annotate dsp/rateconversion/Resampler.cpp @ 375:ad21307eaf99

Integrate resampler and tests into build system etc
author Chris Cannam <c.cannam@qmul.ac.uk>
date Mon, 21 Oct 2013 09:40:22 +0100
parents 3e5f13ac984f
children edb86e0d850c
rev   line source
c@362 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@375 2 /*
c@375 3 QM DSP Library
c@375 4
c@375 5 Centre for Digital Music, Queen Mary, University of London.
c@375 6 This file by Chris Cannam.
c@375 7
c@375 8 This program is free software; you can redistribute it and/or
c@375 9 modify it under the terms of the GNU General Public License as
c@375 10 published by the Free Software Foundation; either version 2 of the
c@375 11 License, or (at your option) any later version. See the file
c@375 12 COPYING included with this distribution for more information.
c@375 13 */
c@362 14
c@362 15 #include "Resampler.h"
c@362 16
c@375 17 #include "maths/MathUtilities.h"
c@375 18 #include "base/KaiserWindow.h"
c@375 19 #include "base/SincWindow.h"
c@375 20 #include "thread/Thread.h"
c@362 21
c@362 22 #include <iostream>
c@363 23 #include <vector>
c@370 24 #include <map>
c@372 25 #include <cassert>
c@363 26
c@363 27 using std::vector;
c@370 28 using std::map;
c@362 29
c@366 30 //#define DEBUG_RESAMPLER 1
c@366 31
c@362 32 Resampler::Resampler(int sourceRate, int targetRate) :
c@362 33 m_sourceRate(sourceRate),
c@362 34 m_targetRate(targetRate)
c@362 35 {
c@374 36 initialise(100, 0.02);
c@374 37 }
c@374 38
c@374 39 Resampler::Resampler(int sourceRate, int targetRate,
c@374 40 double snr, double bandwidth) :
c@374 41 m_sourceRate(sourceRate),
c@374 42 m_targetRate(targetRate)
c@374 43 {
c@374 44 initialise(snr, bandwidth);
c@362 45 }
c@362 46
c@362 47 Resampler::~Resampler()
c@362 48 {
c@362 49 delete[] m_phaseData;
c@362 50 }
c@362 51
c@371 52 // peakToPole -> length -> beta -> window
c@371 53 static map<int, map<int, map<double, vector<double> > > >
c@371 54 knownFilters;
c@371 55
c@371 56 static Mutex
c@371 57 knownFilterMutex;
c@371 58
c@362 59 void
c@374 60 Resampler::initialise(double snr, double bandwidth)
c@362 61 {
c@362 62 int higher = std::max(m_sourceRate, m_targetRate);
c@362 63 int lower = std::min(m_sourceRate, m_targetRate);
c@362 64
c@362 65 m_gcd = MathUtilities::gcd(lower, higher);
c@362 66
c@362 67 int peakToPole = higher / m_gcd;
c@362 68
c@362 69 KaiserWindow::Parameters params =
c@374 70 KaiserWindow::parametersForBandwidth(snr, bandwidth, peakToPole);
c@362 71
c@362 72 params.length =
c@362 73 (params.length % 2 == 0 ? params.length + 1 : params.length);
c@362 74
c@372 75 params.length =
c@372 76 (params.length > 200001 ? 200001 : params.length);
c@372 77
c@362 78 m_filterLength = params.length;
c@370 79
c@371 80 vector<double> filter;
c@371 81 knownFilterMutex.lock();
c@362 82
c@371 83 if (knownFilters[peakToPole][m_filterLength].find(params.beta) ==
c@371 84 knownFilters[peakToPole][m_filterLength].end()) {
c@371 85
c@371 86 KaiserWindow kw(params);
c@371 87 SincWindow sw(m_filterLength, peakToPole * 2);
c@371 88
c@371 89 filter = vector<double>(m_filterLength, 0.0);
c@371 90 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
c@371 91 sw.cut(filter.data());
c@371 92 kw.cut(filter.data());
c@371 93
c@371 94 knownFilters[peakToPole][m_filterLength][params.beta] = filter;
c@371 95 }
c@371 96
c@371 97 filter = knownFilters[peakToPole][m_filterLength][params.beta];
c@371 98 knownFilterMutex.unlock();
c@362 99
c@362 100 int inputSpacing = m_targetRate / m_gcd;
c@362 101 int outputSpacing = m_sourceRate / m_gcd;
c@362 102
c@366 103 #ifdef DEBUG_RESAMPLER
c@366 104 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
c@366 105 << ": inputSpacing " << inputSpacing << ", outputSpacing "
c@366 106 << outputSpacing << ": filter length " << m_filterLength
c@366 107 << std::endl;
c@366 108 #endif
c@362 109
c@372 110 // Now we have a filter of (odd) length flen in which the lower
c@372 111 // sample rate corresponds to every n'th point and the higher rate
c@372 112 // to every m'th where n and m are higher and lower rates divided
c@372 113 // by their gcd respectively. So if x coordinates are on the same
c@372 114 // scale as our filter resolution, then source sample i is at i *
c@372 115 // (targetRate / gcd) and target sample j is at j * (sourceRate /
c@372 116 // gcd).
