annotate dsp/rateconversion/Resampler.cpp @ 370:50d393750cfd

Avoid vector reallocation on every reconstructed output sample
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 16 Oct 2013 13:33:18 +0100
parents ee8ace7fdc88
children 235b99c7d4ce
rev   line source
c@362 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@362 2
c@362 3 #include "Resampler.h"
c@362 4
c@362 5 #include "qm-dsp/maths/MathUtilities.h"
c@362 6 #include "qm-dsp/base/KaiserWindow.h"
c@362 7 #include "qm-dsp/base/SincWindow.h"
c@362 8
c@362 9 #include <iostream>
c@363 10 #include <vector>
c@370 11 #include <map>
c@363 12
c@363 13 using std::vector;
c@370 14 using std::map;
c@362 15
c@366 16 //#define DEBUG_RESAMPLER 1
c@366 17
c@362 18 Resampler::Resampler(int sourceRate, int targetRate) :
c@362 19 m_sourceRate(sourceRate),
c@362 20 m_targetRate(targetRate)
c@362 21 {
c@362 22 initialise();
c@362 23 }
c@362 24
c@362 25 Resampler::~Resampler()
c@362 26 {
c@362 27 delete[] m_phaseData;
c@362 28 }
c@362 29
c@362 30 void
c@362 31 Resampler::initialise()
c@362 32 {
c@362 33 int higher = std::max(m_sourceRate, m_targetRate);
c@362 34 int lower = std::min(m_sourceRate, m_targetRate);
c@362 35
c@362 36 m_gcd = MathUtilities::gcd(lower, higher);
c@362 37
c@362 38 int peakToPole = higher / m_gcd;
c@362 39
c@362 40 KaiserWindow::Parameters params =
c@362 41 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
c@362 42
c@362 43 params.length =
c@362 44 (params.length % 2 == 0 ? params.length + 1 : params.length);
c@362 45
c@362 46 m_filterLength = params.length;
c@370 47
c@362 48 KaiserWindow kw(params);
c@362 49 SincWindow sw(m_filterLength, peakToPole * 2);
c@362 50
c@370 51 vector<double> filter(m_filterLength, 0.0);
c@362 52 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
c@370 53 sw.cut(filter.data());
c@370 54 kw.cut(filter.data());
c@362 55
c@362 56 int inputSpacing = m_targetRate / m_gcd;
c@362 57 int outputSpacing = m_sourceRate / m_gcd;
c@362 58
c@366 59 #ifdef DEBUG_RESAMPLER
c@366 60 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
c@366 61 << ": inputSpacing " << inputSpacing << ", outputSpacing "
c@366 62 << outputSpacing << ": filter length " << m_filterLength
c@366 63 << std::endl;
c@366 64 #endif
c@362 65
c@362 66 m_phaseData = new Phase[inputSpacing];
c@362 67
c@362 68 for (int phase = 0; phase < inputSpacing; ++phase) {
c@362 69
c@362 70 Phase p;
c@362 71
c@362 72 p.nextPhase = phase - outputSpacing;
c@362 73 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
c@362 74 p.nextPhase %= inputSpacing;
c@362 75
c@366 76 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
c@366 77 / inputSpacing));
c@362 78
c@366 79 int filtZipLength = int(ceil(double(m_filterLength - phase)
c@366 80 / inputSpacing));
c@362 81 for (int i = 0; i < filtZipLength; ++i) {
c@362 82 p.filter.push_back(filter[i * inputSpacing + phase]);
c@362 83 }
c@362 84
c@362 85 m_phaseData[phase] = p;
c@362 86 }
c@362 87
c@362 88 // The May implementation of this uses a pull model -- we ask the
c@362 89 // resampler for a certain number of output samples, and it asks
c@362 90 // its source stream for as many as it needs to calculate
c@362 91 // those. This means (among other things) that the source stream
c@362 92 // can be asked for enough samples up-front to fill the buffer
c@362 93 // before the first output sample is generated.
c@362 94 //
c@362 95 // In this implementation we're using a push model in which a
c@362 96 // certain number of source samples is provided and we're asked
c@362 97 // for as many output samples as that makes available. But we
c@362 98 // can't return any samples from the beginning until half the
c@362 99 // filter length has been provided as input. This means we must
c@362 100 // either return a very variable number of samples (none at all
c@362 101 // until the filter fills, then half the filter length at once) or
c@362 102 // else have a lengthy declared latency on the output. We do the
c@362 103 // latter. (What do other implementations do?)
