annotate dsp/rateconversion/Resampler.cpp @ 374:3e5f13ac984f

Add bandwidth, snr parameters
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 18 Oct 2013 14:57:48 +0100
parents 395771a6db7f
children 23558405a7d1
rev   line source
c@362 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@362 2
c@362 3 #include "Resampler.h"
c@362 4
c@362 5 #include "qm-dsp/maths/MathUtilities.h"
c@362 6 #include "qm-dsp/base/KaiserWindow.h"
c@362 7 #include "qm-dsp/base/SincWindow.h"
c@371 8 #include "qm-dsp/thread/Thread.h"
c@362 9
c@362 10 #include <iostream>
c@363 11 #include <vector>
c@370 12 #include <map>
c@372 13 #include <cassert>
c@363 14
c@363 15 using std::vector;
c@370 16 using std::map;
c@362 17
c@366 18 //#define DEBUG_RESAMPLER 1
c@366 19
c@362 20 Resampler::Resampler(int sourceRate, int targetRate) :
c@362 21 m_sourceRate(sourceRate),
c@362 22 m_targetRate(targetRate)
c@362 23 {
c@374 24 initialise(100, 0.02);
c@374 25 }
c@374 26
c@374 27 Resampler::Resampler(int sourceRate, int targetRate,
c@374 28 double snr, double bandwidth) :
c@374 29 m_sourceRate(sourceRate),
c@374 30 m_targetRate(targetRate)
c@374 31 {
c@374 32 initialise(snr, bandwidth);
c@362 33 }
c@362 34
c@362 35 Resampler::~Resampler()
c@362 36 {
c@362 37 delete[] m_phaseData;
c@362 38 }
c@362 39
c@371 40 // peakToPole -> length -> beta -> window
c@371 41 static map<int, map<int, map<double, vector<double> > > >
c@371 42 knownFilters;
c@371 43
c@371 44 static Mutex
c@371 45 knownFilterMutex;
c@371 46
c@362 47 void
c@374 48 Resampler::initialise(double snr, double bandwidth)
c@362 49 {
c@362 50 int higher = std::max(m_sourceRate, m_targetRate);
c@362 51 int lower = std::min(m_sourceRate, m_targetRate);
c@362 52
c@362 53 m_gcd = MathUtilities::gcd(lower, higher);
c@362 54
c@362 55 int peakToPole = higher / m_gcd;
c@362 56
c@362 57 KaiserWindow::Parameters params =
c@374 58 KaiserWindow::parametersForBandwidth(snr, bandwidth, peakToPole);
c@362 59
c@362 60 params.length =
c@362 61 (params.length % 2 == 0 ? params.length + 1 : params.length);
c@362 62
c@372 63 params.length =
c@372 64 (params.length > 200001 ? 200001 : params.length);
c@372 65
c@362 66 m_filterLength = params.length;
c@370 67
c@371 68 vector<double> filter;
c@371 69 knownFilterMutex.lock();
c@362 70
c@371 71 if (knownFilters[peakToPole][m_filterLength].find(params.beta) ==
c@371 72 knownFilters[peakToPole][m_filterLength].end()) {
c@371 73
c@371 74 KaiserWindow kw(params);
c@371 75 SincWindow sw(m_filterLength, peakToPole * 2);
c@371 76
c@371 77 filter = vector<double>(m_filterLength, 0.0);
c@371 78 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
c@371 79 sw.cut(filter.data());
c@371 80 kw.cut(filter.data());
c@371 81
c@371 82 knownFilters[peakToPole][m_filterLength][params.beta] = filter;
c@371 83 }
c@371 84
c@371 85 filter = knownFilters[peakToPole][m_filterLength][params.beta];
c@371 86 knownFilterMutex.unlock();
c@362 87
c@362 88 int inputSpacing = m_targetRate / m_gcd;
c@362 89 int outputSpacing = m_sourceRate / m_gcd;
c@362 90
c@366 91 #ifdef DEBUG_RESAMPLER
c@366 92 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
c@366 93 << ": inputSpacing " << inputSpacing << ", outputSpacing "
c@366 94 << outputSpacing << ": filter length " << m_filterLength
c@366 95 << std::endl;
c@366 96 #endif
c@362 97
c@372 98 // Now we have a filter of (odd) length flen in which the lower
c@372 99 // sample rate corresponds to every n'th point and the higher rate
c@372 100 // to every m'th where n and m are higher and lower rates divided
c@372 101 // by their gcd respectively. So if x coordinates are on the same
c@372 102 // scale as our filter resolution, then source sample i is at i *
c@372 103 // (targetRate / gcd) and target sample j is at j * (sourceRate /
c@372 104 // gcd).
