annotate dsp/rateconversion/Resampler.cpp @ 366:767947956fc1

More resampler fixes (particularly to latency calculation) and tests
author Chris Cannam <c.cannam@qmul.ac.uk>
date Mon, 14 Oct 2013 16:15:32 +0100
parents b73dad5e6201
children f8fc21365a8c
rev   line source
c@362 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@362 2
c@362 3 #include "Resampler.h"
c@362 4
c@362 5 #include "qm-dsp/maths/MathUtilities.h"
c@362 6 #include "qm-dsp/base/KaiserWindow.h"
c@362 7 #include "qm-dsp/base/SincWindow.h"
c@362 8
c@362 9 #include <iostream>
c@363 10 #include <vector>
c@363 11
c@363 12 using std::vector;
c@362 13
c@366 14 //#define DEBUG_RESAMPLER 1
c@366 15
c@362 16 Resampler::Resampler(int sourceRate, int targetRate) :
c@362 17 m_sourceRate(sourceRate),
c@362 18 m_targetRate(targetRate)
c@362 19 {
c@362 20 initialise();
c@362 21 }
c@362 22
c@362 23 Resampler::~Resampler()
c@362 24 {
c@362 25 delete[] m_phaseData;
c@362 26 }
c@362 27
c@362 28 void
c@362 29 Resampler::initialise()
c@362 30 {
c@362 31 int higher = std::max(m_sourceRate, m_targetRate);
c@362 32 int lower = std::min(m_sourceRate, m_targetRate);
c@362 33
c@362 34 m_gcd = MathUtilities::gcd(lower, higher);
c@362 35
c@362 36 int peakToPole = higher / m_gcd;
c@362 37
c@362 38 KaiserWindow::Parameters params =
c@362 39 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
c@362 40
c@362 41 params.length =
c@362 42 (params.length % 2 == 0 ? params.length + 1 : params.length);
c@362 43
c@362 44 m_filterLength = params.length;
c@362 45
c@362 46 KaiserWindow kw(params);
c@362 47 SincWindow sw(m_filterLength, peakToPole * 2);
c@362 48
c@362 49 double *filter = new double[m_filterLength];
c@362 50 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
c@362 51 sw.cut(filter);
c@362 52 kw.cut(filter);
c@362 53
c@362 54 int inputSpacing = m_targetRate / m_gcd;
c@362 55 int outputSpacing = m_sourceRate / m_gcd;
c@362 56
c@366 57 #ifdef DEBUG_RESAMPLER
c@366 58 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
c@366 59 << ": inputSpacing " << inputSpacing << ", outputSpacing "
c@366 60 << outputSpacing << ": filter length " << m_filterLength
c@366 61 << std::endl;
c@366 62 #endif
c@362 63
c@362 64 m_phaseData = new Phase[inputSpacing];
c@362 65
c@362 66 for (int phase = 0; phase < inputSpacing; ++phase) {
c@362 67
c@362 68 Phase p;
c@362 69
c@362 70 p.nextPhase = phase - outputSpacing;
c@362 71 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
c@362 72 p.nextPhase %= inputSpacing;
c@362 73
c@366 74 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
c@366 75 / inputSpacing));
c@362 76
c@366 77 int filtZipLength = int(ceil(double(m_filterLength - phase)
c@366 78 / inputSpacing));
c@362 79 for (int i = 0; i < filtZipLength; ++i) {
c@362 80 p.filter.push_back(filter[i * inputSpacing + phase]);
c@362 81 }
c@362 82
c@362 83 m_phaseData[phase] = p;
c@362 84 }
c@362 85
c@366 86 #ifdef DEBUG_RESAMPLER
c@366 87 for (int phase = 0; phase < inputSpacing; ++phase) {
c@366 88 std::cerr << "filter for phase " << phase << " of " << inputSpacing << " (with length " << m_phaseData[phase].filter.size() << "):";
c@366 89 for (int i = 0; i < m_phaseData[phase].filter.size(); ++i) {
c@366 90 if (i % 4 == 0) {
c@366 91 std::cerr << std::endl << i << ": ";
c@366 92 }
c@366 93 float v = m_phaseData[phase].filter[i];
c@366 94 if (v == 1) {
c@366 95 std::cerr << " *** " << v << " *** ";
c@366 96 } else {
c@366 97 std::cerr << v << " ";
c@366 98 }
c@366 99 }
c@366 100 std::cerr << std::endl;
c@366 101 }
c@366 102 #endif
c@366 103
c@362 104 delete[] filter;
c@362 105
c@362 106 // The May implementation of this uses a pull model -- we ask the
c@362 107 // resampler for a certain number of output samples, and it asks
c@362 108 // its source stream for as many as it needs to calculate
c@362 109 // those. This means (among other things) that the source stream
c@362 110 // can be asked for enough samples up-front to fill the buffer
c@362 111 // before the first output sample is generated.
