annotate dsp/rateconversion/Resampler.cpp @ 163:4f092806782b

Fix incorrect handling of decimation factor 1; documentation
author Chris Cannam
date Thu, 30 Jan 2014 09:51:06 +0000
parents 0a47ec0a1a56
children 5f720340b0dd
rev   line source
Chris@137 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@150 2 /*
Chris@150 3 QM DSP Library
Chris@150 4
Chris@150 5 Centre for Digital Music, Queen Mary, University of London.
Chris@150 6 This file by Chris Cannam.
Chris@150 7
Chris@150 8 This program is free software; you can redistribute it and/or
Chris@150 9 modify it under the terms of the GNU General Public License as
Chris@150 10 published by the Free Software Foundation; either version 2 of the
Chris@150 11 License, or (at your option) any later version. See the file
Chris@150 12 COPYING included with this distribution for more information.
Chris@150 13 */
Chris@137 14
Chris@137 15 #include "Resampler.h"
Chris@137 16
Chris@150 17 #include "maths/MathUtilities.h"
Chris@150 18 #include "base/KaiserWindow.h"
Chris@150 19 #include "base/SincWindow.h"
Chris@150 20 #include "thread/Thread.h"
Chris@137 21
Chris@137 22 #include <iostream>
Chris@138 23 #include <vector>
Chris@145 24 #include <map>
Chris@147 25 #include <cassert>
Chris@138 26
Chris@138 27 using std::vector;
Chris@145 28 using std::map;
Chris@137 29
Chris@141 30 //#define DEBUG_RESAMPLER 1
Chris@141 31
Chris@137 32 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@137 33 m_sourceRate(sourceRate),
Chris@137 34 m_targetRate(targetRate)
Chris@137 35 {
Chris@149 36 initialise(100, 0.02);
Chris@149 37 }
Chris@149 38
Chris@149 39 Resampler::Resampler(int sourceRate, int targetRate,
Chris@149 40 double snr, double bandwidth) :
Chris@149 41 m_sourceRate(sourceRate),
Chris@149 42 m_targetRate(targetRate)
Chris@149 43 {
Chris@149 44 initialise(snr, bandwidth);
Chris@137 45 }
Chris@137 46
Chris@137 47 Resampler::~Resampler()
Chris@137 48 {
Chris@137 49 delete[] m_phaseData;
Chris@137 50 }
Chris@137 51
Chris@146 52 // peakToPole -> length -> beta -> window
Chris@156 53 static map<double, map<int, map<double, vector<double> > > >
Chris@146 54 knownFilters;
Chris@146 55
Chris@146 56 static Mutex
Chris@146 57 knownFilterMutex;
Chris@146 58
Chris@137 59 void
Chris@149 60 Resampler::initialise(double snr, double bandwidth)
Chris@137 61 {
Chris@137 62 int higher = std::max(m_sourceRate, m_targetRate);
Chris@137 63 int lower = std::min(m_sourceRate, m_targetRate);
Chris@137 64
Chris@137 65 m_gcd = MathUtilities::gcd(lower, higher);
Chris@156 66 m_peakToPole = higher / m_gcd;
Chris@137 67
Chris@156 68 if (m_targetRate < m_sourceRate) {
Chris@156 69 // antialiasing filter, should be slightly below nyquist
Chris@156 70 m_peakToPole = m_peakToPole / (1.0 - bandwidth/2.0);
Chris@156 71 }
Chris@137 72
Chris@137 73 KaiserWindow::Parameters params =
Chris@156 74 KaiserWindow::parametersForBandwidth(snr, bandwidth, higher / m_gcd);
Chris@137 75
Chris@137 76 params.length =
Chris@137 77 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@137 78
Chris@147 79 params.length =
Chris@147 80 (params.length > 200001 ? 200001 : params.length);
Chris@147 81
Chris@137 82 m_filterLength = params.length;
Chris@145 83
Chris@146 84 vector<double> filter;
Chris@146 85 knownFilterMutex.lock();
Chris@137 86
Chris@156 87 if (knownFilters[m_peakToPole][m_filterLength].find(params.beta) ==
Chris@156 88 knownFilters[m_peakToPole][m_filterLength].end()) {
Chris@146 89
Chris@146 90 KaiserWindow kw(params);
Chris@156 91 SincWindow sw(m_filterLength, m_peakToPole * 2);
Chris@146 92
Chris@146 93 filter = vector<double>(m_filterLength, 0.0);
Chris@146 94 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@146 95 sw.cut(filter.data());
Chris@146 96 kw.cut(filter.data());
Chris@146 97
Chris@156 98 knownFilters[m_peakToPole][m_filterLength][params.beta] = filter;
Chris@146 99 }
Chris@146 100
Chris@156 101 filter = knownFilters[m_peakToPole][m_filterLength][params.beta];
Chris@146 102 knownFilterMutex.unlock();
Chris@137 103
Chris@137 104 int inputSpacing = m_targetRate / m_gcd;
Chris@137 105 int outputSpacing = m_sourceRate / m_gcd;
Chris@137 106
Chris@141 107 #ifdef DEBUG_RESAMPLER
Chris@141 108 std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate
Chris@141 109 << ": inputSpacing " << inputSpacing << ", outputSpacing "
Chris@141 110 << outputSpacing << ": filter length " << m_filterLength
Chris@141 111 << std::endl;
Chris@141 112 #endif
Chris@137 113
Chris@147 114 // Now we have a filter of (odd) length flen in which the lower
Chris@147 115 // sample rate corresponds to every n'th point and the higher rate
Chris@147 116 // to every m'th where n and m are higher and lower rates divided
Chris@147 117 // by their gcd respectively. So if x coordinates are on the same
Chris@147 118 // scale as our filter resolution, then source sample i is at i *
Chris@147 119 // (targetRate / gcd) and target sample j is at j * (sourceRate /
Chris@147 120 // gcd).
