Chris@137 103 // latter. (What do other implementations do?)
Chris@137 104
Chris@141 105 m_phase = (m_filterLength/2) % inputSpacing;
Chris@141 106
Chris@141 107 m_buffer = vector<double>(m_phaseData[0].filter.size(), 0);
Chris@145 108 m_bufferOrigin = 0;
Chris@141 109
Chris@141 110 m_latency =
Chris@141 111 ((m_buffer.size() * inputSpacing) - (m_filterLength/2)) / outputSpacing
Chris@141 112 + m_phase;
Chris@141 113
Chris@141 114 #ifdef DEBUG_RESAMPLER
Chris@141 115 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
Chris@141 116 << ", latency " << m_latency << std::endl;
Chris@141 117 #endif
Chris@137 118 }
Chris@137 119
Chris@137 120 double
Chris@141 121 Resampler::reconstructOne()
Chris@137 122 {
Chris@137 123 Phase &pd = m_phaseData[m_phase];
Chris@141 124 double v = 0.0;
Chris@137 125 int n = pd.filter.size();
Chris@145 126 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
Chris@145 127 const double *const __restrict__ filt = pd.filter.data();
Chris@137 128 for (int i = 0; i < n; ++i) {
Chris@145 129 // NB gcc can only vectorize this with -ffast-math
Chris@145 130 v += buf[i] * filt[i];
Chris@137 131 }
Chris@145 132 m_bufferOrigin += pd.drop;
Chris@141 133 m_phase = pd.nextPhase;
Chris@137 134 return v;
Chris@137 135 }
Chris@137 136
Chris@137 137 int
Chris@141 138 Resampler::process(const double *src, double *dst, int n)
Chris@137 139 {
Chris@141 140 for (int i = 0; i < n; ++i) {
Chris@141 141 m_buffer.push_back(src[i]);
Chris@137 142 }
Chris@137 143
Chris@141 144 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
Chris@141 145 int outidx = 0;
Chris@139 146
Chris@141 147 #ifdef DEBUG_RESAMPLER
Chris@141 148 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
Chris@141 149 #endif
Chris@141 150
Chris@142 151 double scaleFactor = 1.0;
Chris@142 152 if (m_targetRate < m_sourceRate) {
Chris@142 153 scaleFactor = double(m_targetRate) / double(m_sourceRate);
Chris@142 154 }
Chris@142 155
Chris@141 156 while (outidx < maxout &&
Chris@145 157 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
Chris@142 158 dst[outidx] = scaleFactor * reconstructOne();
Chris@141 159 outidx++;
Chris@139 160 }
Chris@145 161
Chris@145 162 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
Chris@145 163 m_bufferOrigin = 0;
Chris@141 164
Chris@141 165 return outidx;
Chris@137 166 }
Chris@141 167
Chris@138 168 std::vector<double>
Chris@138 169 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@138 170 {
Chris@138 171 Resampler r(sourceRate, targetRate);
Chris@138 172
Chris@138 173 int latency = r.getLatency();
Chris@138 174
Chris@143 175 // latency is the output latency. We need to provide enough
Chris@143 176 // padding input samples at the end of input to guarantee at
Chris@143 177 // *least* the latency's worth of output samples. that is,
Chris@143 178
Chris@143 179 int inputPad = int(ceil(double(latency * sourceRate) / targetRate));
Chris@143 180
Chris@143 181 // that means we are providing this much input in total:
Chris@143 182
Chris@143 183 int n1 = n + inputPad;
Chris@143 184
Chris@143 185 // and obtaining this much output in total:
Chris@143 186
Chris@143 187 int m1 = int(ceil(double(n1 * targetRate) / sourceRate));
Chris@143 188
Chris@143 189 // in order to return this much output to the user:
Chris@143 190
Chris@141 191 int m = int(ceil(double(n * targetRate) / sourceRate));
Chris@143 192
Chris@145 193 // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
Chris@138 194
Chris@138 195 vector<double> pad(n1 - n, 0.0);
Chris@143 196 vector<double> out(m1 + 1, 0.0);
Chris@138 197
Chris@138 198 int got = r.process(data, out.data(), n);
Chris@138 199 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@138 200
Chris@141 201 #ifdef DEBUG_RESAMPLER
Chris@141 202 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
Chris@141 203 for (int i = 0; i < got; ++i) {
Chris@141 204 if (i % 5 == 0) std::cout << std::endl << i << "... ";
Chris@141 205 std::cout << (float) out[i] << " ";
Chris@141 206 }
Chris@141 207 std::cout << std::endl;
Chris@141 208 #endif
Chris@141 209
Chris@143 210 int toReturn = got - latency;
Chris@143 211 if (toReturn > m) toReturn = m;
Chris@143 212
Chris@143 213 return vector<double>(out.begin() + latency,
Chris@143 214 out.begin() + latency + toReturn);
Chris@138 215 }
Chris@138 216