Mercurial > hg > qm-dsp
view dsp/rateconversion/Resampler.cpp @ 375:ad21307eaf99
Integrate resampler and tests into build system etc
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Mon, 21 Oct 2013 09:40:22 +0100 |
parents | 3e5f13ac984f |
children | edb86e0d850c |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM DSP Library Centre for Digital Music, Queen Mary, University of London. This file by Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "Resampler.h" #include "maths/MathUtilities.h" #include "base/KaiserWindow.h" #include "base/SincWindow.h" #include "thread/Thread.h" #include <iostream> #include <vector> #include <map> #include <cassert> using std::vector; using std::map; //#define DEBUG_RESAMPLER 1 Resampler::Resampler(int sourceRate, int targetRate) : m_sourceRate(sourceRate), m_targetRate(targetRate) { initialise(100, 0.02); } Resampler::Resampler(int sourceRate, int targetRate, double snr, double bandwidth) : m_sourceRate(sourceRate), m_targetRate(targetRate) { initialise(snr, bandwidth); } Resampler::~Resampler() { delete[] m_phaseData; } // peakToPole -> length -> beta -> window static map<int, map<int, map<double, vector<double> > > > knownFilters; static Mutex knownFilterMutex; void Resampler::initialise(double snr, double bandwidth) { int higher = std::max(m_sourceRate, m_targetRate); int lower = std::min(m_sourceRate, m_targetRate); m_gcd = MathUtilities::gcd(lower, higher); int peakToPole = higher / m_gcd; KaiserWindow::Parameters params = KaiserWindow::parametersForBandwidth(snr, bandwidth, peakToPole); params.length = (params.length % 2 == 0 ? params.length + 1 : params.length); params.length = (params.length > 200001 ? 200001 : params.length); m_filterLength = params.length; vector<double> filter; knownFilterMutex.lock(); if (knownFilters[peakToPole][m_filterLength].find(params.beta) == knownFilters[peakToPole][m_filterLength].end()) { KaiserWindow kw(params); SincWindow sw(m_filterLength, peakToPole * 2); filter = vector<double>(m_filterLength, 0.0); for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0; sw.cut(filter.data()); kw.cut(filter.data()); knownFilters[peakToPole][m_filterLength][params.beta] = filter; } filter = knownFilters[peakToPole][m_filterLength][params.beta]; knownFilterMutex.unlock(); int inputSpacing = m_targetRate / m_gcd; int outputSpacing = m_sourceRate / m_gcd; #ifdef DEBUG_RESAMPLER std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate << ": inputSpacing " << inputSpacing << ", outputSpacing " << outputSpacing << ": filter length " << m_filterLength << std::endl; #endif // Now we have a filter of (odd) length flen in which the lower // sample rate corresponds to every n'th point and the higher rate // to every m'th where n and m are higher and lower rates divided // by their gcd respectively. So if x coordinates are on the same // scale as our filter resolution, then source sample i is at i * // (targetRate / gcd) and target sample j is at j * (sourceRate / // gcd). // To reconstruct a single target sample, we want a buffer (real // or virtual) of flen values formed of source samples spaced at // intervals of (targetRate / gcd), in our example case 3. This // is initially formed with the first sample at the filter peak. // // 0 0 0 0 a 0 0 b 0 // // and of course we have our filter // // f1 f2 f3 f4 f5 f6 f7 f8 f9 // // We take the sum of products of non-zero values from this buffer // with corresponding values in the filter // // a * f5 + b * f8 // // Then we drop (sourceRate / gcd) values, in our example case 4, // from the start of the buffer and fill until it has flen values // again // // a 0 0 b 0 0 c 0 0 // // repeat to reconstruct the next target sample // // a * f1 + b * f4 + c * f7 // // and so on. // // Above I said the buffer could be "real or virtual" -- ours is // virtual. We don't actually store all the zero spacing values, // except for padding at the start; normally we store only the // values that actually came from the source stream, along with a // phase value that tells us how many virtual zeroes there are at // the start of the virtual buffer. So the two examples above are // // 0 a b [ with phase 1 ] // a b c [ with phase 0 ] // // Having thus broken down the buffer so that only the elements we // need to multiply are present, we can also unzip the filter into // every-nth-element subsets at each phase, allowing us to do the // filter multiplication as a simply vector multiply. That is, rather // than store // // f1 f2 f3 f4 f5 f6 f7 f8 f9 // // we store separately // // f1 f4 f7 // f2 f5 f8 // f3 f6 f9 // // Each time we complete a multiply-and-sum, we need to work out // how many (real) samples to drop from the start of our buffer, // and how many to add at the end of it for the next multiply. We // know we want to drop enough real samples to move along by one // computed output sample, which is our outputSpacing number of // virtual buffer samples. Depending on the relationship between // input and output spacings, this may mean dropping several real // samples, one real sample, or none at all (and simply moving to // a different "phase"). m_phaseData = new Phase[inputSpacing]; for (int phase = 0; phase < inputSpacing; ++phase) { Phase p; p.nextPhase = phase - outputSpacing; while (p.nextPhase < 0) p.nextPhase += inputSpacing; p.nextPhase %= inputSpacing; p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase)) / inputSpacing)); int filtZipLength = int(ceil(double(m_filterLength - phase) / inputSpacing)); for (int i = 0; i < filtZipLength; ++i) { p.filter.push_back(filter[i * inputSpacing + phase]); } m_phaseData[phase] = p; } // The May implementation of this uses a pull model -- we ask the // resampler for a certain number of output samples, and it asks // its source stream for as many as it needs to calculate // those. This means (among other things) that the source stream // can be asked for enough samples up-front to fill the buffer // before the first output sample is generated. // // In this implementation we're using a push model in which a // certain number of source samples is provided and we're asked // for as many output samples as that makes available. But we // can't return any samples from the beginning until half the // filter length has been provided as input. This means we must // either return a very variable number of samples (none at all // until the filter fills, then half the filter length at once) or // else have a lengthy declared latency on the output. We do the // latter. (What do other implementations do?) // // We want to make sure the first "real" sample will eventually be // aligned with the centre sample in the filter (it's tidier, and // easier to do diagnostic calculations that way). So we need to // pick the initial phase and buffer fill accordingly. // // Example: if the inputSpacing is 2, outputSpacing is 3, and // filter length is 7, // // x x x x a b c ... input samples // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... // i j k l ... output samples // [--------|--------] <- filter with centre mark // // Let h be the index of the centre mark, here 3 (generally // int(filterLength/2) for odd-length filters). // // The smallest n such that h + n * outputSpacing > filterLength // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial // phase is 1. // // To achieve our n, we need to pre-fill the "virtual" buffer with // 4 zero samples: the x's above. This is int((h + n * // outputSpacing) / inputSpacing). It's the phase that makes this // buffer get dealt with in such a way as to give us an effective // index for sample a of 9 rather than 8 or 10 or whatever. // // This gives us output latency of 2 (== n), i.e. output samples i // and j will appear before the one in which input sample a is at // the centre of the filter. int h = int(m_filterLength / 2); int n = ceil(double(m_filterLength - h) / outputSpacing); m_phase = (h + n * outputSpacing) % inputSpacing; int fill = (h + n * outputSpacing) / inputSpacing; m_latency = n; m_buffer = vector<double>(fill, 0); m_bufferOrigin = 0; #ifdef DEBUG_RESAMPLER std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")" << ", latency " << m_latency << std::endl; #endif } double Resampler::reconstructOne() { Phase &pd = m_phaseData[m_phase]; double v = 0.0; int n = pd.filter.size(); assert(n + m_bufferOrigin <= (int)m_buffer.size()); const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin; const double *const __restrict__ filt = pd.filter.data(); // std::cerr << "phase = " << m_phase << ", drop = " << pd.drop << ", buffer for reconstruction starts..."; // for (int i = 0; i < 20; ++i) { // if (i % 5 == 0) std::cerr << "\n" << i << " "; // std::cerr << buf[i] << " "; // } // std::cerr << std::endl; for (int i = 0; i < n; ++i) { // NB gcc can only vectorize this with -ffast-math v += buf[i] * filt[i]; } m_bufferOrigin += pd.drop; m_phase = pd.nextPhase; return v; } int Resampler::process(const double *src, double *dst, int n) { for (int i = 0; i < n; ++i) { m_buffer.push_back(src[i]); } int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate)); int outidx = 0; #ifdef DEBUG_RESAMPLER std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl; #endif double scaleFactor = 1.0; if (m_targetRate < m_sourceRate) { scaleFactor = double(m_targetRate) / double(m_sourceRate); } while (outidx < maxout && m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) { dst[outidx] = scaleFactor * reconstructOne(); outidx++; } m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end()); m_bufferOrigin = 0; return outidx; } std::vector<double> Resampler::resample(int sourceRate, int targetRate, const double *data, int n) { Resampler r(sourceRate, targetRate); int latency = r.getLatency(); // latency is the output latency. We need to provide enough // padding input samples at the end of input to guarantee at // *least* the latency's worth of output samples. that is, int inputPad = int(ceil((double(latency) * sourceRate) / targetRate)); // that means we are providing this much input in total: int n1 = n + inputPad; // and obtaining this much output in total: int m1 = int(ceil((double(n1) * targetRate) / sourceRate)); // in order to return this much output to the user: int m = int(ceil((double(n) * targetRate) / sourceRate)); // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl; vector<double> pad(n1 - n, 0.0); vector<double> out(m1 + 1, 0.0); int got = r.process(data, out.data(), n); got += r.process(pad.data(), out.data() + got, pad.size()); #ifdef DEBUG_RESAMPLER std::cerr << "resample: " << n << " in, " << got << " out" << std::endl; std::cerr << "first 10 in:" << std::endl; for (int i = 0; i < 10; ++i) { std::cerr << data[i] << " "; if (i == 5) std::cerr << std::endl; } std::cerr << std::endl; #endif int toReturn = got - latency; if (toReturn > m) toReturn = m; vector<double> sliced(out.begin() + latency, out.begin() + latency + toReturn); #ifdef DEBUG_RESAMPLER std::cerr << "all out (after latency compensation), length " << sliced.size() << ":"; for (int i = 0; i < sliced.size(); ++i) { if (i % 5 == 0) std::cerr << std::endl << i << "... "; std::cerr << sliced[i] << " "; } std::cerr << std::endl; #endif return sliced; }