Chris@147 121
Chris@147 122 // To reconstruct a single target sample, we want a buffer (real
Chris@147 123 // or virtual) of flen values formed of source samples spaced at
Chris@147 124 // intervals of (targetRate / gcd), in our example case 3. This
Chris@147 125 // is initially formed with the first sample at the filter peak.
Chris@147 126 //
Chris@147 127 // 0 0 0 0 a 0 0 b 0
Chris@147 128 //
Chris@147 129 // and of course we have our filter
Chris@147 130 //
Chris@147 131 // f1 f2 f3 f4 f5 f6 f7 f8 f9
Chris@147 132 //
Chris@147 133 // We take the sum of products of non-zero values from this buffer
Chris@147 134 // with corresponding values in the filter
Chris@147 135 //
Chris@147 136 // a * f5 + b * f8
Chris@147 137 //
Chris@147 138 // Then we drop (sourceRate / gcd) values, in our example case 4,
Chris@147 139 // from the start of the buffer and fill until it has flen values
Chris@147 140 // again
Chris@147 141 //
Chris@147 142 // a 0 0 b 0 0 c 0 0
Chris@147 143 //
Chris@147 144 // repeat to reconstruct the next target sample
Chris@147 145 //
Chris@147 146 // a * f1 + b * f4 + c * f7
Chris@147 147 //
Chris@147 148 // and so on.
Chris@147 149 //
Chris@147 150 // Above I said the buffer could be "real or virtual" -- ours is
Chris@147 151 // virtual. We don't actually store all the zero spacing values,
Chris@147 152 // except for padding at the start; normally we store only the
Chris@147 153 // values that actually came from the source stream, along with a
Chris@147 154 // phase value that tells us how many virtual zeroes there are at
Chris@147 155 // the start of the virtual buffer. So the two examples above are
Chris@147 156 //
Chris@147 157 // 0 a b [ with phase 1 ]
Chris@147 158 // a b c [ with phase 0 ]
Chris@147 159 //
Chris@147 160 // Having thus broken down the buffer so that only the elements we
Chris@147 161 // need to multiply are present, we can also unzip the filter into
Chris@147 162 // every-nth-element subsets at each phase, allowing us to do the
Chris@147 163 // filter multiplication as a simply vector multiply. That is, rather
Chris@147 164 // than store
Chris@147 165 //
Chris@147 166 // f1 f2 f3 f4 f5 f6 f7 f8 f9
Chris@147 167 //
Chris@147 168 // we store separately
Chris@147 169 //
Chris@147 170 // f1 f4 f7
Chris@147 171 // f2 f5 f8
Chris@147 172 // f3 f6 f9
Chris@147 173 //
Chris@147 174 // Each time we complete a multiply-and-sum, we need to work out
Chris@147 175 // how many (real) samples to drop from the start of our buffer,
Chris@147 176 // and how many to add at the end of it for the next multiply. We
Chris@147 177 // know we want to drop enough real samples to move along by one
Chris@147 178 // computed output sample, which is our outputSpacing number of
Chris@147 179 // virtual buffer samples. Depending on the relationship between
Chris@147 180 // input and output spacings, this may mean dropping several real
Chris@147 181 // samples, one real sample, or none at all (and simply moving to
Chris@147 182 // a different "phase").
