annotate dsp/rateconversion/Resampler.cpp @ 371:33e9e964443c

Cache calculated filters
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 16 Oct 2013 13:33:36 +0100
parents 50d393750cfd
children c1e98c18628a
rev   line source
c@362 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@362 2
c@362 3 #include "Resampler.h"
c@362 4
c@362 5 #include "qm-dsp/maths/MathUtilities.h"
c@362 6 #include "qm-dsp/base/KaiserWindow.h"
c@362 7 #include "qm-dsp/base/SincWindow.h"
c@371 8 #include "qm-dsp/thread/Thread.h"
c@362 9
c@362 10 #include <iostream>
c@363 11 #include <vector>
c@370 12 #include <map>
c@363 13
c@363 14 using std::vector;
c@370 15 using std::map;
c@362 16
c@366 17 //#define DEBUG_RESAMPLER 1
c@366 18
c@362 19 Resampler::Resampler(int sourceRate, int targetRate) :
c@362 20 m_sourceRate(sourceRate),
c@362 21 m_targetRate(targetRate)
c@362 22 {
c@362 23 initialise();
c@362 24 }
c@362 25
c@362 26 Resampler::~Resampler()
c@362 27 {
c@362 28 delete[] m_phaseData;
c@362 29 }
c@362 30
c@371 31 // peakToPole -> length -> beta -> window
c@371 32 static map<int, map<int, map<double, vector<double> > > >
c@371 33 knownFilters;
c@371 34
c@371 35 static Mutex
c@371 36 knownFilterMutex;
c@371 37
c@362 38 void
c@362 39 Resampler::initialise()
c@362 40 {
c@362 41 int higher = std::max(m_sourceRate, m_targetRate);
c@362 42 int lower = std::min(m_sourceRate, m_targetRate);
c@362 43
c@362 44 m_gcd = MathUtilities::gcd(lower, higher);
c@362 45
c@362 46 int peakToPole = higher / m_gcd;
c@362 47
c@362 48 KaiserWindow::Parameters params =
c@362 49 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
c@362 50
c@362 51 params.length =
c@362 52 (params.length % 2 == 0 ? params.length + 1 : params.length);
c@362 53
c@362 54 m_filterLength = params.length;
c@370 55
c@371 56 vector<double> filter;
c@371 57 knownFilterMutex.lock();
c@362 58
c@371 59 if (knownFilters[peakToPole][m_filterLength].find(params.beta) ==
c@371 60 knownFilters[peakToPole][m_filterLength].end()) {
c@371 61
c@371 62 KaiserWindow kw(params);
c@371 63 SincWindow sw(m_filterLength, peakToPole * 2);
c@371 64
c@371 65 filter = vector<double>(m_filterLength, 0.0);
c@371 66 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
c@371 67 sw.cut(filter.data());
c@371 68 kw.cut(filter.data());
c@371 69
c@371 70 knownFilters[peakToPole][m_filterLength][params.beta] = filter;
c@371 71 }
c@371 72
c@371 73 filter = knownFilters[peakToPole][m_filterLength][params.beta];
c@371 74 knownFilterMutex.unlock();
c@362 75
c@362 76 int inputSpacing = m_targetRate / m_gcd;
c@362 77 int outputSpacing = m_sourceRate / m_gcd;
c@362 78
c@366 79 #ifdef DEBUG_RESAMPLER
c@366 80 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
c@366 81 << ": inputSpacing " << inputSpacing << ", outputSpacing "
c@366 82 << outputSpacing << ": filter length " << m_filterLength
c@366 83 << std::endl;
c@366 84 #endif
c@362 85
c@362 86 m_phaseData = new Phase[inputSpacing];
c@362 87
c@362 88 for (int phase = 0; phase < inputSpacing; ++phase) {
c@362 89
c@362 90 Phase p;
c@362 91
c@362 92 p.nextPhase = phase - outputSpacing;
c@362 93 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
c@362 94 p.nextPhase %= inputSpacing;
c@362 95
c@366 96 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
c@366 97 / inputSpacing));
c@362 98
c@366 99 int filtZipLength = int(ceil(double(m_filterLength - phase)
c@366 100 / inputSpacing));
c@362 101 for (int i = 0; i < filtZipLength; ++i) {
c@362 102 p.filter.push_back(filter[i * inputSpacing + phase]);
c@362 103 }
c@362 104
c@362 105 m_phaseData[phase] = p;
c@362 106 }
c@362 107
c@362 108 // The May implementation of this uses a pull model -- we ask the
c@362 109 // resampler for a certain number of output samples, and it asks
c@362 110 // its source stream for as many as it needs to calculate
c@362 111 // those. This means (among other things) that the source stream
c@362 112 // can be asked for enough samples up-front to fill the buffer
c@362 113 // before the first output sample is generated.