c@362 104
c@366 105 m_phase = (m_filterLength/2) % inputSpacing;
c@366 106
c@366 107 m_buffer = vector<double>(m_phaseData[0].filter.size(), 0);
c@370 108 m_bufferOrigin = 0;
c@366 109
c@366 110 m_latency =
c@366 111 ((m_buffer.size() * inputSpacing) - (m_filterLength/2)) / outputSpacing
c@366 112 + m_phase;
c@366 113
c@366 114 #ifdef DEBUG_RESAMPLER
c@366 115 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
c@366 116 << ", latency " << m_latency << std::endl;
c@366 117 #endif
c@362 118 }
c@362 119
c@362 120 double
c@366 121 Resampler::reconstructOne()
c@362 122 {
c@362 123 Phase &pd = m_phaseData[m_phase];
c@366 124 double v = 0.0;
c@362 125 int n = pd.filter.size();
c@370 126 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
c@370 127 const double *const __restrict__ filt = pd.filter.data();
c@362 128 for (int i = 0; i < n; ++i) {
c@370 129 // NB gcc can only vectorize this with -ffast-math
c@370 130 v += buf[i] * filt[i];
c@362 131 }
c@370 132 m_bufferOrigin += pd.drop;
c@366 133 m_phase = pd.nextPhase;
c@362 134 return v;
c@362 135 }
c@362 136
c@362 137 int
c@366 138 Resampler::process(const double *src, double *dst, int n)
c@362 139 {
c@366 140 for (int i = 0; i < n; ++i) {
c@366 141 m_buffer.push_back(src[i]);
c@362 142 }
c@362 143
c@366 144 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
c@366 145 int outidx = 0;
c@364 146
c@366 147 #ifdef DEBUG_RESAMPLER
c@366 148 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
c@366 149 #endif
c@366 150
c@367 151 double scaleFactor = 1.0;
c@367 152 if (m_targetRate < m_sourceRate) {
c@367 153 scaleFactor = double(m_targetRate) / double(m_sourceRate);
c@367 154 }
c@367 155
c@366 156 while (outidx < maxout &&
c@370 157 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
c@367 158 dst[outidx] = scaleFactor * reconstructOne();
c@366 159 outidx++;
c@364 160 }
c@370 161
c@370 162 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
c@370 163 m_bufferOrigin = 0;
c@366 164
c@366 165 return outidx;
c@362 166 }
c@366 167
c@363 168 std::vector<double>
c@363 169 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
c@363 170 {
c@363 171 Resampler r(sourceRate, targetRate);
c@363 172
c@363 173 int latency = r.getLatency();
c@363 174
c@368 175 // latency is the output latency. We need to provide enough
c@368 176 // padding input samples at the end of input to guarantee at
c@368 177 // *least* the latency's worth of output samples. that is,
c@368 178
c@368 179 int inputPad = int(ceil(double(latency * sourceRate) / targetRate));
c@368 180
c@368 181 // that means we are providing this much input in total:
c@368 182
c@368 183 int n1 = n + inputPad;
c@368 184
c@368 185 // and obtaining this much output in total:
c@368 186
c@368 187 int m1 = int(ceil(double(n1 * targetRate) / sourceRate));
c@368 188
c@368 189 // in order to return this much output to the user:
c@368 190
c@366 191 int m = int(ceil(double(n * targetRate) / sourceRate));
c@368 192
c@370 193 // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
c@363 194
c@363 195 vector<double> pad(n1 - n, 0.0);
c@368 196 vector<double> out(m1 + 1, 0.0);
c@363 197
c@363 198 int got = r.process(data, out.data(), n);
c@363 199 got += r.process(pad.data(), out.data() + got, pad.size());
c@363 200
c@366 201 #ifdef DEBUG_RESAMPLER
c@366 202 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
c@366 203 for (int i = 0; i < got; ++i) {
c@366 204 if (i % 5 == 0) std::cout << std::endl << i << "... ";
c@366 205 std::cout << (float) out[i] << " ";
c@366 206 }
c@366 207 std::cout << std::endl;
c@366 208 #endif
c@366 209
c@368 210 int toReturn = got - latency;
c@368 211 if (toReturn > m) toReturn = m;
c@368 212
c@368 213 return vector<double>(out.begin() + latency,
c@368 214 out.begin() + latency + toReturn);
c@363 215 }
c@363 216