c@372 105
c@372 106 // To reconstruct a single target sample, we want a buffer (real
c@372 107 // or virtual) of flen values formed of source samples spaced at
c@372 108 // intervals of (targetRate / gcd), in our example case 3. This
c@372 109 // is initially formed with the first sample at the filter peak.
c@372 110 //
c@372 111 // 0 0 0 0 a 0 0 b 0
c@372 112 //
c@372 113 // and of course we have our filter
c@372 114 //
c@372 115 // f1 f2 f3 f4 f5 f6 f7 f8 f9
c@372 116 //
c@372 117 // We take the sum of products of non-zero values from this buffer
c@372 118 // with corresponding values in the filter
c@372 119 //
c@372 120 // a * f5 + b * f8
c@372 121 //
c@372 122 // Then we drop (sourceRate / gcd) values, in our example case 4,
c@372 123 // from the start of the buffer and fill until it has flen values
c@372 124 // again
c@372 125 //
c@372 126 // a 0 0 b 0 0 c 0 0
c@372 127 //
c@372 128 // repeat to reconstruct the next target sample
c@372 129 //
c@372 130 // a * f1 + b * f4 + c * f7
c@372 131 //
c@372 132 // and so on.
c@372 133 //
c@372 134 // Above I said the buffer could be "real or virtual" -- ours is
c@372 135 // virtual. We don't actually store all the zero spacing values,
c@372 136 // except for padding at the start; normally we store only the
c@372 137 // values that actually came from the source stream, along with a
c@372 138 // phase value that tells us how many virtual zeroes there are at
c@372 139 // the start of the virtual buffer. So the two examples above are
c@372 140 //
c@372 141 // 0 a b [ with phase 1 ]
c@372 142 // a b c [ with phase 0 ]
c@372 143 //
c@372 144 // Having thus broken down the buffer so that only the elements we
c@372 145 // need to multiply are present, we can also unzip the filter into
c@372 146 // every-nth-element subsets at each phase, allowing us to do the
c@372 147 // filter multiplication as a simply vector multiply. That is, rather
c@372 148 // than store
c@372 149 //
c@372 150 // f1 f2 f3 f4 f5 f6 f7 f8 f9
c@372 151 //
c@372 152 // we store separately
c@372 153 //
c@372 154 // f1 f4 f7
c@372 155 // f2 f5 f8
c@372 156 // f3 f6 f9
c@372 157 //
c@372 158 // Each time we complete a multiply-and-sum, we need to work out
c@372 159 // how many (real) samples to drop from the start of our buffer,
c@372 160 // and how many to add at the end of it for the next multiply. We
c@372 161 // know we want to drop enough real samples to move along by one
c@372 162 // computed output sample, which is our outputSpacing number of
c@372 163 // virtual buffer samples. Depending on the relationship between
c@372 164 // input and output spacings, this may mean dropping several real
c@372 165 // samples, one real sample, or none at all (and simply moving to
c@372 166 // a different "phase").