c@362 114 //
c@362 115 // In this implementation we're using a push model in which a
c@362 116 // certain number of source samples is provided and we're asked
c@362 117 // for as many output samples as that makes available. But we
c@362 118 // can't return any samples from the beginning until half the
c@362 119 // filter length has been provided as input. This means we must
c@362 120 // either return a very variable number of samples (none at all
c@362 121 // until the filter fills, then half the filter length at once) or
c@362 122 // else have a lengthy declared latency on the output. We do the
c@362 123 // latter. (What do other implementations do?)
c@362 124
c@366 125 m_phase = (m_filterLength/2) % inputSpacing;
c@366 126
c@366 127 m_buffer = vector<double>(m_phaseData[0].filter.size(), 0);
c@370 128 m_bufferOrigin = 0;
c@366 129
c@366 130 m_latency =
c@366 131 ((m_buffer.size() * inputSpacing) - (m_filterLength/2)) / outputSpacing
c@366 132 + m_phase;
c@366 133
c@366 134 #ifdef DEBUG_RESAMPLER
c@366 135 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
c@366 136 << ", latency " << m_latency << std::endl;
c@366 137 #endif
c@362 138 }
c@362 139
c@362 140 double
c@366 141 Resampler::reconstructOne()
c@362 142 {
c@362 143 Phase &pd = m_phaseData[m_phase];
c@366 144 double v = 0.0;
c@362 145 int n = pd.filter.size();
c@370 146 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
c@370 147 const double *const __restrict__ filt = pd.filter.data();
c@362 148 for (int i = 0; i < n; ++i) {
c@370 149 // NB gcc can only vectorize this with -ffast-math
c@370 150 v += buf[i] * filt[i];
c@362 151 }
c@370 152 m_bufferOrigin += pd.drop;
c@366 153 m_phase = pd.nextPhase;
c@362 154 return v;
c@362 155 }
c@362 156
c@362 157 int
c@366 158 Resampler::process(const double *src, double *dst, int n)
c@362 159 {
c@366 160 for (int i = 0; i < n; ++i) {
c@366 161 m_buffer.push_back(src[i]);
c@362 162 }
c@362 163
c@366 164 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
c@366 165 int outidx = 0;
c@364 166
c@366 167 #ifdef DEBUG_RESAMPLER
c@366 168 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
c@366 169 #endif
c@366 170
c@367 171 double scaleFactor = 1.0;
c@367 172 if (m_targetRate < m_sourceRate) {
c@367 173 scaleFactor = double(m_targetRate) / double(m_sourceRate);
c@367 174 }
c@367 175
c@366 176 while (outidx < maxout &&
c@370 177 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
c@367 178 dst[outidx] = scaleFactor * reconstructOne();
c@366 179 outidx++;
c@364 180 }
c@370 181
c@370 182 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
c@370 183 m_bufferOrigin = 0;
c@366 184
c@366 185 return outidx;
c@362 186 }
c@366 187
c@363 188 std::vector<double>
c@363 189 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
c@363 190 {
c@363 191 Resampler r(sourceRate, targetRate);
c@363 192
c@363 193 int latency = r.getLatency();
c@363 194
c@368 195 // latency is the output latency. We need to provide enough
c@368 196 // padding input samples at the end of input to guarantee at
c@368 197 // *least* the latency's worth of output samples. that is,
c@368 198
c@368 199 int inputPad = int(ceil(double(latency * sourceRate) / targetRate));
c@368 200
c@368 201 // that means we are providing this much input in total:
c@368 202
c@368 203 int n1 = n + inputPad;
c@368 204
c@368 205 // and obtaining this much output in total:
c@368 206
c@368 207 int m1 = int(ceil(double(n1 * targetRate) / sourceRate));
c@368 208
c@368 209 // in order to return this much output to the user:
c@368 210
c@366 211 int m = int(ceil(double(n * targetRate) / sourceRate));
c@368 212
c@370 213 // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
c@363 214
c@363 215 vector<double> pad(n1 - n, 0.0);
c@368 216 vector<double> out(m1 + 1, 0.0);
c@363 217
c@363 218 int got = r.process(data, out.data(), n);
c@363 219 got += r.process(pad.data(), out.data() + got, pad.size());
c@363 220
c@366 221 #ifdef DEBUG_RESAMPLER
c@366 222 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
c@366 223 for (int i = 0; i < got; ++i) {
c@366 224 if (i % 5 == 0) std::cout << std::endl << i << "... ";
c@366 225 std::cout << (float) out[i] << " ";
c@366 226 }
c@366 227 std::cout << std::endl;
c@366 228 #endif
c@366 229
c@368 230 int toReturn = got - latency;
c@368 231 if (toReturn > m) toReturn = m;
c@368 232
c@368 233 return vector<double>(out.begin() + latency,
c@368 234 out.begin() + latency + toReturn);
c@363 235 }
c@363 236