jamie@1
|
1 /* libxtract feature extraction library
|
jamie@1
|
2 *
|
jamie@1
|
3 * Copyright (C) 2006 Jamie Bullock
|
jamie@1
|
4 *
|
jamie@1
|
5 * This program is free software; you can redistribute it and/or modify
|
jamie@1
|
6 * it under the terms of the GNU General Public License as published by
|
jamie@1
|
7 * the Free Software Foundation; either version 2 of the License, or
|
jamie@1
|
8 * (at your option) any later version.
|
jamie@1
|
9 *
|
jamie@1
|
10 * This program is distributed in the hope that it will be useful,
|
jamie@1
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
jamie@1
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
jamie@1
|
13 * GNU General Public License for more details.
|
jamie@1
|
14 *
|
jamie@1
|
15 * You should have received a copy of the GNU General Public License
|
jamie@1
|
16 * along with this program; if not, write to the Free Software
|
jamie@1
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
jamie@1
|
18 * USA.
|
jamie@1
|
19 */
|
jamie@1
|
20
|
jamie@1
|
21
|
jamie@1
|
22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
|
jamie@1
|
23
|
jamie@1
|
24 #include "xtract/libxtract.h"
|
jamie@1
|
25 #include "math.h"
|
jamie@5
|
26 #include <stdlib.h>
|
jamie@43
|
27 #include <string.h>
|
jamie@1
|
28
|
jamie@43
|
29 int xtract_mean(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
30
|
jamie@1
|
31 int n = N;
|
jamie@1
|
32
|
jamie@1
|
33 while(n--)
|
jamie@42
|
34 *result += data[n];
|
jamie@25
|
35
|
jamie@1
|
36 *result /= N;
|
jamie@38
|
37
|
jamie@38
|
38 return SUCCESS;
|
jamie@1
|
39 }
|
jamie@1
|
40
|
jamie@43
|
41 int xtract_variance(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
42
|
jamie@1
|
43 int n = N;
|
jamie@1
|
44
|
jamie@1
|
45 while(n--)
|
jamie@43
|
46 *result += pow(data[n] - *(float *)argv, 2);
|
jamie@25
|
47
|
jamie@43
|
48 *result = *result / (N - 1);
|
jamie@44
|
49
|
jamie@38
|
50 return SUCCESS;
|
jamie@1
|
51 }
|
jamie@1
|
52
|
jamie@43
|
53 int xtract_standard_deviation(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
54
|
jamie@1
|
55 *result = sqrt(*(float *)argv);
|
jamie@25
|
56
|
jamie@38
|
57 return SUCCESS;
|
jamie@1
|
58 }
|
jamie@1
|
59
|
jamie@43
|
60 int xtract_average_deviation(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
61
|
jamie@1
|
62 int n = N;
|
jamie@44
|
63
|
jamie@1
|
64 while(n--)
|
jamie@42
|
65 *result += fabs(data[n] - *(float *)argv);
|
jamie@25
|
66
|
jamie@1
|
67 *result /= N;
|
jamie@1
|
68
|
jamie@38
|
69 return SUCCESS;
|
jamie@1
|
70 }
|
jamie@1
|
71
|
jamie@43
|
72 int xtract_skewness(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
73
|
jamie@1
|
74 int n = N;
|
jamie@1
|
75
|
jamie@42
|
76 float temp;
|
jamie@25
|
77
|
jamie@42
|
78 while(n--){
|
jamie@42
|
79 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@42
|
80 *result += pow(temp, 3);
|
jamie@42
|
81 }
|
jamie@1
|
82
|
jamie@42
|
83 *result /= N;
|
jamie@44
|
84
|
jamie@38
|
85 return SUCCESS;
|
jamie@1
|
86 }
|
jamie@1
|
87
|
jamie@43
|
88 int xtract_kurtosis(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
89
|
jamie@1
|
90 int n = N;
|
jamie@1
|
91
|
jamie@42
|
92 float temp;
|
jamie@25
|
93
|
jamie@42
|
94 while(n--){
|
jamie@42
|
95 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@42
|
96 *result += pow(temp, 4);
