annotate dsp/rateconversion/Resampler.cpp @ 398:333e27d1efa1

Fixes to resampler frequency tests
author Chris Cannam <c.cannam@qmul.ac.uk>
date Mon, 12 May 2014 17:56:08 +0100
parents b63c22ce235b
children 6a634a9081a8
rev   line source
c@362 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@375 2 /*
c@375 3 QM DSP Library
c@375 4
c@375 5 Centre for Digital Music, Queen Mary, University of London.
c@375 6 This file by Chris Cannam.
c@375 7
c@375 8 This program is free software; you can redistribute it and/or
c@375 9 modify it under the terms of the GNU General Public License as
c@375 10 published by the Free Software Foundation; either version 2 of the
c@375 11 License, or (at your option) any later version. See the file
c@375 12 COPYING included with this distribution for more information.
c@375 13 */
c@362 14
c@362 15 #include "Resampler.h"
c@362 16
c@375 17 #include "maths/MathUtilities.h"
c@375 18 #include "base/KaiserWindow.h"
c@375 19 #include "base/SincWindow.h"
c@375 20 #include "thread/Thread.h"
c@362 21
c@362 22 #include <iostream>
c@363 23 #include <vector>
c@370 24 #include <map>
c@372 25 #include <cassert>
c@363 26
c@363 27 using std::vector;
c@370 28 using std::map;
c@398 29 using std::cerr;
c@398 30 using std::endl;
c@362 31
c@366 32 //#define DEBUG_RESAMPLER 1
c@398 33 //#define DEBUG_RESAMPLER_VERBOSE 1
c@366 34
c@362 35 Resampler::Resampler(int sourceRate, int targetRate) :
c@362 36 m_sourceRate(sourceRate),
c@362 37 m_targetRate(targetRate)
c@362 38 {
c@374 39 initialise(100, 0.02);
c@374 40 }
c@374 41
c@374 42 Resampler::Resampler(int sourceRate, int targetRate,
c@374 43 double snr, double bandwidth) :
c@374 44 m_sourceRate(sourceRate),
c@374 45 m_targetRate(targetRate)
c@374 46 {
c@374 47 initialise(snr, bandwidth);
c@362 48 }
c@362 49
c@362 50 Resampler::~Resampler()
c@362 51 {
c@362 52 delete[] m_phaseData;
c@362 53 }
c@362 54
c@371 55 // peakToPole -> length -> beta -> window
c@381 56 static map<double, map<int, map<double, vector<double> > > >
c@371 57 knownFilters;
c@371 58
c@371 59 static Mutex
c@371 60 knownFilterMutex;
c@371 61
c@362 62 void
c@374 63 Resampler::initialise(double snr, double bandwidth)
c@362 64 {
c@362 65 int higher = std::max(m_sourceRate, m_targetRate);
c@362 66 int lower = std::min(m_sourceRate, m_targetRate);
c@362 67
c@362 68 m_gcd = MathUtilities::gcd(lower, higher);
c@381 69 m_peakToPole = higher / m_gcd;
c@362 70
c@381 71 if (m_targetRate < m_sourceRate) {
c@381 72 // antialiasing filter, should be slightly below nyquist
c@381 73 m_peakToPole = m_peakToPole / (1.0 - bandwidth/2.0);
c@381 74 }
c@362 75
c@362 76 KaiserWindow::Parameters params =
c@381 77 KaiserWindow::parametersForBandwidth(snr, bandwidth, higher / m_gcd);
c@362 78
c@362 79 params.length =
c@362 80 (params.length % 2 == 0 ? params.length + 1 : params.length);
c@362 81
c@372 82 params.length =
c@372 83 (params.length > 200001 ? 200001 : params.length);
c@372 84
c@362 85 m_filterLength = params.length;
c@370 86
c@371 87 vector<double> filter;
c@371 88 knownFilterMutex.lock();
c@362 89
c@381 90 if (knownFilters[m_peakToPole][m_filterLength].find(params.beta) ==
c@381 91 knownFilters[m_peakToPole][m_filterLength].end()) {
c@371 92
c@371 93 KaiserWindow kw(params);
c@381 94 SincWindow sw(m_filterLength, m_peakToPole * 2);
c@371 95
c@371 96 filter = vector<double>(m_filterLength, 0.0);
c@371 97 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
c@371 98 sw.cut(filter.data());
c@371 99 kw.cut(filter.data());
c@371 100
c@381 101 knownFilters[m_peakToPole][m_filterLength][params.beta] = filter;
c@371 102 }
c@371 103
c@381 104 filter = knownFilters[m_peakToPole][m_filterLength][params.beta];
c@371 105 knownFilterMutex.unlock();
c@362 106
c@362 107 int inputSpacing = m_targetRate / m_gcd;
c@362 108 int outputSpacing = m_sourceRate / m_gcd;
c@362 109
c@366 110 #ifdef DEBUG_RESAMPLER
c@398 111 cerr << "resample " << m_sourceRate << " -> " << m_targetRate
c@366 112 << ": inputSpacing " << inputSpacing << ", outputSpacing "
c@366 113 << outputSpacing << ": filter length " << m_filterLength
c@398 114 << endl;
c@366 115 #endif
c@362 116
c@372 117 // Now we have a filter of (odd) length flen in which the lower
c@372 118 // sample rate corresponds to every n'th point and the higher rate
c@372 119 // to every m'th where n and m are higher and lower rates divided
c@372 120 // by their gcd respectively. So if x coordinates are on the same
c@372 121 // scale as our filter resolution, then source sample i is at i *
c@372 122 // (targetRate / gcd) and target sample j is at j * (sourceRate /
c@372 123 // gcd).
