annotate dsp/rateconversion/Resampler.cpp @ 373:395771a6db7f

Avoid int overflow in resample; tidy
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 18 Oct 2013 11:11:41 +0100
parents d464286c007b
children 734e5fa6f731
rev   line source
c@362 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@362 2
c@362 3 #include "Resampler.h"
c@362 4
c@362 5 #include "qm-dsp/maths/MathUtilities.h"
c@362 6 #include "qm-dsp/base/KaiserWindow.h"
c@362 7 #include "qm-dsp/base/SincWindow.h"
c@371 8 #include "qm-dsp/thread/Thread.h"
c@362 9
c@362 10 #include <iostream>
c@363 11 #include <vector>
c@370 12 #include <map>
c@372 13 #include <cassert>
c@363 14
c@363 15 using std::vector;
c@370 16 using std::map;
c@362 17
c@366 18 //#define DEBUG_RESAMPLER 1
c@366 19
c@362 20 Resampler::Resampler(int sourceRate, int targetRate) :
c@362 21 m_sourceRate(sourceRate),
c@362 22 m_targetRate(targetRate)
c@362 23 {
c@362 24 initialise();
c@362 25 }
c@362 26
c@362 27 Resampler::~Resampler()
c@362 28 {
c@362 29 delete[] m_phaseData;
c@362 30 }
c@362 31
c@371 32 // peakToPole -> length -> beta -> window
c@371 33 static map<int, map<int, map<double, vector<double> > > >
c@371 34 knownFilters;
c@371 35
c@371 36 static Mutex
c@371 37 knownFilterMutex;
c@371 38
c@362 39 void
c@362 40 Resampler::initialise()
c@362 41 {
c@362 42 int higher = std::max(m_sourceRate, m_targetRate);
c@362 43 int lower = std::min(m_sourceRate, m_targetRate);
c@362 44
c@362 45 m_gcd = MathUtilities::gcd(lower, higher);
c@362 46
c@362 47 int peakToPole = higher / m_gcd;
c@362 48
c@362 49 KaiserWindow::Parameters params =
c@362 50 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
c@362 51
c@362 52 params.length =
c@362 53 (params.length % 2 == 0 ? params.length + 1 : params.length);
c@362 54
c@372 55 params.length =
c@372 56 (params.length > 200001 ? 200001 : params.length);
c@372 57
c@362 58 m_filterLength = params.length;
c@370 59
c@371 60 vector<double> filter;
c@371 61 knownFilterMutex.lock();
c@362 62
c@371 63 if (knownFilters[peakToPole][m_filterLength].find(params.beta) ==
c@371 64 knownFilters[peakToPole][m_filterLength].end()) {
c@371 65
c@371 66 KaiserWindow kw(params);
c@371 67 SincWindow sw(m_filterLength, peakToPole * 2);
c@371 68
c@371 69 filter = vector<double>(m_filterLength, 0.0);
c@371 70 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
c@371 71 sw.cut(filter.data());
c@371 72 kw.cut(filter.data());
c@371 73
c@371 74 knownFilters[peakToPole][m_filterLength][params.beta] = filter;
c@371 75 }
c@371 76
c@371 77 filter = knownFilters[peakToPole][m_filterLength][params.beta];
c@371 78 knownFilterMutex.unlock();
c@362 79
c@362 80 int inputSpacing = m_targetRate / m_gcd;
c@362 81 int outputSpacing = m_sourceRate / m_gcd;
c@362 82
c@366 83 #ifdef DEBUG_RESAMPLER
c@366 84 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
c@366 85 << ": inputSpacing " << inputSpacing << ", outputSpacing "
c@366 86 << outputSpacing << ": filter length " << m_filterLength
c@366 87 << std::endl;
c@366 88 #endif
c@362 89
c@372 90 // Now we have a filter of (odd) length flen in which the lower
c@372 91 // sample rate corresponds to every n'th point and the higher rate
c@372 92 // to every m'th where n and m are higher and lower rates divided
c@372 93 // by their gcd respectively. So if x coordinates are on the same
c@372 94 // scale as our filter resolution, then source sample i is at i *
c@372 95 // (targetRate / gcd) and target sample j is at j * (sourceRate /
c@372 96 // gcd).