|
jamie@42
|
97 }
|
jamie@25
|
98
|
jamie@42
|
99 *result /= N;
|
jamie@42
|
100 *result -= 3.0f;
|
jamie@44
|
101
|
jamie@38
|
102 return SUCCESS;
|
jamie@1
|
103 }
|
jamie@1
|
104
|
jamie@52
|
105 int xtract_spectral_centroid(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
106
|
jamie@37
|
107 int n = (N >> 1);
|
jamie@11
|
108
|
jamie@43
|
109 const float *freqs, *amps;
|
jamie@43
|
110 float FA = 0.f, A = 0.f;
|
jamie@11
|
111
|
jamie@52
|
112 amps = data;
|
jamie@52
|
113 freqs = data + n;
|
jamie@25
|
114
|
jamie@11
|
115 while(n--){
|
jamie@25
|
116 FA += freqs[n] * amps[n];
|
jamie@25
|
117 A += amps[n];
|
jamie@25
|
118 }
|
jamie@25
|
119
|
jamie@25
|
120 *result = FA / A;
|
jamie@11
|
121
|
jamie@38
|
122 return SUCCESS;
|
jamie@11
|
123 }
|
jamie@11
|
124
|
jamie@52
|
125 int xtract_spectral_mean(const float *data, const int N, const void *argv, float *result){
|
jamie@52
|
126
|
jamie@52
|
127 return xtract_spectral_centroid(data, N, argv, result);
|
jamie@52
|
128
|
jamie@52
|
129 }
|
jamie@52
|
130
|
jamie@52
|
131 int xtract_spectral_variance(const float *data, const int N, const void *argv, float *result){
|
jamie@52
|
132
|
jamie@53
|
133 int m;
|
jamie@53
|
134 float A = 0.f;
|
jamie@53
|
135 const float *freqs, *amps;
|
jamie@52
|
136
|
jamie@53
|
137 m = N >> 1;
|
jamie@52
|
138
|
jamie@53
|
139 amps = data;
|
jamie@53
|
140 freqs = data + m;
|
jamie@52
|
141
|
jamie@53
|
142 while(m--){
|
jamie@53
|
143 A += amps[m];
|
jamie@53
|
144 *result += pow((freqs[m] - *(float *)argv) * amps[m], 2);
|
jamie@53
|
145 }
|
jamie@53
|
146
|
jamie@53
|
147 *result = *result / (A - 1);
|
jamie@52
|
148
|
jamie@52
|
149 return SUCCESS;
|
jamie@52
|
150 }
|
jamie@52
|
151
|
jamie@52
|
152 int xtract_spectral_standard_deviation(const float *data, const int N, const void *argv, float *result){
|
jamie@52
|
153
|
jamie@52
|
154 *result = sqrt(*(float *)argv);
|
jamie@52
|
155
|
jamie@52
|
156 return SUCCESS;
|
jamie@52
|
157 }
|
jamie@52
|
158
|
jamie@52
|
159 int xtract_spectral_average_deviation(const float *data, const int N, const void *argv, float *result){
|
jamie@52
|
160
|
jamie@53
|
161 int m;
|
jamie@53
|
162 float A = 0.f;
|
jamie@53
|
163 const float *freqs, *amps;
|
jamie@52
|
164
|
jamie@53
|
165 m = N >> 1;
|
jamie@52
|
166
|
jamie@53
|
167 amps = data;
|
jamie@53
|
168 freqs = data + m;
|
jamie@52
|
169
|
jamie@53
|
170 while(m--){
|
jamie@53
|
171 A += amps[m];
|
jamie@53
|
172 *result += fabs((amps[m] * freqs[m]) - *(float *)argv);
|
jamie@53
|
173 }
|
jamie@53
|
174
|
jamie@53
|
175 *result /= A;
|
jamie@52
|
176
|
jamie@52
|
177 return SUCCESS;
|
jamie@52
|
178 }
|
jamie@52
|
179
|
jamie@52
|
180 int xtract_spectral_skewness(const float *data, const int N, const void *argv, float *result){
|
jamie@52
|
181
|
jamie@53
|
182 int m;
|
jamie@53
|
183 float temp, A = 0.f;
|
jamie@53
|
184 const float *freqs, *amps;
|
jamie@52
|
185
|
jamie@53
|
186 m = N >> 1;
|
jamie@53
|
187
|
jamie@53
|
188 amps = data;
|
jamie@53
|
189 freqs = data + m;
|
jamie@52
|
190
|
jamie@52
|
191 while(m--){
|
jamie@53
|
192 A += amps[m];
|
jamie@53
|
193 temp = ((amps[m] * freqs[m]) -
|
jamie@52
|
194 ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@52
|
195 *result += pow(temp, 3);
|
jamie@52
|
196 }
|
jamie@52