Chris@147 183
Chris@137 184 m_phaseData = new Phase[inputSpacing];
Chris@137 185
Chris@137 186 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@137 187
Chris@137 188 Phase p;
Chris@137 189
Chris@137 190 p.nextPhase = phase - outputSpacing;
Chris@137 191 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@137 192 p.nextPhase %= inputSpacing;
Chris@137 193
Chris@141 194 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
Chris@141 195 / inputSpacing));
Chris@137 196
Chris@141 197 int filtZipLength = int(ceil(double(m_filterLength - phase)
Chris@141 198 / inputSpacing));
Chris@147 199
Chris@137 200 for (int i = 0; i < filtZipLength; ++i) {
Chris@137 201 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@137 202 }
Chris@137 203
Chris@137 204 m_phaseData[phase] = p;
Chris@137 205 }
Chris@137 206
Chris@137 207 // The May implementation of this uses a pull model -- we ask the
Chris@137 208 // resampler for a certain number of output samples, and it asks
Chris@137 209 // its source stream for as many as it needs to calculate
Chris@137 210 // those. This means (among other things) that the source stream
Chris@137 211 // can be asked for enough samples up-front to fill the buffer
Chris@137 212 // before the first output sample is generated.
Chris@137 213 //
Chris@137 214 // In this implementation we're using a push model in which a
Chris@137 215 // certain number of source samples is provided and we're asked
Chris@137 216 // for as many output samples as that makes available. But we
Chris@137 217 // can't return any samples from the beginning until half the
Chris@137 218 // filter length has been provided as input. This means we must
Chris@137 219 // either return a very variable number of samples (none at all
Chris@137 220 // until the filter fills, then half the filter length at once) or
Chris@137 221 // else have a lengthy declared latency on the output. We do the
Chris@137 222 // latter. (What do other implementations do?)
Chris@148 223 //
Chris@147 224 // We want to make sure the first "real" sample will eventually be
Chris@147 225 // aligned with the centre sample in the filter (it's tidier, and
Chris@147 226 // easier to do diagnostic calculations that way). So we need to
Chris@147 227 // pick the initial phase and buffer fill accordingly.
Chris@147 228 //
Chris@147 229 // Example: if the inputSpacing is 2, outputSpacing is 3, and
Chris@147 230 // filter length is 7,
Chris@147 231 //
Chris@147 232 // x x x x a b c ... input samples
Chris@147 233 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
Chris@147 234 // i j k l ... output samples
Chris@147 235 // [--------|--------] <- filter with centre mark
Chris@147 236 //
Chris@147 237 // Let h be the index of the centre mark, here 3 (generally
Chris@147 238 // int(filterLength/2) for odd-length filters).
Chris@147 239 //
Chris@147 240 // The smallest n such that h + n * outputSpacing > filterLength
Chris@147 241 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
Chris@147 242 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
Chris@147 243 // phase is 1.
Chris@147 244 //
Chris@147 245 // To achieve our n, we need to pre-fill the "virtual" buffer with
Chris@147 246 // 4 zero samples: the x's above. This is int((h + n *
Chris@147 247 // outputSpacing) / inputSpacing). It's the phase that makes this
Chris@147 248 // buffer get dealt with in such a way as to give us an effective
Chris@147 249 // index for sample a of 9 rather than 8 or 10 or whatever.
Chris@147 250 //
Chris@147 251 // This gives us output latency of 2 (== n), i.e. output samples i
Chris@147 252 // and j will appear before the one in which input sample a is at
Chris@147 253 // the centre of the filter.
Chris@147 254
Chris@147 255 int h = int(m_filterLength / 2);
Chris@147 256 int n = ceil(double(m_filterLength - h) / outputSpacing);
Chris@141 257
Chris@147 258 m_phase = (h + n * outputSpacing) % inputSpacing;
Chris@147 259
Chris@147 260 int fill = (h + n * outputSpacing) / inputSpacing;
Chris@147 261
Chris@147 262 m_latency = n;
Chris@147 263
Chris@147 264 m_buffer = vector<double>(fill, 0);
Chris@145 265 m_bufferOrigin = 0;
Chris@141 266
Chris@141 267 #ifdef DEBUG_RESAMPLER
Chris@141 268 std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
Chris@141 269 << ", latency " << m_latency << std::endl;
Chris@141 270 #endif
Chris@137 271 }
Chris@137 272
Chris@137 273 double
Chris@141 274 Resampler::reconstructOne()
Chris@137 275 {
Chris@137 276 Phase &pd = m_phaseData[m_phase];
Chris@141 277 double v = 0.0;
Chris@137 278 int n = pd.filter.size();
Chris@147 279
Chris@148 280 assert(n + m_bufferOrigin <= (int)m_buffer.size());
Chris@147 281