c@372 97
c@372 98 // To reconstruct a single target sample, we want a buffer (real
c@372 99 // or virtual) of flen values formed of source samples spaced at
c@372 100 // intervals of (targetRate / gcd), in our example case 3. This
c@372 101 // is initially formed with the first sample at the filter peak.
c@372 102 //
c@372 103 // 0 0 0 0 a 0 0 b 0
c@372 104 //
c@372 105 // and of course we have our filter
c@372 106 //
c@372 107 // f1 f2 f3 f4 f5 f6 f7 f8 f9
c@372 108 //
c@372 109 // We take the sum of products of non-zero values from this buffer
c@372 110 // with corresponding values in the filter
c@372 111 //
c@372 112 // a * f5 + b * f8
c@372 113 //
c@372 114 // Then we drop (sourceRate / gcd) values, in our example case 4,
c@372 115 // from the start of the buffer and fill until it has flen values
c@372 116 // again
c@372 117 //
c@372 118 // a 0 0 b 0 0 c 0 0
c@372 119 //
c@372 120 // repeat to reconstruct the next target sample
c@372 121 //
c@372 122 // a * f1 + b * f4 + c * f7
c@372 123 //
c@372 124 // and so on.
c@372 125 //
c@372 126 // Above I said the buffer could be "real or virtual" -- ours is
c@372 127 // virtual. We don't actually store all the zero spacing values,
c@372 128 // except for padding at the start; normally we store only the
c@372 129 // values that actually came from the source stream, along with a
c@372 130 // phase value that tells us how many virtual zeroes there are at
c@372 131 // the start of the virtual buffer. So the two examples above are
c@372 132 //
c@372 133 // 0 a b [ with phase 1 ]
c@372 134 // a b c [ with phase 0 ]
c@372 135 //
c@372 136 // Having thus broken down the buffer so that only the elements we
c@372 137 // need to multiply are present, we can also unzip the filter into
c@372 138 // every-nth-element subsets at each phase, allowing us to do the
c@372 139 // filter multiplication as a simply vector multiply. That is, rather
c@372 140 // than store
c@372 141 //
c@372 142 // f1 f2 f3 f4 f5 f6 f7 f8 f9
c@372 143 //
c@372 144 // we store separately
c@372 145 //
c@372 146 // f1 f4 f7
c@372 147 // f2 f5 f8
c@372 148 // f3 f6 f9
c@372 149 //
c@372 150 // Each time we complete a multiply-and-sum, we need to work out
c@372 151 // how many (real) samples to drop from the start of our buffer,
c@372 152 // and how many to add at the end of it for the next multiply. We
c@372 153 // know we want to drop enough real samples to move along by one
c@372 154 // computed output sample, which is our outputSpacing number of
c@372 155 // virtual buffer samples. Depending on the relationship between
c@372 156 // input and output spacings, this may mean dropping several real
c@372 157 // samples, one real sample, or none at all (and simply moving to
c@372 158 // a different "phase").
c@372 159
c@362 160 m_phaseData = new Phase[inputSpacing];
c@362 161
c@362 162 for (int phase = 0; phase < inputSpacing; ++phase) {
c@362 163
c@362 164 Phase p;
c@362 165
c@362 166 p.nextPhase = phase - outputSpacing;
c@362 167 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
c@362 168 p.nextPhase %= inputSpacing;
c@362 169
c@366 170 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
c@366 171 / inputSpacing));
c@362 172
c@366 173 int filtZipLength = int(ceil(double(m_filterLength - phase)
c@366 174 / inputSpacing));
c@372 175
c@362 176 for (int i = 0; i < filtZipLength; ++i) {
c@362 177 p.filter.push_back(filter[i * inputSpacing + phase]);
c@362 178 }
c@362 179
c@362 180 m_phaseData[phase] = p;
c@362 181 }
c@362 182
c@362 183 // The May implementation of this uses a pull model -- we ask the
c@362 184 // resampler for a certain number of output samples, and it asks
c@362 185 // its source stream for as many as it needs to calculate
c@362 186 // those. This means (among other things) that the source stream
c@362 187 // can be asked for enough samples up-front to fill the buffer
c@362 188 // before the first output sample is generated.