|
197
|
jamie@53
|
198 *result /= A;
|
jamie@52
|
199
|
jamie@52
|
200 return SUCCESS;
|
jamie@52
|
201 }
|
jamie@52
|
202
|
jamie@52
|
203 int xtract_spectral_kurtosis(const float *data, const int N, const void *argv, float *result){
|
jamie@52
|
204
|
jamie@53
|
205 int m;
|
jamie@53
|
206 float temp, A = 0.f;
|
jamie@53
|
207 const float *freqs, *amps;
|
jamie@52
|
208
|
jamie@53
|
209 m = N >> 1;
|
jamie@53
|
210
|
jamie@53
|
211 amps = data;
|
jamie@53
|
212 freqs = data + m;
|
jamie@52
|
213
|
jamie@52
|
214 while(m--){
|
jamie@53
|
215 A += amps[m];
|
jamie@53
|
216 temp = ((amps[m] * freqs[m]) -
|
jamie@52
|
217 ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@52
|
218 *result += pow(temp, 4);
|
jamie@52
|
219 }
|
jamie@52
|
220
|
jamie@53
|
221 *result /= A;
|
jamie@52
|
222 *result -= 3.0f;
|
jamie@52
|
223
|
jamie@52
|
224 return SUCCESS;
|
jamie@52
|
225 }
|
jamie@52
|
226
|
jamie@43
|
227 int xtract_irregularity_k(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
228
|
jamie@1
|
229 int n,
|
jamie@37
|
230 M = N - 1;
|
jamie@1
|
231
|
jamie@1
|
232 for(n = 1; n < M; n++)
|
jamie@42
|
233 *result += fabs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
|
jamie@1
|
234
|
jamie@38
|
235 return SUCCESS;
|
jamie@1
|
236 }
|
jamie@1
|
237
|
jamie@43
|
238 int xtract_irregularity_j(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
239
|
jamie@1
|
240 int n = N;
|
jamie@1
|
241
|
jamie@37
|
242 float num = 0.f, den = 0.f;
|
jamie@1
|
243
|
jamie@1
|
244 while(n--){
|
jamie@42
|
245 num += pow(data[n] - data[n+1], 2);
|
jamie@42
|
246 den += pow(data[n], 2);
|
jamie@1
|
247 }
|
jamie@25
|
248
|
jamie@1
|
249 *result = num / den;
|
jamie@1
|
250
|
jamie@38
|
251 return SUCCESS;
|
jamie@1
|
252 }
|
jamie@1
|
253
|
jamie@43
|
254 int xtract_tristimulus_1(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
255
|
jamie@1
|
256 int n = N;
|
jamie@1
|
257
|
jamie@42
|
258 float den, p1, temp;
|
jamie@1
|
259
|
jamie@42
|
260 den = p1 = temp = 0.f;
|
jamie@1
|
261
|
jamie@42
|
262 for(n = 0; n < N; n++){
|
jamie@42
|
263 if((temp = data[n])){
|
jamie@42
|
264 den += temp;
|
jamie@42
|
265 if(!p1)
|
jamie@42
|
266 p1 = temp;
|
jamie@42
|
267 }
|
jamie@42
|
268 }
|
jamie@42
|
269
|
jamie@42
|
270 *result = p1 / den;
|
jamie@1
|
271
|
jamie@38
|
272 return SUCCESS;
|
jamie@1
|
273 }
|
jamie@1
|
274
|
jamie@43
|
275 int xtract_tristimulus_2(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
276
|
jamie@1
|
277 int n = N;
|
jamie@1
|
278
|
jamie@42
|
279 float den, p2, p3, p4, temp;
|
jamie@1
|
280
|
jamie@42
|
281 den = p2 = p3 = p4 = temp = 0.f;
|
jamie@1
|
282
|
jamie@42
|
283 for(n = 0; n < N; n++){
|
jamie@42
|
284 if((temp = data[n])){
|
jamie@42
|
285 den += temp;
|
jamie@42
|
286 if(!p2)
|
jamie@42
|
287 p2 = temp;
|
jamie@42
|
288 else if(!p3)
|
jamie@42
|
289 p3 = temp;
|
jamie@42
|
290 else if(!p4)
|
jamie@42
|
291 p4 = temp;
|
jamie@42
|
292 }
|
jamie@42
|
293 }
|
jamie@42
|
294
|
jamie@42
|
295 *result = (p2 + p3 + p4) / den;
|
jamie@25
|
296
|
jamie@38
|
297 return SUCCESS;
|
jamie@1
|
298 }
|
jamie@1
|
299
|
jamie@43
|
300 int xtract_tristimulus_3(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
301
|
jamie@42
|
302 int n = N, count = 0;
|
jamie@1
|
303
|
jamie@42
|
304 float den, num, temp;