c@372 117
c@372 118 // To reconstruct a single target sample, we want a buffer (real
c@372 119 // or virtual) of flen values formed of source samples spaced at
c@372 120 // intervals of (targetRate / gcd), in our example case 3. This
c@372 121 // is initially formed with the first sample at the filter peak.
c@372 122 //
c@372 123 // 0 0 0 0 a 0 0 b 0
c@372 124 //
c@372 125 // and of course we have our filter
c@372 126 //
c@372 127 // f1 f2 f3 f4 f5 f6 f7 f8 f9
c@372 128 //
c@372 129 // We take the sum of products of non-zero values from this buffer
c@372 130 // with corresponding values in the filter
c@372 131 //
c@372 132 // a * f5 + b * f8
c@372 133 //
c@372 134 // Then we drop (sourceRate / gcd) values, in our example case 4,
c@372 135 // from the start of the buffer and fill until it has flen values
c@372 136 // again
c@372 137 //
c@372 138 // a 0 0 b 0 0 c 0 0
c@372 139 //
c@372 140 // repeat to reconstruct the next target sample
c@372 141 //
c@372 142 // a * f1 + b * f4 + c * f7
c@372 143 //
c@372 144 // and so on.
c@372 145 //
c@372 146 // Above I said the buffer could be "real or virtual" -- ours is
c@372 147 // virtual. We don't actually store all the zero spacing values,
c@372 148 // except for padding at the start; normally we store only the
c@372 149 // values that actually came from the source stream, along with a
c@372 150 // phase value that tells us how many virtual zeroes there are at
c@372 151 // the start of the virtual buffer. So the two examples above are
c@372 152 //
c@372 153 // 0 a b [ with phase 1 ]
c@372 154 // a b c [ with phase 0 ]
c@372 155 //
c@372 156 // Having thus broken down the buffer so that only the elements we
c@372 157 // need to multiply are present, we can also unzip the filter into
c@372 158 // every-nth-element subsets at each phase, allowing us to do the
c@372 159 // filter multiplication as a simply vector multiply. That is, rather
c@372 160 // than store
c@372 161 //
c@372 162 // f1 f2 f3 f4 f5 f6 f7 f8 f9
c@372 163 //
c@372 164 // we store separately
c@372 165 //
c@372 166 // f1 f4 f7
c@372 167 // f2 f5 f8
c@372 168 // f3 f6 f9
c@372 169 //
c@372 170 // Each time we complete a multiply-and-sum, we need to work out
c@372 171 // how many (real) samples to drop from the start of our buffer,
c@372 172 // and how many to add at the end of it for the next multiply. We
c@372 173 // know we want to drop enough real samples to move along by one
c@372 174 // computed output sample, which is our outputSpacing number of
c@372 175 // virtual buffer samples. Depending on the relationship between
c@372 176 // input and output spacings, this may mean dropping several real
c@372 177 // samples, one real sample, or none at all (and simply moving to
c@372 178 // a different "phase").