c@362 189 //
c@362 190 // In this implementation we're using a push model in which a
c@362 191 // certain number of source samples is provided and we're asked
c@362 192 // for as many output samples as that makes available. But we
c@362 193 // can't return any samples from the beginning until half the
c@362 194 // filter length has been provided as input. This means we must
c@362 195 // either return a very variable number of samples (none at all
c@362 196 // until the filter fills, then half the filter length at once) or
c@362 197 // else have a lengthy declared latency on the output. We do the
c@362 198 // latter. (What do other implementations do?)
c@373 199 //
c@372 200 // We want to make sure the first "real" sample will eventually be
c@372 201 // aligned with the centre sample in the filter (it's tidier, and
c@372 202 // easier to do diagnostic calculations that way). So we need to
c@372 203 // pick the initial phase and buffer fill accordingly.
c@372 204 //
c@372 205 // Example: if the inputSpacing is 2, outputSpacing is 3, and
c@372 206 // filter length is 7,
c@372 207 //
c@372 208 // x x x x a b c ... input samples
c@372 209 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
c@372 210 // i j k l ... output samples
c@372 211 // [--------|--------] <- filter with centre mark
c@372 212 //
c@372 213 // Let h be the index of the centre mark, here 3 (generally
c@372 214 // int(filterLength/2) for odd-length filters).
c@372 215 //
c@372 216 // The smallest n such that h + n * outputSpacing > filterLength
c@372 217 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
c@372 218 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
c@372 219 // phase is 1.
c@372 220 //
c@372 221 // To achieve our n, we need to pre-fill the "virtual" buffer with
c@372 222 // 4 zero samples: the x's above. This is int((h + n *
c@372 223 // outputSpacing) / inputSpacing). It's the phase that makes this
c@372 224 // buffer get dealt with in such a way as to give us an effective
c@372 225 // index for sample a of 9 rather than 8 or 10 or whatever.
c@372 226 //
c@372 227 // This gives us output latency of 2 (== n), i.e. output samples i
c@372 228 // and j will appear before the one in which input sample a is at
c@372 229 // the centre of the filter.
c@372 230
c@372 231 int h = int(m_filterLength / 2);
c@372 232 int n = ceil(double(m_filterLength - h) / outputSpacing);
c@366 233
c@372 234 m_phase = (h + n * outputSpacing) % inputSpacing;
c@372 235
c@372 236 int fill = (h + n * outputSpacing) / inputSpacing;
c@372 237
c@372 238 m_latency = n;
c@372 239
c@372 240 m_buffer = vector<double>(fill, 0);
c@370 241 m_bufferOrigin = 0;
c@366 242
c@366 243 #ifdef DEBUG_RESAMPLER
c@366 244 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
c@366 245 << ", latency " << m_latency << std::endl;
c@366 246 #endif
c@362 247 }
c@362 248
c@362 249 double
c@366 250 Resampler::reconstructOne()
c@362 251 {
c@362 252 Phase &pd = m_phaseData[m_phase];
c@366 253 double v = 0.0;
c@362 254 int n = pd.filter.size();
c@372 255
c@373 256 assert(n + m_bufferOrigin <= (int)m_buffer.size());
c@372 257
c@370 258 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
c@370 259 const double *const __restrict__ filt = pd.filter.data();
c@372 260
c@372 261 // std::cerr << "phase = " << m_phase << ", drop = " << pd.drop << ", buffer for reconstruction starts...";
c@372 262 // for (int i = 0; i < 20; ++i) {
c@372 263 // if (i % 5 == 0) std::cerr << "\n" << i << " ";
