annotate dsp/rateconversion/Resampler.cpp @ 419:7ead6122aef7

Slightly simplify resampler
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 07 Oct 2015 09:33:28 +0100
parents 9f7059d8188c
children fdaa63607c15
rev   line source
c@362 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@375 2 /*
c@375 3 QM DSP Library
c@375 4
c@375 5 Centre for Digital Music, Queen Mary, University of London.
c@375 6 This file by Chris Cannam.
c@375 7
c@375 8 This program is free software; you can redistribute it and/or
c@375 9 modify it under the terms of the GNU General Public License as
c@375 10 published by the Free Software Foundation; either version 2 of the
c@375 11 License, or (at your option) any later version. See the file
c@375 12 COPYING included with this distribution for more information.
c@375 13 */
c@362 14
c@362 15 #include "Resampler.h"
c@362 16
c@375 17 #include "maths/MathUtilities.h"
c@375 18 #include "base/KaiserWindow.h"
c@375 19 #include "base/SincWindow.h"
c@362 20
c@362 21 #include <iostream>
c@363 22 #include <vector>
c@370 23 #include <map>
c@372 24 #include <cassert>
c@419 25 #include <algorithm>
c@363 26
c@363 27 using std::vector;
c@370 28 using std::map;
c@398 29 using std::cerr;
c@398 30 using std::endl;
c@362 31
c@366 32 //#define DEBUG_RESAMPLER 1
c@398 33 //#define DEBUG_RESAMPLER_VERBOSE 1
c@366 34
c@362 35 Resampler::Resampler(int sourceRate, int targetRate) :
c@362 36 m_sourceRate(sourceRate),
c@362 37 m_targetRate(targetRate)
c@362 38 {
c@419 39 #ifdef DEBUG_RESAMPLER
c@419 40 cerr << "Resampler::Resampler(" << sourceRate << "," << targetRate << ")" << endl;
c@419 41 #endif
c@374 42 initialise(100, 0.02);
c@374 43 }
c@374 44
c@374 45 Resampler::Resampler(int sourceRate, int targetRate,
c@374 46 double snr, double bandwidth) :
c@374 47 m_sourceRate(sourceRate),
c@374 48 m_targetRate(targetRate)
c@374 49 {
c@374 50 initialise(snr, bandwidth);
c@362 51 }
c@362 52
c@362 53 Resampler::~Resampler()
c@362 54 {
c@362 55 delete[] m_phaseData;
c@362 56 }
c@362 57
c@362 58 void
c@374 59 Resampler::initialise(double snr, double bandwidth)
c@362 60 {
c@362 61 int higher = std::max(m_sourceRate, m_targetRate);
c@362 62 int lower = std::min(m_sourceRate, m_targetRate);
c@362 63
c@362 64 m_gcd = MathUtilities::gcd(lower, higher);
c@381 65 m_peakToPole = higher / m_gcd;
c@362 66
c@381 67 if (m_targetRate < m_sourceRate) {
c@381 68 // antialiasing filter, should be slightly below nyquist
c@381 69 m_peakToPole = m_peakToPole / (1.0 - bandwidth/2.0);
c@381 70 }
c@362 71
c@362 72 KaiserWindow::Parameters params =
c@381 73 KaiserWindow::parametersForBandwidth(snr, bandwidth, higher / m_gcd);
c@362 74
c@362 75 params.length =
c@362 76 (params.length % 2 == 0 ? params.length + 1 : params.length);
c@362 77
c@372 78 params.length =
c@372 79 (params.length > 200001 ? 200001 : params.length);
c@372 80
c@362 81 m_filterLength = params.length;
c@370 82
c@371 83 vector<double> filter;
c@362 84
c@419 85 KaiserWindow kw(params);
c@419 86 SincWindow sw(m_filterLength, m_peakToPole * 2);
c@371 87
c@419 88 filter = vector<double>(m_filterLength, 0.0);
c@419 89 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
c@419 90 sw.cut(filter.data());
c@419 91 kw.cut(filter.data());
c@419 92
c@362 93 int inputSpacing = m_targetRate / m_gcd;
c@362 94 int outputSpacing = m_sourceRate / m_gcd;
c@362 95
c@366 96 #ifdef DEBUG_RESAMPLER
c@398 97 cerr << "resample " << m_sourceRate << " -> " << m_targetRate
c@400 98 << ": inputSpacing " << inputSpacing << ", outputSpacing "
c@400 99 << outputSpacing << ": filter length " << m_filterLength
c@400 100 << endl;
c@366 101 #endif
c@362 102
c@372 103 // Now we have a filter of (odd) length flen in which the lower
c@372 104 // sample rate corresponds to every n'th point and the higher rate
c@372 105 // to every m'th where n and m are higher and lower rates divided
c@372 106 // by their gcd respectively. So if x coordinates are on the same
c@372 107 // scale as our filter resolution, then source sample i is at i *
c@372 108 // (targetRate / gcd) and target sample j is at j * (sourceRate /
c@372 109 // gcd).