|
jamie@1
|
305
|
jamie@42
|
306 den = num = temp = 0.f;
|
jamie@1
|
307
|
jamie@42
|
308 for(n = 0; n < N; n++){
|
jamie@42
|
309 if((temp = data[n])){
|
jamie@42
|
310 den += temp;
|
jamie@42
|
311 if(count >= 5)
|
jamie@42
|
312 num += temp;
|
jamie@42
|
313 count++;
|
jamie@42
|
314 }
|
jamie@42
|
315 }
|
jamie@25
|
316
|
jamie@1
|
317 *result = num / den;
|
jamie@25
|
318
|
jamie@38
|
319 return SUCCESS;
|
jamie@1
|
320 }
|
jamie@1
|
321
|
jamie@43
|
322 int xtract_smoothness(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
323
|
jamie@1
|
324 int n = N;
|
jamie@1
|
325
|
jamie@43
|
326 float *input;
|
jamie@43
|
327
|
jamie@43
|
328 input = (float *)malloc(N * sizeof(float));
|
jamie@43
|
329 input = memcpy(input, data, N * sizeof(float));
|
jamie@43
|
330
|
jamie@43
|
331 if (input[0] <= 0) input[0] = 1;
|
jamie@43
|
332 if (input[1] <= 0) input[1] = 1;
|
jamie@25
|
333
|
jamie@1
|
334 for(n = 2; n < N; n++){
|
jamie@43
|
335 if(input[n] <= 0) input[n] = 1;
|
jamie@43
|
336 *result += abs(20 * log(input[n-1]) - (20 * log(input[n-2]) +
|
jamie@43
|
337 20 * log(input[n-1]) + 20 * log(input[n])) / 3);
|
jamie@25
|
338 }
|
jamie@43
|
339
|
jamie@43
|
340 free(input);
|
jamie@44
|
341
|
jamie@38
|
342 return SUCCESS;
|
jamie@1
|
343 }
|
jamie@1
|
344
|
jamie@43
|
345 int xtract_spread(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
346
|
jamie@1
|
347 int n = N;
|
jamie@1
|
348
|
jamie@48
|
349 float num = 0.f, den = 0.f, temp;
|
jamie@1
|
350
|
jamie@1
|
351 while(n--){
|
jamie@48
|
352 temp = n - *(float *)argv;
|
jamie@48
|
353 num += SQ(temp) * data[n];
|
jamie@25
|
354 den += data[n];
|
jamie@1
|
355 }
|
jamie@1
|
356
|
jamie@1
|
357 *result = sqrt(num / den);
|
jamie@25
|
358
|
jamie@38
|
359 return SUCCESS;
|
jamie@1
|
360 }
|
jamie@1
|
361
|
jamie@43
|
362 int xtract_zcr(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
363
|
jamie@1
|
364 int n = N;
|
jamie@25
|
365
|
jamie@1
|
366 for(n = 1; n < N; n++)
|
jamie@25
|
367 if(data[n] * data[n-1] < 0) (*result)++;
|
jamie@25
|
368
|
jamie@1
|
369 *result /= N;
|
jamie@25
|
370
|
jamie@38
|
371 return SUCCESS;
|
jamie@1
|
372 }
|
jamie@1
|
373
|
jamie@43
|
374 int xtract_rolloff(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
375
|
jamie@1
|
376 int n = N;
|
jamie@55
|
377 float pivot, temp, percentile;
|
jamie@42
|
378
|
jamie@42
|
379 pivot = temp = 0.f;
|
jamie@55
|
380 percentile = ((float *)argv)[1];
|
jamie@25
|
381
|
jamie@1
|
382 while(n--) pivot += data[n];
|
jamie@25
|
383
|
jamie@55
|
384 pivot *= percentile / 100.f;
|
jamie@25
|
385
|
jamie@42
|
386 for(n = 0; temp < pivot; n++)
|
jamie@42
|
387 temp += data[n];
|
jamie@1
|
388
|
jamie@55
|
389 *result = n * ((float *)argv)[0];
|
jamie@55
|
390 /* *result = (n / (float)N) * (((float *)argv)[1] * .5); */
|
jamie@25
|
391
|
jamie@38
|
392 return SUCCESS;
|
jamie@1
|
393 }
|
jamie@1
|
394
|
jamie@43
|
395 int xtract_loudness(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
396
|
jamie@47
|
397 int n = N, rv;
|
jamie@25
|
398
|
jamie@47
|
399 if(n > BARK_BANDS)
|
jamie@47
|
400 rv = BAD_VECTOR_SIZE;
|
jamie@47
|
401 else
|
jamie@47
|
402 rv = SUCCESS;
|
jamie@1
|
403
|
jamie@1
|
404 while(n--)
|
jamie@25
|
405 *result += pow(data[n], 0.23);
|
jamie@38
|
406
|
jamie@47
|
407 return rv;