c@362 112 //
c@362 113 // In this implementation we're using a push model in which a
c@362 114 // certain number of source samples is provided and we're asked
c@362 115 // for as many output samples as that makes available. But we
c@362 116 // can't return any samples from the beginning until half the
c@362 117 // filter length has been provided as input. This means we must
c@362 118 // either return a very variable number of samples (none at all
c@362 119 // until the filter fills, then half the filter length at once) or
c@362 120 // else have a lengthy declared latency on the output. We do the
c@362 121 // latter. (What do other implementations do?)
c@362 122
c@366 123 m_phase = (m_filterLength/2) % inputSpacing;
c@366 124
c@366 125 m_buffer = vector<double>(m_phaseData[0].filter.size(), 0);
c@366 126
c@366 127 m_latency =
c@366 128 ((m_buffer.size() * inputSpacing) - (m_filterLength/2)) / outputSpacing
c@366 129 + m_phase;
c@366 130
c@366 131 #ifdef DEBUG_RESAMPLER
c@366 132 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
c@366 133 << ", latency " << m_latency << std::endl;
c@366 134 #endif
c@362 135 }
c@362 136
c@362 137 double
c@366 138 Resampler::reconstructOne()
c@362 139 {
c@362 140 Phase &pd = m_phaseData[m_phase];
c@362 141 double *filt = pd.filter.data();
c@366 142 double v = 0.0;
c@362 143 int n = pd.filter.size();
c@362 144 for (int i = 0; i < n; ++i) {
c@362 145 v += m_buffer[i] * filt[i];
c@362 146 }
c@364 147 m_buffer = vector<double>(m_buffer.begin() + pd.drop, m_buffer.end());
c@366 148 m_phase = pd.nextPhase;
c@362 149 return v;
c@362 150 }
c@362 151
c@362 152 int
c@366 153 Resampler::process(const double *src, double *dst, int n)
c@362 154 {
c@366 155 for (int i = 0; i < n; ++i) {
c@366 156 m_buffer.push_back(src[i]);
c@362 157 }
c@362 158
c@366 159 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
c@366 160 int outidx = 0;
c@364 161
c@366 162 #ifdef DEBUG_RESAMPLER
c@366 163 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
c@366 164 #endif
c@366 165
c@366 166 while (outidx < maxout &&
c@366 167 m_buffer.size() >= m_phaseData[m_phase].filter.size()) {
c@366 168 dst[outidx] = reconstructOne();
c@366 169 outidx++;
c@364 170 }
c@366 171
c@366 172 return outidx;
c@362 173 }
c@366 174
c@363 175 std::vector<double>
c@363 176 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
c@363 177 {
c@363 178 Resampler r(sourceRate, targetRate);
c@363 179
c@363 180 int latency = r.getLatency();
c@363 181
c@366 182 int m = int(ceil(double(n * targetRate) / sourceRate));
c@363 183 int m1 = m + latency;
c@366 184 int n1 = int(double(m1 * sourceRate) / targetRate);
c@363 185
c@363 186 vector<double> pad(n1 - n, 0.0);
c@363 187 vector<double> out(m1, 0.0);
c@363 188
c@363 189 int got = r.process(data, out.data(), n);
c@363 190 got += r.process(pad.data(), out.data() + got, pad.size());
c@363 191
c@366 192 #ifdef DEBUG_RESAMPLER
c@366 193 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
c@366 194 for (int i = 0; i < got; ++i) {
c@366 195 if (i % 5 == 0) std::cout << std::endl << i << "... ";
c@366 196 std::cout << (float) out[i] << " ";
c@366 197 }
c@366 198 std::cout << std::endl;
c@366 199 #endif
c@366 200
c@363 201 return vector<double>(out.begin() + latency, out.begin() + got);
c@363 202 }
c@363 203