c@372 179
c@362 180 m_phaseData = new Phase[inputSpacing];
c@362 181
c@362 182 for (int phase = 0; phase < inputSpacing; ++phase) {
c@362 183
c@362 184 Phase p;
c@362 185
c@362 186 p.nextPhase = phase - outputSpacing;
c@362 187 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
c@362 188 p.nextPhase %= inputSpacing;
c@362 189
c@366 190 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
c@366 191 / inputSpacing));
c@362 192
c@366 193 int filtZipLength = int(ceil(double(m_filterLength - phase)
c@366 194 / inputSpacing));
c@372 195
c@362 196 for (int i = 0; i < filtZipLength; ++i) {
c@362 197 p.filter.push_back(filter[i * inputSpacing + phase]);
c@362 198 }
c@362 199
c@362 200 m_phaseData[phase] = p;
c@362 201 }
c@362 202
c@362 203 // The May implementation of this uses a pull model -- we ask the
c@362 204 // resampler for a certain number of output samples, and it asks
c@362 205 // its source stream for as many as it needs to calculate
c@362 206 // those. This means (among other things) that the source stream
c@362 207 // can be asked for enough samples up-front to fill the buffer
c@362 208 // before the first output sample is generated.
c@362 209 //
c@362 210 // In this implementation we're using a push model in which a
c@362 211 // certain number of source samples is provided and we're asked
c@362 212 // for as many output samples as that makes available. But we
c@362 213 // can't return any samples from the beginning until half the
c@362 214 // filter length has been provided as input. This means we must
c@362 215 // either return a very variable number of samples (none at all
c@362 216 // until the filter fills, then half the filter length at once) or
c@362 217 // else have a lengthy declared latency on the output. We do the
c@362 218 // latter. (What do other implementations do?)
c@373 219 //
c@372 220 // We want to make sure the first "real" sample will eventually be
c@372 221 // aligned with the centre sample in the filter (it's tidier, and
c@372 222 // easier to do diagnostic calculations that way). So we need to
c@372 223 // pick the initial phase and buffer fill accordingly.
c@372 224 //
c@372 225 // Example: if the inputSpacing is 2, outputSpacing is 3, and
c@372 226 // filter length is 7,
c@372 227 //
c@372 228 // x x x x a b c ... input samples
c@372 229 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
c@372 230 // i j k l ... output samples
c@372 231 // [--------|--------] <- filter with centre mark
c@372 232 //
c@372 233 // Let h be the index of the centre mark, here 3 (generally
c@372 234 // int(filterLength/2) for odd-length filters).
c@372 235 //
c@372 236 // The smallest n such that h + n * outputSpacing > filterLength
c@372 237 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
c@372 238 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
c@372 239 // phase is 1.
c@372 240 //
c@372 241 // To achieve our n, we need to pre-fill the "virtual" buffer with
c@372 242 // 4 zero samples: the x's above. This is int((h + n *
c@372 243 // outputSpacing) / inputSpacing). It's the phase that makes this
c@372 244 // buffer get dealt with in such a way as to give us an effective
c@372 245 // index for sample a of 9 rather than 8 or 10 or whatever.
c@372 246 //
c@372 247 // This gives us output latency of 2 (== n), i.e. output samples i
c@372 248 // and j will appear before the one in which input sample a is at
c@372 249 // the centre of the filter.