c@372 167
c@362 168 m_phaseData = new Phase[inputSpacing];
c@362 169
c@362 170 for (int phase = 0; phase < inputSpacing; ++phase) {
c@362 171
c@362 172 Phase p;
c@362 173
c@362 174 p.nextPhase = phase - outputSpacing;
c@362 175 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
c@362 176 p.nextPhase %= inputSpacing;
c@362 177
c@366 178 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
c@366 179 / inputSpacing));
c@362 180
c@366 181 int filtZipLength = int(ceil(double(m_filterLength - phase)
c@366 182 / inputSpacing));
c@372 183
c@362 184 for (int i = 0; i < filtZipLength; ++i) {
c@362 185 p.filter.push_back(filter[i * inputSpacing + phase]);
c@362 186 }
c@362 187
c@362 188 m_phaseData[phase] = p;
c@362 189 }
c@362 190
c@362 191 // The May implementation of this uses a pull model -- we ask the
c@362 192 // resampler for a certain number of output samples, and it asks
c@362 193 // its source stream for as many as it needs to calculate
c@362 194 // those. This means (among other things) that the source stream
c@362 195 // can be asked for enough samples up-front to fill the buffer
c@362 196 // before the first output sample is generated.
c@362 197 //
c@362 198 // In this implementation we're using a push model in which a
c@362 199 // certain number of source samples is provided and we're asked
c@362 200 // for as many output samples as that makes available. But we
c@362 201 // can't return any samples from the beginning until half the
c@362 202 // filter length has been provided as input. This means we must
c@362 203 // either return a very variable number of samples (none at all
c@362 204 // until the filter fills, then half the filter length at once) or
c@362 205 // else have a lengthy declared latency on the output. We do the
c@362 206 // latter. (What do other implementations do?)
c@373 207 //
c@372 208 // We want to make sure the first "real" sample will eventually be
c@372 209 // aligned with the centre sample in the filter (it's tidier, and
c@372 210 // easier to do diagnostic calculations that way). So we need to
c@372 211 // pick the initial phase and buffer fill accordingly.
c@372 212 //
c@372 213 // Example: if the inputSpacing is 2, outputSpacing is 3, and
c@372 214 // filter length is 7,
c@372 215 //
c@372 216 // x x x x a b c ... input samples
c@372 217 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
c@372 218 // i j k l ... output samples
c@372 219 // [--------|--------] <- filter with centre mark
c@372 220 //
c@372 221 // Let h be the index of the centre mark, here 3 (generally
c@372 222 // int(filterLength/2) for odd-length filters).
c@372 223 //
c@372 224 // The smallest n such that h + n * outputSpacing > filterLength
c@372 225 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
c@372 226 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
c@372 227 // phase is 1.
c@372 228 //
c@372 229 // To achieve our n, we need to pre-fill the "virtual" buffer with
c@372 230 // 4 zero samples: the x's above. This is int((h + n *
c@372 231 // outputSpacing) / inputSpacing). It's the phase that makes this
c@372 232 // buffer get dealt with in such a way as to give us an effective
c@372 233 // index for sample a of 9 rather than 8 or 10 or whatever.
c@372 234 //
c@372 235 // This gives us output latency of 2 (== n), i.e. output samples i
c@372 236 // and j will appear before the one in which input sample a is at
c@372 237 // the centre of the filter.
c@372 238
c@372 239 int h = int(m_filterLength / 2);
c@372 240 int n = ceil(double(m_filterLength - h) / outputSpacing);
c@366 241
c@372 242 m_phase = (h + n * outputSpacing) % inputSpacing;
c@372 243
c@372 244 int fill = (h + n * outputSpacing) / inputSpacing;
c@372 245
c@372 246 m_latency = n;
c@372 247
c@372 248 m_buffer = vector<double>(fill, 0);
c@370 249 m_bufferOrigin = 0;
c@366 250
c@366 251 #ifdef DEBUG_RESAMPLER
c@366 252 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
c@366 253 << ", latency " << m_latency << std::endl;
c@366 254 #endif
c@362 255 }
c@362 256
c@362 257 double
c@366 258 Resampler::reconstructOne()