c@372 264 // std::cerr << buf[i] << " ";
c@372 265 // }
c@372 266 // std::cerr << std::endl;
c@372 267
c@362 268 for (int i = 0; i < n; ++i) {
c@370 269 // NB gcc can only vectorize this with -ffast-math
c@370 270 v += buf[i] * filt[i];
c@362 271 }
c@370 272 m_bufferOrigin += pd.drop;
c@366 273 m_phase = pd.nextPhase;
c@362 274 return v;
c@362 275 }
c@362 276
c@362 277 int
c@366 278 Resampler::process(const double *src, double *dst, int n)
c@362 279 {
c@366 280 for (int i = 0; i < n; ++i) {
c@366 281 m_buffer.push_back(src[i]);
c@362 282 }
c@362 283
c@366 284 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
c@366 285 int outidx = 0;
c@364 286
c@366 287 #ifdef DEBUG_RESAMPLER
c@366 288 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
c@366 289 #endif
c@366 290
c@367 291 double scaleFactor = 1.0;
c@367 292 if (m_targetRate < m_sourceRate) {
c@367 293 scaleFactor = double(m_targetRate) / double(m_sourceRate);
c@367 294 }
c@367 295
c@366 296 while (outidx < maxout &&
c@370 297 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
c@367 298 dst[outidx] = scaleFactor * reconstructOne();
c@366 299 outidx++;
c@364 300 }
c@370 301
c@370 302 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
c@370 303 m_bufferOrigin = 0;
c@366 304
c@366 305 return outidx;
c@362 306 }
c@366 307
c@363 308 std::vector<double>
c@363 309 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
c@363 310 {
c@363 311 Resampler r(sourceRate, targetRate);
c@363 312
c@363 313 int latency = r.getLatency();
c@363 314
c@368 315 // latency is the output latency. We need to provide enough
c@368 316 // padding input samples at the end of input to guarantee at
c@368 317 // *least* the latency's worth of output samples. that is,
c@368 318
c@373 319 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
c@368 320
c@368 321 // that means we are providing this much input in total:
c@368 322
c@368 323 int n1 = n + inputPad;
c@368 324
c@368 325 // and obtaining this much output in total:
c@368 326
c@373 327 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
c@368 328
c@368 329 // in order to return this much output to the user:
c@368 330
c@373 331 int m = int(ceil((double(n) * targetRate) / sourceRate));
c@368 332
c@373 333 // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
c@363 334
c@363 335 vector<double> pad(n1 - n, 0.0);
c@368 336 vector<double> out(m1 + 1, 0.0);
c@363 337
c@363 338 int got = r.process(data, out.data(), n);
c@363 339 got += r.process(pad.data(), out.data() + got, pad.size());
c@363 340
c@366 341 #ifdef DEBUG_RESAMPLER
c@366 342 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
c@372 343 std::cerr << "first 10 in:" << std::endl;
c@372 344 for (int i = 0; i < 10; ++i) {
c@372 345 std::cerr << data[i] << " ";
c@372 346 if (i == 5) std::cerr << std::endl;
c@366 347 }
c@372 348 std::cerr << std::endl;
c@366 349 #endif
c@366 350
c@368 351 int toReturn = got - latency;
c@368 352 if (toReturn > m) toReturn = m;
c@368 353
c@372 354 vector<double> sliced(out.begin() + latency,
c@368 355 out.begin() + latency + toReturn);
c@372 356
c@372 357 #ifdef DEBUG_RESAMPLER
c@372 358 std::cerr << "all out (after latency compensation), length " << sliced.size() << ":";
c@372 359 for (int i = 0; i < sliced.size(); ++i) {
c@372 360 if (i % 5 == 0) std::cerr << std::endl << i << "... ";
c@372 361 std::cerr << sliced[i] << " ";
c@372 362 }
c@372 363 std::cerr << std::endl;
c@372 364 #endif
c@372 365
c@372 366 return sliced;
c@363 367 }
c@363 368