c@372 250
c@372 251 int h = int(m_filterLength / 2);
c@372 252 int n = ceil(double(m_filterLength - h) / outputSpacing);
c@366 253
c@372 254 m_phase = (h + n * outputSpacing) % inputSpacing;
c@372 255
c@372 256 int fill = (h + n * outputSpacing) / inputSpacing;
c@372 257
c@372 258 m_latency = n;
c@372 259
c@372 260 m_buffer = vector<double>(fill, 0);
c@370 261 m_bufferOrigin = 0;
c@366 262
c@366 263 #ifdef DEBUG_RESAMPLER
c@366 264 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
c@366 265 << ", latency " << m_latency << std::endl;
c@366 266 #endif
c@362 267 }
c@362 268
c@362 269 double
c@366 270 Resampler::reconstructOne()
c@362 271 {
c@362 272 Phase &pd = m_phaseData[m_phase];
c@366 273 double v = 0.0;
c@362 274 int n = pd.filter.size();
c@372 275
c@373 276 assert(n + m_bufferOrigin <= (int)m_buffer.size());
c@372 277
c@370 278 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
c@370 279 const double *const __restrict__ filt = pd.filter.data();
c@372 280
c@372 281 // std::cerr << "phase = " << m_phase << ", drop = " << pd.drop << ", buffer for reconstruction starts...";
c@372 282 // for (int i = 0; i < 20; ++i) {
c@372 283 // if (i % 5 == 0) std::cerr << "\n" << i << " ";
c@372 284 // std::cerr << buf[i] << " ";
c@372 285 // }
c@372 286 // std::cerr << std::endl;
c@372 287
c@362 288 for (int i = 0; i < n; ++i) {
c@370 289 // NB gcc can only vectorize this with -ffast-math
c@370 290 v += buf[i] * filt[i];
c@362 291 }
c@374 292
c@370 293 m_bufferOrigin += pd.drop;
c@366 294 m_phase = pd.nextPhase;
c@362 295 return v;
c@362 296 }
c@362 297
c@362 298 int
c@366 299 Resampler::process(const double *src, double *dst, int n)
c@362 300 {
c@366 301 for (int i = 0; i < n; ++i) {
c@366 302 m_buffer.push_back(src[i]);
c@362 303 }
c@362 304
c@366 305 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
c@366 306 int outidx = 0;
c@364 307
c@366 308 #ifdef DEBUG_RESAMPLER
c@366 309 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
c@366 310 #endif
c@366 311
c@367 312 double scaleFactor = 1.0;
c@367 313 if (m_targetRate < m_sourceRate) {
c@367 314 scaleFactor = double(m_targetRate) / double(m_sourceRate);
c@367 315 }
c@367 316
c@366 317 while (outidx < maxout &&
c@370 318 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
c@367 319 dst[outidx] = scaleFactor * reconstructOne();
c@366 320 outidx++;
c@364 321 }
c@370 322
c@370 323 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
c@370 324 m_bufferOrigin = 0;
c@366 325
c@366 326 return outidx;
c@362 327 }
c@366 328
c@363 329 std::vector<double>
c@363 330 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
c@363 331 {
c@363 332 Resampler r(sourceRate, targetRate);
c@363 333
c@363 334 int latency = r.getLatency();
c@363 335
c@368 336 // latency is the output latency. We need to provide enough
c@368 337 // padding input samples at the end of input to guarantee at
c@368 338 // *least* the latency's worth of output samples. that is,
c@368 339
c@373 340 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
c@368 341
c@368 342 // that means we are providing this much input in total:
c@368 343
c@368 344 int n1 = n + inputPad;
c@368 345
c@368 346 // and obtaining this much output in total:
c@368 347
c@373 348 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
c@368 349
c@368 350 // in order to return this much output to the user:
c@368 351
c@373 352 int m = int(ceil((double(n) * targetRate) / sourceRate));
c@368 353
c@373 354 // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
c@363 355
c@363 356 vector<double> pad(n1 - n, 0.0);
c@368 357 vector<double> out(m1 + 1, 0.0);
c@363 358
c@363 359 int got = r.process(data, out.data(), n);
c@363 360 got += r.process(pad.data(), out.data() + got, pad.size());
c@363 361
c@366 362 #ifdef DEBUG_RESAMPLER
c@366 363 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
c@372 364 std::cerr << "first 10 in:" << std::endl;
c@372 365 for (int i = 0; i < 10; ++i) {
c@372 366 std::cerr << data[i] << " ";
c@372 367 if (i == 5) std::cerr << std::endl;
c@366 368 }
c@372 369 std::cerr << std::endl;
c@366 370 #endif
c@366 371
c@368 372 int toReturn = got - latency;
c@368 373 if (toReturn > m) toReturn = m;
c@368 374
c@372 375 vector<double> sliced(out.begin() + latency,
c@368 376 out.begin() + latency + toReturn);
c@372 377
c@372 378 #ifdef DEBUG_RESAMPLER
c@372 379 std::cerr << "all out (after latency compensation), length " << sliced.size() << ":";
c@372 380 for (int i = 0; i < sliced.size(); ++i) {
c@372 381 if (i % 5 == 0) std::cerr << std::endl << i << "... ";
c@372 382 std::cerr << sliced[i] << " ";
c@372 383 }
c@372 384 std::cerr << std::endl;
c@372 385 #endif
c@372 386
c@372 387 return sliced;
c@363 388 }
c@363 389