c@372 124
c@372 125 // To reconstruct a single target sample, we want a buffer (real
c@372 126 // or virtual) of flen values formed of source samples spaced at
c@372 127 // intervals of (targetRate / gcd), in our example case 3. This
c@372 128 // is initially formed with the first sample at the filter peak.
c@372 129 //
c@372 130 // 0 0 0 0 a 0 0 b 0
c@372 131 //
c@372 132 // and of course we have our filter
c@372 133 //
c@372 134 // f1 f2 f3 f4 f5 f6 f7 f8 f9
c@372 135 //
c@372 136 // We take the sum of products of non-zero values from this buffer
c@372 137 // with corresponding values in the filter
c@372 138 //
c@372 139 // a * f5 + b * f8
c@372 140 //
c@372 141 // Then we drop (sourceRate / gcd) values, in our example case 4,
c@372 142 // from the start of the buffer and fill until it has flen values
c@372 143 // again
c@372 144 //
c@372 145 // a 0 0 b 0 0 c 0 0
c@372 146 //
c@372 147 // repeat to reconstruct the next target sample
c@372 148 //
c@372 149 // a * f1 + b * f4 + c * f7
c@372 150 //
c@372 151 // and so on.
c@372 152 //
c@372 153 // Above I said the buffer could be "real or virtual" -- ours is
c@372 154 // virtual. We don't actually store all the zero spacing values,
c@372 155 // except for padding at the start; normally we store only the
c@372 156 // values that actually came from the source stream, along with a
c@372 157 // phase value that tells us how many virtual zeroes there are at
c@372 158 // the start of the virtual buffer. So the two examples above are
c@372 159 //
c@372 160 // 0 a b [ with phase 1 ]
c@372 161 // a b c [ with phase 0 ]
c@372 162 //
c@372 163 // Having thus broken down the buffer so that only the elements we
c@372 164 // need to multiply are present, we can also unzip the filter into
c@372 165 // every-nth-element subsets at each phase, allowing us to do the
c@372 166 // filter multiplication as a simply vector multiply. That is, rather
c@372 167 // than store
c@372 168 //
c@372 169 // f1 f2 f3 f4 f5 f6 f7 f8 f9
c@372 170 //
c@372 171 // we store separately
c@372 172 //
c@372 173 // f1 f4 f7
c@372 174 // f2 f5 f8
c@372 175 // f3 f6 f9
c@372 176 //
c@372 177 // Each time we complete a multiply-and-sum, we need to work out
c@372 178 // how many (real) samples to drop from the start of our buffer,
c@372 179 // and how many to add at the end of it for the next multiply. We
c@372 180 // know we want to drop enough real samples to move along by one
c@372 181 // computed output sample, which is our outputSpacing number of
c@372 182 // virtual buffer samples. Depending on the relationship between
c@372 183 // input and output spacings, this may mean dropping several real
c@372 184 // samples, one real sample, or none at all (and simply moving to
c@372 185 // a different "phase").