|
jamie@1
|
408 }
|
jamie@1
|
409
|
jamie@43
|
410 int xtract_flatness(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
411
|
jamie@42
|
412 int n;
|
jamie@1
|
413
|
jamie@44
|
414 double num, den, temp;
|
jamie@25
|
415
|
jamie@44
|
416 den = data[0];
|
jamie@44
|
417 num = (data[0] == 0.f ? 1.f : data[0]);
|
jamie@43
|
418
|
jamie@44
|
419 for(n = 1; n < N; n++){
|
jamie@44
|
420 if((temp = data[n]) != 0.f) {
|
jamie@44
|
421 num *= temp;
|
jamie@44
|
422 den += temp;
|
jamie@25
|
423 }
|
jamie@1
|
424 }
|
jamie@44
|
425
|
jamie@44
|
426 num = pow(num, 1.f / N);
|
jamie@1
|
427 den /= N;
|
jamie@25
|
428
|
jamie@45
|
429 if(num < VERY_SMALL_NUMBER)
|
jamie@45
|
430 num = VERY_SMALL_NUMBER;
|
jamie@44
|
431
|
jamie@45
|
432 if(den < VERY_SMALL_NUMBER)
|
jamie@45
|
433 den = VERY_SMALL_NUMBER;
|
jamie@44
|
434
|
jamie@42
|
435 *result = num / den;
|
jamie@25
|
436
|
jamie@38
|
437 return SUCCESS;
|
jamie@44
|
438
|
jamie@1
|
439 }
|
jamie@1
|
440
|
jamie@43
|
441 int xtract_tonality(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
442
|
jamie@1
|
443 float sfmdb, sfm;
|
jamie@25
|
444
|
jamie@1
|
445 sfm = *(float *)argv;
|
jamie@1
|
446
|
jamie@45
|
447 sfmdb = (sfm > 0 ? ((10 * log10(sfm)) / -60) : 0);
|
jamie@25
|
448
|
jamie@1
|
449 *result = MIN(sfmdb, 1);
|
jamie@25
|
450
|
jamie@38
|
451 return SUCCESS;
|
jamie@1
|
452 }
|
jamie@1
|
453
|
jamie@43
|
454 int xtract_crest(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
455
|
jamie@45
|
456 float max, mean;
|
jamie@45
|
457
|
jamie@45
|
458 max = mean = 0.f;
|
jamie@45
|
459
|
jamie@45
|
460 max = *(float *)argv;
|
jamie@45
|
461 mean = *((float *)argv+1);
|
jamie@45
|
462
|
jamie@45
|
463 *result = max / mean;
|
jamie@45
|
464
|
jamie@45
|
465 return SUCCESS;
|
jamie@25
|
466
|
jamie@1
|
467 }
|
jamie@1
|
468
|
jamie@43
|
469 int xtract_noisiness(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
470
|
jamie@45
|
471 float h, i, p; /*harmonics, inharmonics, partials */
|
jamie@45
|
472
|
jamie@45
|
473 i = p = h = 0.f;
|
jamie@45
|
474
|
jamie@45
|
475 h = *(float *)argv;
|
jamie@45
|
476 p = *((float *)argv+1);
|
jamie@45
|
477
|
jamie@45
|
478 i = p - h;
|
jamie@45
|
479
|
jamie@45
|
480 *result = i / p;
|
jamie@45
|
481
|
jamie@45
|
482 return SUCCESS;
|
jamie@25
|
483
|
jamie@1
|
484 }
|
jamie@2
|
485
|
jamie@43
|
486 int xtract_rms_amplitude(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
487
|
jamie@1
|
488 int n = N;
|
jamie@1
|
489
|
jamie@1
|
490 while(n--) *result += SQ(data[n]);
|
jamie@1
|
491
|
jamie@1
|
492 *result = sqrt(*result / N);
|
jamie@25
|
493
|
jamie@38
|
494 return SUCCESS;
|
jamie@1
|
495 }
|
jamie@1
|
496
|
jamie@52
|
497 int xtract_spectral_inharmonicity(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
498
|
jamie@41
|
499 int n = N >> 1;
|
jamie@43
|
500 float num = 0.f, den = 0.f, fund;
|
jamie@43
|
501 const float *freqs, *amps;
|
jamie@1
|
502
|
jamie@41
|
503 fund = *(float *)argv;
|
jamie@52
|
504 amps = data;
|
jamie@52
|
505 freqs = data + n;
|
jamie@25
|
506
|
jamie@1
|
507 while(n--){
|
jamie@41
|
508 num += abs(freqs[n] - n * fund) * SQ(amps[n]);
|
jamie@41
|
509 den += SQ(amps[n]);
|
jamie@1
|
510 }
|
jamie@1
|
511
|
jamie@41
|
512 *result = (2 * num) / (fund * den);
|
jamie@25
|
513
|
jamie@38
|