c@372 110
c@372 111 // To reconstruct a single target sample, we want a buffer (real
c@372 112 // or virtual) of flen values formed of source samples spaced at
c@372 113 // intervals of (targetRate / gcd), in our example case 3. This
c@372 114 // is initially formed with the first sample at the filter peak.
c@372 115 //
c@372 116 // 0 0 0 0 a 0 0 b 0
c@372 117 //
c@372 118 // and of course we have our filter
c@372 119 //
c@372 120 // f1 f2 f3 f4 f5 f6 f7 f8 f9
c@372 121 //
c@372 122 // We take the sum of products of non-zero values from this buffer
c@372 123 // with corresponding values in the filter
c@372 124 //
c@372 125 // a * f5 + b * f8
c@372 126 //
c@372 127 // Then we drop (sourceRate / gcd) values, in our example case 4,
c@372 128 // from the start of the buffer and fill until it has flen values
c@372 129 // again
c@372 130 //
c@372 131 // a 0 0 b 0 0 c 0 0
c@372 132 //
c@372 133 // repeat to reconstruct the next target sample
c@372 134 //
c@372 135 // a * f1 + b * f4 + c * f7
c@372 136 //
c@372 137 // and so on.
c@372 138 //
c@372 139 // Above I said the buffer could be "real or virtual" -- ours is
c@372 140 // virtual. We don't actually store all the zero spacing values,
c@372 141 // except for padding at the start; normally we store only the
c@372 142 // values that actually came from the source stream, along with a
c@372 143 // phase value that tells us how many virtual zeroes there are at
c@372 144 // the start of the virtual buffer. So the two examples above are
c@372 145 //
c@372 146 // 0 a b [ with phase 1 ]
c@372 147 // a b c [ with phase 0 ]
c@372 148 //
c@372 149 // Having thus broken down the buffer so that only the elements we
c@372 150 // need to multiply are present, we can also unzip the filter into
c@372 151 // every-nth-element subsets at each phase, allowing us to do the
c@372 152 // filter multiplication as a simply vector multiply. That is, rather
c@372 153 // than store
c@372 154 //
c@372 155 // f1 f2 f3 f4 f5 f6 f7 f8 f9
c@372 156 //
c@372 157 // we store separately
c@372 158 //
c@372 159 // f1 f4 f7
c@372 160 // f2 f5 f8
c@372 161 // f3 f6 f9
c@372 162 //
c@372 163 // Each time we complete a multiply-and-sum, we need to work out
c@372 164 // how many (real) samples to drop from the start of our buffer,
c@372 165 // and how many to add at the end of it for the next multiply. We
c@372 166 // know we want to drop enough real samples to move along by one
c@372 167 // computed output sample, which is our outputSpacing number of
c@372 168 // virtual buffer samples. Depending on the relationship between
c@372 169 // input and output spacings, this may mean dropping several real
c@372 170 // samples, one real sample, or none at all (and simply moving to
c@372 171 // a different "phase").
c@372 172
c@362 173 m_phaseData = new Phase[inputSpacing];
c@362 174
c@362 175 for (int phase = 0; phase < inputSpacing; ++phase) {
c@362 176
c@362 177 Phase p;
c@362 178
c@362 179 p.nextPhase = phase - outputSpacing;
c@362 180 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
c@362 181 p.nextPhase %= inputSpacing;
c@362 182
c@366 183 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
c@366 184 / inputSpacing));
c@362 185
c@366 186 int filtZipLength = int(ceil(double(m_filterLength - phase)
c@366 187 / inputSpacing));
c@372 188
c@362 189 for (int i = 0; i < filtZipLength; ++i) {
c@362 190 p.filter.push_back(filter[i * inputSpacing + phase]);
c@362 191 }
c@362 192
c@362 193 m_phaseData[phase] = p;
c@362 194 }
c@362 195
c@398 196 #ifdef DEBUG_RESAMPLER
c@398 197 int cp = 0;
c@398 198 int totDrop = 0;
c@398 199 for (int i = 0; i < inputSpacing; ++i) {
c@398 200 cerr << "phase = " << cp << ", drop = " << m_phaseData[cp].drop
c@398 201 << ", filter length = " << m_phaseData[cp].filter.size()
c@398 202 << ", next phase = " << m_phaseData[cp].nextPhase << endl;
c@398 203 totDrop += m_phaseData[cp].drop;
c@398 204 cp = m_phaseData[cp].nextPhase;
c@398 205 }
c@398 206 cerr << "total drop = " << totDrop << endl;
c@398 207 #endif
c@398 208
c@362 209 // The May implementation of this uses a pull model -- we ask the
c@362 210 // resampler for a certain number of output samples, and it asks
c@362 211 // its source stream for as many as it needs to calculate
c@362 212 // those. This means (among other things) that the source stream
c@362 213 // can be asked for enough samples up-front to fill the buffer
c@362 214 // before the first output sample is generated.