c@372 186
c@362 187 m_phaseData = new Phase[inputSpacing];
c@362 188
c@362 189 for (int phase = 0; phase < inputSpacing; ++phase) {
c@362 190
c@362 191 Phase p;
c@362 192
c@362 193 p.nextPhase = phase - outputSpacing;
c@362 194 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
c@362 195 p.nextPhase %= inputSpacing;
c@362 196
c@366 197 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
c@366 198 / inputSpacing));
c@362 199
c@366 200 int filtZipLength = int(ceil(double(m_filterLength - phase)
c@366 201 / inputSpacing));
c@372 202
c@362 203 for (int i = 0; i < filtZipLength; ++i) {
c@362 204 p.filter.push_back(filter[i * inputSpacing + phase]);
c@362 205 }
c@362 206
c@362 207 m_phaseData[phase] = p;
c@362 208 }
c@362 209
c@398 210 #ifdef DEBUG_RESAMPLER
c@398 211 int cp = 0;
c@398 212 int totDrop = 0;
c@398 213 for (int i = 0; i < inputSpacing; ++i) {
c@398 214 cerr << "phase = " << cp << ", drop = " << m_phaseData[cp].drop
c@398 215 << ", filter length = " << m_phaseData[cp].filter.size()
c@398 216 << ", next phase = " << m_phaseData[cp].nextPhase << endl;
c@398 217 totDrop += m_phaseData[cp].drop;
c@398 218 cp = m_phaseData[cp].nextPhase;
c@398 219 }
c@398 220 cerr << "total drop = " << totDrop << endl;
c@398 221 #endif
c@398 222
c@362 223 // The May implementation of this uses a pull model -- we ask the
c@362 224 // resampler for a certain number of output samples, and it asks
c@362 225 // its source stream for as many as it needs to calculate
c@362 226 // those. This means (among other things) that the source stream
c@362 227 // can be asked for enough samples up-front to fill the buffer
c@362 228 // before the first output sample is generated.
c@362 229 //
c@362 230 // In this implementation we're using a push model in which a
c@362 231 // certain number of source samples is provided and we're asked
c@362 232 // for as many output samples as that makes available. But we
c@362 233 // can't return any samples from the beginning until half the
c@362 234 // filter length has been provided as input. This means we must
c@362 235 // either return a very variable number of samples (none at all
c@362 236 // until the filter fills, then half the filter length at once) or
c@362 237 // else have a lengthy declared latency on the output. We do the
c@362 238 // latter. (What do other implementations do?)
c@373 239 //
c@372 240 // We want to make sure the first "real" sample will eventually be
c@372 241 // aligned with the centre sample in the filter (it's tidier, and
c@372 242 // easier to do diagnostic calculations that way). So we need to
c@372 243 // pick the initial phase and buffer fill accordingly.
c@372 244 //
c@372 245 // Example: if the inputSpacing is 2, outputSpacing is 3, and
c@372 246 // filter length is 7,
c@372 247 //
c@372 248 // x x x x a b c ... input samples
c@372 249 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
c@372 250 // i j k l ... output samples
c@372 251 // [--------|--------] <- filter with centre mark
c@372 252 //
c@372 253 // Let h be the index of the centre mark, here 3 (generally
c@372 254 // int(filterLength/2) for odd-length filters).
c@372 255 //
c@372 256 // The smallest n such that h + n * outputSpacing > filterLength
c@372 257 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
c@372 258 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
c@372 259 // phase is 1.
c@372 260 //
c@372 261 // To achieve our n, we need to pre-fill the "virtual" buffer with
c@372 262 // 4 zero samples: the x's above. This is int((h + n *
c@372 263 // outputSpacing) / inputSpacing). It's the phase that makes this
c@372 264 // buffer get dealt with in such a way as to give us an effective
c@372 265 // index for sample a of 9 rather than 8 or 10 or whatever.
c@372 266 //
c@372 267 // This gives us output latency of 2 (== n), i.e. output samples i
c@372 268 // and j will appear before the one in which input sample a is at
c@372 269 // the centre of the filter.
c@372 270
c@372 271 int h = int(m_filterLength / 2);
c@372 272 int n = ceil(double(m_filterLength - h) / outputSpacing);
c@366 273
c@372 274 m_phase = (h + n * outputSpacing) % inputSpacing;
c@372 275
c@372 276 int fill = (h + n * outputSpacing) / inputSpacing;
c@372 277
c@372 278 m_latency = n;
c@372 279
c@372 280 m_buffer = vector<double>(fill, 0);
c@370 281 m_bufferOrigin = 0;
c@366 282
c@366 283 #ifdef DEBUG_RESAMPLER
c@398 284 cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
c@398 285 << ", latency " << m_latency << endl;
c@366 286 #endif
c@362 287 }
c@362 288
c@362 289 double
c@366 290 Resampler::reconstructOne()
c@362 291 {