514 return SUCCESS;
|
jamie@1
|
515 }
|
jamie@1
|
516
|
jamie@1
|
517
|
jamie@43
|
518 int xtract_power(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
519
|
jamie@38
|
520 return FEATURE_NOT_IMPLEMENTED;
|
jamie@25
|
521
|
jamie@1
|
522 }
|
jamie@1
|
523
|
jamie@43
|
524 int xtract_odd_even_ratio(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
525
|
jamie@43
|
526 int M = (N >> 1), n;
|
jamie@1
|
527
|
jamie@43
|
528 float num = 0.f, den = 0.f, temp, f0;
|
jamie@1
|
529
|
jamie@43
|
530 f0 = *(float *)argv;
|
jamie@44
|
531
|
jamie@43
|
532 for(n = 0; n < M; n++){
|
jamie@43
|
533 if((temp = data[n])){
|
jamie@43
|
534 if(((int)(rintf(temp / f0)) % 2) != 0){
|
jamie@43
|
535 num += data[M + n];
|
jamie@43
|
536 }
|
jamie@43
|
537 else{
|
jamie@43
|
538 den += data[M + n];
|
jamie@43
|
539 }
|
jamie@43
|
540 }
|
jamie@1
|
541 }
|
jamie@1
|
542
|
jamie@1
|
543 *result = num / den;
|
jamie@25
|
544
|
jamie@38
|
545 return SUCCESS;
|
jamie@1
|
546 }
|
jamie@1
|
547
|
jamie@43
|
548 int xtract_sharpness(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
549
|
jamie@48
|
550 int n = N, rv;
|
jamie@48
|
551 float sl, g, temp; /* sl = specific loudness */
|
jamie@48
|
552
|
jamie@48
|
553 sl = g = temp = 0.f;
|
jamie@48
|
554
|
jamie@48
|
555 if(n > BARK_BANDS)
|
jamie@48
|
556 rv = BAD_VECTOR_SIZE;
|
jamie@48
|
557 else
|
jamie@48
|
558 rv = SUCCESS;
|
jamie@48
|
559
|
jamie@48
|
560
|
jamie@48
|
561 while(n--){
|
jamie@48
|
562 sl = pow(data[n], 0.23);
|
jamie@48
|
563 g = (n < 15 ? 1.f : 0.066 * exp(0.171 * n));
|
jamie@49
|
564 temp += n * g * sl;
|
jamie@48
|
565 }
|
jamie@48
|
566
|
jamie@48
|
567 *result = 0.11 * temp / N;
|
jamie@48
|
568
|
jamie@48
|
569 return rv;
|
jamie@25
|
570
|
jamie@1
|
571 }
|
jamie@1
|
572
|
jamie@52
|
573 int xtract_spectral_slope(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
574
|
jamie@48
|
575 const float *freqs, *amps;
|
jamie@48
|
576 float f, a,
|
jamie@48
|
577 F, A, FA, FSQ; /* sums of freqs, amps, freq * amps, freq squared */
|
jamie@48
|
578 int n, M;
|
jamie@48
|
579
|
jamie@48
|
580 F = A = FA = FSQ = 0.f;
|
jamie@48
|
581 n = M = N >> 1;
|
jamie@48
|
582
|
jamie@52
|
583 amps = data;
|
jamie@52
|
584 freqs = data + n;
|
jamie@48
|
585
|
jamie@48
|
586 while(n--){
|
jamie@48
|
587 f = freqs[n];
|
jamie@48
|
588 a = amps[n];
|
jamie@48
|
589 F += f;
|
jamie@48
|
590 A += a;
|
jamie@48
|
591 FA += f * a;
|
jamie@48
|
592 FSQ += f * f;
|
jamie@48
|
593 }
|
jamie@48
|
594
|
jamie@48
|
595 *result = (1.f / A) * (M * FA - F * A) / (M * FSQ - F * F);
|
jamie@48
|
596
|
jamie@48
|
597 return SUCCESS;
|
jamie@25
|
598
|
jamie@1
|
599 }
|
jamie@1
|
600
|
jamie@45
|
601 int xtract_lowest_value(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
602
|
jamie@45
|
603 int n = N;
|
jamie@45
|
604 float temp;
|
jamie@45
|
605
|
jamie@46
|
606 *result = data[--n];
|
jamie@45
|
607
|
jamie@45
|
608 while(n--){
|
jamie@45
|
609 if((temp = data[n]) > *(float *)argv)
|
jamie@45
|
610 *result = MIN(*result, data[n]);
|
jamie@45
|
611 }
|
jamie@45
|
612
|
jamie@45
|
613 return SUCCESS;
|
jamie@45
|
614 }
|
jamie@45
|
615
|
jamie@45
|
616 int xtract_highest_value(const float *data, const int N, const void *argv, float *result){
|
jamie@45
|
617
|
jamie@1
|
618 int n = N;
|
jamie@1
|
619
|