c@362 259 {
c@362 260 Phase &pd = m_phaseData[m_phase];
c@366 261 double v = 0.0;
c@362 262 int n = pd.filter.size();
c@372 263
c@373 264 assert(n + m_bufferOrigin <= (int)m_buffer.size());
c@372 265
c@370 266 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
c@370 267 const double *const __restrict__ filt = pd.filter.data();
c@372 268
c@372 269 // std::cerr << "phase = " << m_phase << ", drop = " << pd.drop << ", buffer for reconstruction starts...";
c@372 270 // for (int i = 0; i < 20; ++i) {
c@372 271 // if (i % 5 == 0) std::cerr << "\n" << i << " ";
c@372 272 // std::cerr << buf[i] << " ";
c@372 273 // }
c@372 274 // std::cerr << std::endl;
c@372 275
c@362 276 for (int i = 0; i < n; ++i) {
c@370 277 // NB gcc can only vectorize this with -ffast-math
c@370 278 v += buf[i] * filt[i];
c@362 279 }
c@374 280
c@370 281 m_bufferOrigin += pd.drop;
c@366 282 m_phase = pd.nextPhase;
c@362 283 return v;
c@362 284 }
c@362 285
c@362 286 int
c@366 287 Resampler::process(const double *src, double *dst, int n)
c@362 288 {
c@366 289 for (int i = 0; i < n; ++i) {
c@366 290 m_buffer.push_back(src[i]);
c@362 291 }
c@362 292
c@366 293 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
c@366 294 int outidx = 0;
c@364 295
c@366 296 #ifdef DEBUG_RESAMPLER
c@366 297 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
c@366 298 #endif
c@366 299
c@367 300 double scaleFactor = 1.0;
c@367 301 if (m_targetRate < m_sourceRate) {
c@367 302 scaleFactor = double(m_targetRate) / double(m_sourceRate);
c@367 303 }
c@367 304
c@366 305 while (outidx < maxout &&
c@370 306 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
c@367 307 dst[outidx] = scaleFactor * reconstructOne();
c@366 308 outidx++;
c@364 309 }
c@370 310
c@370 311 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
c@370 312 m_bufferOrigin = 0;
c@366 313
c@366 314 return outidx;
c@362 315 }
c@366 316
c@363 317 std::vector<double>
c@363 318 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
c@363 319 {
c@363 320 Resampler r(sourceRate, targetRate);
c@363 321
c@363 322 int latency = r.getLatency();
c@363 323
c@368 324 // latency is the output latency. We need to provide enough
c@368 325 // padding input samples at the end of input to guarantee at
c@368 326 // *least* the latency's worth of output samples. that is,
c@368 327
c@373 328 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
c@368 329
c@368 330 // that means we are providing this much input in total:
c@368 331
c@368 332 int n1 = n + inputPad;
c@368 333
c@368 334 // and obtaining this much output in total:
c@368 335
c@373 336 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
c@368 337
c@368 338 // in order to return this much output to the user:
c@368 339
c@373 340 int m = int(ceil((double(n) * targetRate) / sourceRate));
c@368 341
c@373 342 // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
c@363 343
c@363 344 vector<double> pad(n1 - n, 0.0);
c@368 345 vector<double> out(m1 + 1, 0.0);
c@363 346
c@363 347 int got = r.process(data, out.data(), n);
c@363 348 got += r.process(pad.data(), out.data() + got, pad.size());
c@363 349
c@366 350 #ifdef DEBUG_RESAMPLER
c@366 351 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
c@372 352 std::cerr << "first 10 in:" << std::endl;
c@372 353 for (int i = 0; i < 10; ++i) {
c@372 354 std::cerr << data[i] << " ";
c@372 355 if (i == 5) std::cerr << std::endl;
c@366 356 }
c@372 357 std::cerr << std::endl;
c@366 358 #endif
c@366 359
c@368 360 int toReturn = got - latency;
c@368 361 if (toReturn > m) toReturn = m;
c@368 362
c@372 363 vector<double> sliced(out.begin() + latency,
c@368 364 out.begin() + latency + toReturn);
c@372 365
c@372 366 #ifdef DEBUG_RESAMPLER
c@372 367 std::cerr << "all out (after latency compensation), length " << sliced.size() << ":";
c@372 368 for (int i = 0; i < sliced.size(); ++i) {
c@372 369 if (i % 5 == 0) std::cerr << std::endl << i << "... ";
c@372 370 std::cerr << sliced[i] << " ";
c@372 371 }
c@372 372 std::cerr << std::endl;
c@372 373 #endif
c@372 374
c@372 375 return sliced;
c@363 376 }
c@363 377