c@362 292 Phase &pd = m_phaseData[m_phase];
c@366 293 double v = 0.0;
c@362 294 int n = pd.filter.size();
c@372 295
c@373 296 assert(n + m_bufferOrigin <= (int)m_buffer.size());
c@372 297
c@370 298 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
c@370 299 const double *const __restrict__ filt = pd.filter.data();
c@372 300
c@398 301 // cerr << "phase = " << m_phase << ", drop = " << pd.drop << ", buffer for reconstruction starts...";
c@372 302 // for (int i = 0; i < 20; ++i) {
c@398 303 // if (i % 5 == 0) cerr << "\n" << i << " ";
c@398 304 // cerr << buf[i] << " ";
c@372 305 // }
c@398 306 // cerr << endl;
c@372 307
c@362 308 for (int i = 0; i < n; ++i) {
c@370 309 // NB gcc can only vectorize this with -ffast-math
c@370 310 v += buf[i] * filt[i];
c@362 311 }
c@374 312
c@370 313 m_bufferOrigin += pd.drop;
c@366 314 m_phase = pd.nextPhase;
c@362 315 return v;
c@362 316 }
c@362 317
c@362 318 int
c@366 319 Resampler::process(const double *src, double *dst, int n)
c@362 320 {
c@366 321 for (int i = 0; i < n; ++i) {
c@366 322 m_buffer.push_back(src[i]);
c@362 323 }
c@362 324
c@366 325 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
c@366 326 int outidx = 0;
c@364 327
c@366 328 #ifdef DEBUG_RESAMPLER
c@398 329 cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << endl;
c@366 330 #endif
c@366 331
c@381 332 double scaleFactor = (double(m_targetRate) / m_gcd) / m_peakToPole;
c@367 333
c@366 334 while (outidx < maxout &&
c@370 335 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
c@367 336 dst[outidx] = scaleFactor * reconstructOne();
c@366 337 outidx++;
c@364 338 }
c@370 339
c@370 340 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
c@370 341 m_bufferOrigin = 0;
c@366 342
c@366 343 return outidx;
c@362 344 }
c@366 345
c@398 346 vector<double>
c@385 347 Resampler::process(const double *src, int n)
c@385 348 {
c@385 349 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
c@398 350 vector<double> out(maxout, 0.0);
c@385 351 int got = process(src, out.data(), n);
c@385 352 assert(got <= maxout);
c@385 353 if (got < maxout) out.resize(got);
c@385 354 return out;
c@385 355 }
c@385 356
c@398 357 vector<double>
c@363 358 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
c@363 359 {
c@363 360 Resampler r(sourceRate, targetRate);
c@363 361
c@363 362 int latency = r.getLatency();
c@363 363
c@368 364 // latency is the output latency. We need to provide enough
c@368 365 // padding input samples at the end of input to guarantee at
c@368 366 // *least* the latency's worth of output samples. that is,
c@368 367
c@373 368 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
c@368 369
c@368 370 // that means we are providing this much input in total:
c@368 371
c@368 372 int n1 = n + inputPad;
c@368 373
c@368 374 // and obtaining this much output in total:
c@368 375
c@373 376 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
c@368 377
c@368 378 // in order to return this much output to the user:
c@368 379
c@373 380 int m = int(ceil((double(n) * targetRate) / sourceRate));
c@368 381
c@398 382 #ifdef DEBUG_RESAMPLER
c@398 383 cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << endl;
c@398 384 #endif
c@363 385
c@363 386 vector<double> pad(n1 - n, 0.0);
c@368 387 vector<double> out(m1 + 1, 0.0);
c@363 388
c@398 389 int gotData = r.process(data, out.data(), n);
c@398 390 int gotPad = r.process(pad.data(), out.data() + gotData, pad.size());
c@398 391 int got = gotData + gotPad;
c@398 392
c@366 393 #ifdef DEBUG_RESAMPLER
c@398 394 cerr << "resample: " << n << " in, " << pad.size() << " padding, " << got << " out (" << gotData << " data, " << gotPad << " padding, latency = " << latency << ")" << endl;
c@396 395 #endif
c@396 396 #ifdef DEBUG_RESAMPLER_VERBOSE
c@398 397 int printN = 50;
c@398 398 cerr << "first " << printN << " in:" << endl;
c@398 399 for (int i = 0; i < printN && i < n; ++i) {
c@398 400 if (i % 5 == 0) cerr << endl << i << "... ";
c@398 401 cerr << data[i] << " ";
c@366 402 }
c@398 403 cerr << endl;
c@366 404 #endif
c@366 405
c@368 406 int toReturn = got - latency;
c@368 407 if (toReturn > m) toReturn = m;
c@368 408
c@372 409 vector<double> sliced(out.begin() + latency,
c@368 410 out.begin() + latency + toReturn);
c@372 411
c@396 412 #ifdef DEBUG_RESAMPLER_VERBOSE
c@398 413 cerr << "first " << printN << " out (after latency compensation), length " << sliced.size() << ":";
c@398 414 for (int i = 0; i < printN && i < sliced.size(); ++i) {
c@398 415 if (i % 5 == 0) cerr << endl << i << "... ";
c@398 416 cerr << sliced[i] << " ";
c@372 417 }
c@398 418 cerr << endl;
c@372 419 #endif
c@372 420
c@372 421 return sliced;
c@363 422 }
c@363 423