jamie@46
|
620 *result = data[--n];
|
jamie@44
|
621
|
jamie@45
|
622 while(n--)
|
jamie@45
|
623 *result = MAX(*result, data[n]);
|
jamie@44
|
624
|
jamie@38
|
625 return SUCCESS;
|
jamie@1
|
626 }
|
jamie@1
|
627
|
jamie@45
|
628
|
jamie@45
|
629 int xtract_sum(const float *data, const int N, const void *argv, float *result){
|
jamie@45
|
630
|
jamie@45
|
631 int n = N;
|
jamie@45
|
632
|
jamie@45
|
633 while(n--)
|
jamie@45
|
634 *result += *data++;
|
jamie@45
|
635
|
jamie@45
|
636 return SUCCESS;
|
jamie@45
|
637
|
jamie@45
|
638 }
|
jamie@45
|
639
|
jamie@43
|
640 int xtract_hps(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
641
|
jamie@1
|
642 int n = N, M, m, l, peak_index, position1_lwr;
|
jamie@1
|
643 float *coeffs2, *coeffs3, *product, L,
|
jamie@25
|
644 largest1_lwr, peak, ratio1, sr;
|
jamie@1
|
645
|
jamie@25
|
646 sr = *(float*)argv;
|
jamie@25
|
647
|
jamie@1
|
648 coeffs2 = (float *)malloc(N * sizeof(float));
|
jamie@1
|
649 coeffs3 = (float *)malloc(N * sizeof(float));
|
jamie@1
|
650 product = (float *)malloc(N * sizeof(float));
|
jamie@25
|
651
|
jamie@1
|
652 while(n--) coeffs2[n] = coeffs3[n] = 1;
|
jamie@1
|
653
|
jamie@1
|
654 M = N >> 1;
|
jamie@1
|
655 L = N / 3;
|
jamie@1
|
656
|
jamie@1
|
657 while(M--){
|
jamie@25
|
658 m = M << 1;
|
jamie@25
|
659 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
|
jamie@1
|
660
|
jamie@25
|
661 if(M < L){
|
jamie@25
|
662 l = M * 3;
|
jamie@25
|
663 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
|
jamie@25
|
664 }
|
jamie@1
|
665 }
|
jamie@25
|
666
|
jamie@1
|
667 peak_index = peak = 0;
|
jamie@25
|
668
|
jamie@1
|
669 for(n = 1; n < N; n++){
|
jamie@25
|
670 product[n] = data[n] * coeffs2[n] * coeffs3[n];
|
jamie@25
|
671 if(product[n] > peak){
|
jamie@25
|
672 peak_index = n;
|
jamie@25
|
673 peak = product[n];
|
jamie@25
|
674 }
|
jamie@1
|
675 }
|
jamie@1
|
676
|
jamie@1
|
677 largest1_lwr = position1_lwr = 0;
|
jamie@1
|
678
|
jamie@1
|
679 for(n = 0; n < N; n++){
|
jamie@25
|
680 if(data[n] > largest1_lwr && n != peak_index){
|
jamie@25
|
681 largest1_lwr = data[n];
|
jamie@25
|
682 position1_lwr = n;
|
jamie@25
|
683 }
|
jamie@1
|
684 }
|
jamie@1
|
685
|
jamie@1
|
686 ratio1 = data[position1_lwr] / data[peak_index];
|
jamie@1
|
687
|
jamie@1
|
688 if(position1_lwr > peak_index * 0.4 && position1_lwr <
|
jamie@25
|
689 peak_index * 0.6 && ratio1 > 0.1)
|
jamie@25
|
690 peak_index = position1_lwr;
|
jamie@1
|
691
|
jamie@22
|
692 *result = sr / (float)peak_index;
|
jamie@25
|
693
|
jamie@1
|
694 free(coeffs2);
|
jamie@1
|
695 free(coeffs3);
|
jamie@1
|
696 free(product);
|
jamie@25
|
697
|
jamie@38
|
698 return SUCCESS;
|
jamie@1
|
699 }
|
jamie@5
|
700
|
jamie@5
|
701
|
jamie@43
|
702 int xtract_f0(const float *data, const int N, const void *argv, float *result){
|
jamie@5
|
703
|
jamie@25
|
704 int M, sr, tau, n;
|
jamie@43
|
705 size_t bytes;
|
jamie@43
|
706 float f0, err_tau_1, err_tau_x, array_max,
|
jamie@43
|
707 threshold_peak, threshold_centre,
|
jamie@43
|
708 *input;
|
jamie@22
|
709
|
jamie@25
|
710 sr = *(float *)argv;
|
jamie@43
|
711
|
jamie@43
|
712 input = (float *)malloc(bytes = N * sizeof(float));
|
jamie@43
|
713 input = memcpy(input, data, bytes);
|
jamie@25
|
714 /* threshold_peak = *((float *)argv+1);
|
jamie@25
|