c@362 215 //
c@362 216 // In this implementation we're using a push model in which a
c@362 217 // certain number of source samples is provided and we're asked
c@362 218 // for as many output samples as that makes available. But we
c@362 219 // can't return any samples from the beginning until half the
c@362 220 // filter length has been provided as input. This means we must
c@362 221 // either return a very variable number of samples (none at all
c@362 222 // until the filter fills, then half the filter length at once) or
c@362 223 // else have a lengthy declared latency on the output. We do the
c@362 224 // latter. (What do other implementations do?)
c@373 225 //
c@372 226 // We want to make sure the first "real" sample will eventually be
c@372 227 // aligned with the centre sample in the filter (it's tidier, and
c@372 228 // easier to do diagnostic calculations that way). So we need to
c@372 229 // pick the initial phase and buffer fill accordingly.
c@372 230 //
c@372 231 // Example: if the inputSpacing is 2, outputSpacing is 3, and
c@372 232 // filter length is 7,
c@372 233 //
c@372 234 // x x x x a b c ... input samples
c@372 235 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
c@372 236 // i j k l ... output samples
c@372 237 // [--------|--------] <- filter with centre mark
c@372 238 //
c@372 239 // Let h be the index of the centre mark, here 3 (generally
c@372 240 // int(filterLength/2) for odd-length filters).
c@372 241 //
c@372 242 // The smallest n such that h + n * outputSpacing > filterLength
c@372 243 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
c@372 244 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
c@372 245 // phase is 1.
c@372 246 //
c@372 247 // To achieve our n, we need to pre-fill the "virtual" buffer with
c@372 248 // 4 zero samples: the x's above. This is int((h + n *
c@372 249 // outputSpacing) / inputSpacing). It's the phase that makes this
c@372 250 // buffer get dealt with in such a way as to give us an effective
c@372 251 // index for sample a of 9 rather than 8 or 10 or whatever.
c@372 252 //
c@372 253 // This gives us output latency of 2 (== n), i.e. output samples i
c@372 254 // and j will appear before the one in which input sample a is at
c@372 255 // the centre of the filter.
c@372 256
c@372 257 int h = int(m_filterLength / 2);
c@372 258 int n = ceil(double(m_filterLength - h) / outputSpacing);
c@366 259
c@372 260 m_phase = (h + n * outputSpacing) % inputSpacing;
c@372 261
c@372 262 int fill = (h + n * outputSpacing) / inputSpacing;
c@372 263
c@372 264 m_latency = n;
c@372 265
c@372 266 m_buffer = vector<double>(fill, 0);
c@370 267 m_bufferOrigin = 0;
c@366 268
c@366 269 #ifdef DEBUG_RESAMPLER
c@398 270 cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
c@398 271 << ", latency " << m_latency << endl;
c@366 272 #endif
c@362 273 }
c@362 274
c@362 275 double
c@366 276 Resampler::reconstructOne()
c@362 277 {
c@362 278 Phase &pd = m_phaseData[m_phase];
c@366 279 double v = 0.0;
c@362 280 int n = pd.filter.size();
c@372 281
c@419 282 if (n + m_bufferOrigin > (int)m_buffer.size()) {
c@419 283 cerr << "ERROR: n + m_bufferOrigin > m_buffer.size() [" << n << " + "
c@419 284 << m_bufferOrigin << " > " << m_buffer.size() << "]" << endl;
c@419 285 throw std::logic_error("n + m_bufferOrigin > m_buffer.size()");
c@419 286 }
c@372 287
c@419 288 #if defined(__MSVC__)
c@419 289 #define R__ __restrict
c@419 290 #elif defined(__GNUC__)
c@419 291 #define R__ __restrict__
c@419 292 #else
c@419 293 #define R__
c@419 294 #endif
c@419 295
c@419 296 const double *const R__ buf(m_buffer.data() + m_bufferOrigin);
c@419 297 const double *const R__ filt(pd.filter.data());
c@372 298
c@362 299 for (int i = 0; i < n; ++i) {
c@370 300 // NB gcc can only vectorize this with -ffast-math
c@370 301 v += buf[i] * filt[i];
c@362 302 }
c@374 303
c@370 304 m_bufferOrigin += pd.drop;
c@366 305 m_phase = pd.nextPhase;
c@362 306 return v;
c@362 307 }
c@362 308
c@362 309 int