Chris@145 282 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
Chris@145 283 const double *const __restrict__ filt = pd.filter.data();
Chris@147 284
Chris@147 285 // std::cerr << "phase = " << m_phase << ", drop = " << pd.drop << ", buffer for reconstruction starts...";
Chris@147 286 // for (int i = 0; i < 20; ++i) {
Chris@147 287 // if (i % 5 == 0) std::cerr << "\n" << i << " ";
Chris@147 288 // std::cerr << buf[i] << " ";
Chris@147 289 // }
Chris@147 290 // std::cerr << std::endl;
Chris@147 291
Chris@137 292 for (int i = 0; i < n; ++i) {
Chris@145 293 // NB gcc can only vectorize this with -ffast-math
Chris@145 294 v += buf[i] * filt[i];
Chris@137 295 }
Chris@149 296
Chris@145 297 m_bufferOrigin += pd.drop;
Chris@141 298 m_phase = pd.nextPhase;
Chris@137 299 return v;
Chris@137 300 }
Chris@137 301
Chris@137 302 int
Chris@141 303 Resampler::process(const double *src, double *dst, int n)
Chris@137 304 {
Chris@141 305 for (int i = 0; i < n; ++i) {
Chris@141 306 m_buffer.push_back(src[i]);
Chris@137 307 }
Chris@137 308
Chris@141 309 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
Chris@141 310 int outidx = 0;
Chris@139 311
Chris@141 312 #ifdef DEBUG_RESAMPLER
Chris@141 313 std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl;
Chris@141 314 #endif
Chris@141 315
Chris@156 316 double scaleFactor = (double(m_targetRate) / m_gcd) / m_peakToPole;
Chris@142 317
Chris@141 318 while (outidx < maxout &&
Chris@145 319 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
Chris@142 320 dst[outidx] = scaleFactor * reconstructOne();
Chris@141 321 outidx++;
Chris@139 322 }
Chris@145 323
Chris@145 324 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
Chris@145 325 m_bufferOrigin = 0;
Chris@141 326
Chris@141 327 return outidx;
Chris@137 328 }
Chris@141 329
Chris@138 330 std::vector<double>
Chris@160 331 Resampler::process(const double *src, int n)
Chris@160 332 {
Chris@160 333 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
Chris@160 334 std::vector<double> out(maxout, 0.0);
Chris@160 335 int got = process(src, out.data(), n);
Chris@160 336 assert(got <= maxout);
Chris@160 337 if (got < maxout) out.resize(got);
Chris@160 338 return out;
Chris@160 339 }
Chris@160 340
Chris@160 341 std::vector<double>
Chris@138 342 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
Chris@138 343 {
Chris@138 344 Resampler r(sourceRate, targetRate);
Chris@138 345
Chris@138 346 int latency = r.getLatency();
Chris@138 347
Chris@143 348 // latency is the output latency. We need to provide enough
Chris@143 349 // padding input samples at the end of input to guarantee at
Chris@143 350 // *least* the latency's worth of output samples. that is,
Chris@143 351
Chris@148 352 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
Chris@143 353
Chris@143 354 // that means we are providing this much input in total:
Chris@143 355
Chris@143 356 int n1 = n + inputPad;
Chris@143 357
Chris@143 358 // and obtaining this much output in total:
Chris@143 359
Chris@148 360 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
Chris@143 361
Chris@143 362 // in order to return this much output to the user:
Chris@143 363
Chris@148 364 int m = int(ceil((double(n) * targetRate) / sourceRate));
Chris@143 365
Chris@148 366 // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl;
Chris@138 367
Chris@138 368 vector<double> pad(n1 - n, 0.0);
Chris@143 369 vector<double> out(m1 + 1, 0.0);
Chris@138 370
Chris@138 371 int got = r.process(data, out.data(), n);
Chris@138 372 got += r.process(pad.data(), out.data() + got, pad.size());
Chris@138 373
Chris@141 374 #ifdef DEBUG_RESAMPLER
Chris@141 375 std::cerr << "resample: " << n << " in, " << got << " out" << std::endl;
Chris@147 376 std::cerr << "first 10 in:" << std::endl;
Chris@147 377 for (int i = 0; i < 10; ++i) {
Chris@147 378 std::cerr << data[i] << " ";
Chris@147 379 if (i == 5) std::cerr << std::endl;
Chris@141 380 }
Chris@147 381 std::cerr << std::endl;
Chris@141 382 #endif
Chris@141 383
Chris@143 384 int toReturn = got - latency;
Chris@143 385 if (toReturn > m) toReturn = m;
Chris@143 386
Chris@147 387 vector<double> sliced(out.begin() + latency,
Chris@143 388 out.begin() + latency + toReturn);
Chris@147 389
Chris@147 390 #ifdef DEBUG_RESAMPLER
Chris@147 391 std::cerr << "all out (after latency compensation), length " << sliced.size() << ":";
Chris@147 392 for (int i = 0; i < sliced.size(); ++i) {
Chris@147 393 if (i % 5 == 0) std::cerr << std::endl << i << "... ";
Chris@147 394 std::cerr << sliced[i] << " ";
Chris@147 395 }
Chris@147 396 std::cerr << std::endl;
Chris@147 397 #endif
Chris@147 398
Chris@147 399 return sliced;
Chris@138 400 }
Chris@138 401