715 threshold_centre = *((float *)argv+2);
|
jamie@25
|
716 printf("peak: %.2f\tcentre: %.2f\n", threshold_peak, threshold_centre);*/
|
jamie@25
|
717 /* add temporary dynamic control over thresholds to test clipping effects */
|
jamie@22
|
718
|
jamie@25
|
719 /* FIX: tweak and make into macros */
|
jamie@25
|
720 threshold_peak = .8;
|
jamie@25
|
721 threshold_centre = .3;
|
jamie@25
|
722 M = N >> 1;
|
jamie@25
|
723 err_tau_1 = 0;
|
jamie@25
|
724 array_max = 0;
|
jamie@25
|
725
|
jamie@25
|
726 /* Find the array max */
|
jamie@25
|
727 for(n = 0; n < N; n++){
|
jamie@43
|
728 if (input[n] > array_max)
|
jamie@43
|
729 array_max = input[n];
|
jamie@12
|
730 }
|
jamie@25
|
731
|
jamie@25
|
732 threshold_peak *= array_max;
|
jamie@25
|
733
|
jamie@25
|
734 /* peak clip */
|
jamie@25
|
735 for(n = 0; n < N; n++){
|
jamie@43
|
736 if(input[n] > threshold_peak)
|
jamie@43
|
737 input[n] = threshold_peak;
|
jamie@43
|
738 else if(input[n] < -threshold_peak)
|
jamie@43
|
739 input[n] = -threshold_peak;
|
jamie@25
|
740 }
|
jamie@25
|
741
|
jamie@25
|
742 threshold_centre *= array_max;
|
jamie@25
|
743
|
jamie@25
|
744 /* Centre clip */
|
jamie@25
|
745 for(n = 0; n < N; n++){
|
jamie@43
|
746 if (input[n] < threshold_centre)
|
jamie@43
|
747 input[n] = 0;
|
jamie@25
|
748 else
|
jamie@43
|
749 input[n] -= threshold_centre;
|
jamie@25
|
750 }
|
jamie@25
|
751
|
jamie@25
|
752 /* Estimate fundamental freq */
|
jamie@25
|
753 for (n = 1; n < M; n++)
|
jamie@43
|
754 err_tau_1 = err_tau_1 + fabs(input[n] - input[n+1]);
|
jamie@25
|
755 /* FIX: this doesn't pose too much load if it returns 'early', but if it can't find f0, load can be significant for larger block sizes M^2 iterations! */
|
jamie@25
|
756 for (tau = 2; tau < M; tau++){
|
jamie@25
|
757 err_tau_x = 0;
|
jamie@25
|
758 for (n = 1; n < M; n++){
|
jamie@43
|
759 err_tau_x = err_tau_x + fabs(input[n] - input[n+tau]);
|
jamie@25
|
760 }
|
jamie@25
|
761 if (err_tau_x < err_tau_1) {
|
jamie@25
|
762 f0 = sr / (tau + (err_tau_x / err_tau_1));
|
jamie@25
|
763 *result = f0;
|
jamie@43
|
764 free(input);
|
jamie@25
|
765 return SUCCESS;
|
jamie@25
|
766 }
|
jamie@25
|
767 }
|
jamie@43
|
768 *result = -0;
|
jamie@43
|
769 free(input);
|
jamie@25
|
770 return NO_RESULT;
|
jamie@5
|
771 }
|
jamie@43
|
772
|
jamie@43
|
773 int xtract_failsafe_f0(const float *data, const int N, const void *argv, float *result){
|
jamie@44
|
774
|
jamie@43
|
775 float *magnitudes = NULL, argf[2], *peaks = NULL, return_code;
|
jamie@44
|
776
|
jamie@43
|
777 return_code = xtract_f0(data, N, argv, result);
|
jamie@44
|
778
|
jamie@43
|
779 if(return_code == NO_RESULT){
|
jamie@44
|
780
|
jamie@43
|
781 magnitudes = (float *)malloc(N * sizeof(float));
|
jamie@43
|
782 peaks = (float *)malloc(N * sizeof(float));
|
jamie@54
|
783 xtract_spectrum(data, N, argv, magnitudes);
|
jamie@43
|
784 argf[0] = 10.f;
|
jamie@43
|
785 argf[1] = *(float *)argv;
|
jamie@52
|
786 xtract_peak_spectrum(magnitudes, N, argf, peaks);
|
jamie@43
|
787 argf[0] = 0.f;
|
jamie@45
|
788 xtract_lowest_value(peaks, N >> 1, argf, result);
|
jamie@44
|
789
|
jamie@43
|
790 free(magnitudes);
|
jamie@43
|
791 free(peaks);
|
jamie@43
|
792 }
|
jamie@43
|
793
|
jamie@43
|
794 return SUCCESS;
|
jamie@43
|
795
|
jamie@43
|
796 }
|
jamie@44
|
797
|