c@366 310 Resampler::process(const double *src, double *dst, int n)
c@362 311 {
c@419 312 m_buffer.insert(m_buffer.end(), src, src + n);
c@362 313
c@366 314 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
c@366 315 int outidx = 0;
c@364 316
c@366 317 #ifdef DEBUG_RESAMPLER
c@398 318 cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << endl;
c@366 319 #endif
c@366 320
c@381 321 double scaleFactor = (double(m_targetRate) / m_gcd) / m_peakToPole;
c@367 322
c@366 323 while (outidx < maxout &&
c@370 324 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
c@367 325 dst[outidx] = scaleFactor * reconstructOne();
c@366 326 outidx++;
c@364 327 }
c@370 328
c@419 329 if (m_bufferOrigin > (int)m_buffer.size()) {
c@419 330 cerr << "ERROR: m_bufferOrigin > m_buffer.size() ["
c@419 331 << m_bufferOrigin << " > " << m_buffer.size() << "]" << endl;
c@419 332 throw std::logic_error("m_bufferOrigin > m_buffer.size()");
c@419 333 }
c@419 334
c@370 335 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
c@370 336 m_bufferOrigin = 0;
c@366 337
c@366 338 return outidx;
c@362 339 }
c@366 340
c@398 341 vector<double>
c@385 342 Resampler::process(const double *src, int n)
c@385 343 {
c@385 344 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
c@398 345 vector<double> out(maxout, 0.0);
c@385 346 int got = process(src, out.data(), n);
c@385 347 assert(got <= maxout);
c@385 348 if (got < maxout) out.resize(got);
c@385 349 return out;
c@385 350 }
c@385 351
c@398 352 vector<double>
c@363 353 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
c@363 354 {
c@363 355 Resampler r(sourceRate, targetRate);
c@363 356
c@363 357 int latency = r.getLatency();
c@363 358
c@368 359 // latency is the output latency. We need to provide enough
c@368 360 // padding input samples at the end of input to guarantee at
c@368 361 // *least* the latency's worth of output samples. that is,
c@368 362
c@373 363 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
c@368 364
c@368 365 // that means we are providing this much input in total:
c@368 366
c@368 367 int n1 = n + inputPad;
c@368 368
c@368 369 // and obtaining this much output in total:
c@368 370
c@373 371 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
c@368 372
c@368 373 // in order to return this much output to the user:
c@368 374
c@373 375 int m = int(ceil((double(n) * targetRate) / sourceRate));
c@368 376
c@398 377 #ifdef DEBUG_RESAMPLER
c@398 378 cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << endl;
c@398 379 #endif
c@363 380
c@363 381 vector<double> pad(n1 - n, 0.0);
c@368 382 vector<double> out(m1 + 1, 0.0);
c@363 383
c@398 384 int gotData = r.process(data, out.data(), n);
c@398 385 int gotPad = r.process(pad.data(), out.data() + gotData, pad.size());
c@398 386 int got = gotData + gotPad;
c@398 387
c@366 388 #ifdef DEBUG_RESAMPLER
c@398 389 cerr << "resample: " << n << " in, " << pad.size() << " padding, " << got << " out (" << gotData << " data, " << gotPad << " padding, latency = " << latency << ")" << endl;
c@396 390 #endif
c@396 391 #ifdef DEBUG_RESAMPLER_VERBOSE
c@398 392 int printN = 50;
c@398 393 cerr << "first " << printN << " in:" << endl;
c@398 394 for (int i = 0; i < printN && i < n; ++i) {
c@398 395 if (i % 5 == 0) cerr << endl << i << "... ";
c@398 396 cerr << data[i] << " ";
c@366 397 }
c@398 398 cerr << endl;
c@366 399 #endif
c@366 400
c@368 401 int toReturn = got - latency;
c@368 402 if (toReturn > m) toReturn = m;
c@368 403
c@372 404 vector<double> sliced(out.begin() + latency,
c@368 405 out.begin() + latency + toReturn);
c@372 406
c@396 407 #ifdef DEBUG_RESAMPLER_VERBOSE
c@398 408 cerr << "first " << printN << " out (after latency compensation), length " << sliced.size() << ":";
c@398 409 for (int i = 0; i < printN && i < sliced.size(); ++i) {
c@398 410 if (i % 5 == 0) cerr << endl << i << "... ";
c@398 411 cerr << sliced[i] << " ";
c@372 412 }
c@398 413 cerr << endl;
c@372 414 #endif
c@372 415
c@372 416 return sliced;
c@363 417 }
c@363 418