jamie@1
|
1 /* libxtract feature extraction library
|
jamie@1
|
2 *
|
jamie@1
|
3 * Copyright (C) 2006 Jamie Bullock
|
jamie@1
|
4 *
|
jamie@1
|
5 * This program is free software; you can redistribute it and/or modify
|
jamie@1
|
6 * it under the terms of the GNU General Public License as published by
|
jamie@1
|
7 * the Free Software Foundation; either version 2 of the License, or
|
jamie@1
|
8 * (at your option) any later version.
|
jamie@1
|
9 *
|
jamie@1
|
10 * This program is distributed in the hope that it will be useful,
|
jamie@1
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
jamie@1
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
jamie@1
|
13 * GNU General Public License for more details.
|
jamie@1
|
14 *
|
jamie@1
|
15 * You should have received a copy of the GNU General Public License
|
jamie@1
|
16 * along with this program; if not, write to the Free Software
|
jamie@1
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
jamie@1
|
18 * USA.
|
jamie@1
|
19 */
|
jamie@1
|
20
|
jamie@1
|
21
|
jamie@1
|
22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
|
jamie@1
|
23
|
jamie@1
|
24 #include "xtract/libxtract.h"
|
jamie@1
|
25 #include "math.h"
|
jamie@5
|
26 #include <stdlib.h>
|
jamie@1
|
27
|
jamie@1
|
28 int xtract_mean(float *data, int N, void *argv, float *result){
|
jamie@25
|
29
|
jamie@1
|
30 int n = N;
|
jamie@1
|
31
|
jamie@1
|
32 while(n--)
|
jamie@25
|
33 *result += *data++;
|
jamie@25
|
34
|
jamie@1
|
35 *result /= N;
|
jamie@1
|
36 }
|
jamie@1
|
37
|
jamie@1
|
38 int xtract_variance(float *data, int N, void *argv, float *result){
|
jamie@25
|
39
|
jamie@1
|
40 int n = N;
|
jamie@1
|
41
|
jamie@1
|
42 while(n--)
|
jamie@25
|
43 *result += *data++ - *(float *)argv;
|
jamie@25
|
44
|
jamie@1
|
45 *result = SQ(*result) / (N - 1);
|
jamie@1
|
46 }
|
jamie@1
|
47
|
jamie@1
|
48 int xtract_standard_deviation(float *data, int N, void *argv, float *result){
|
jamie@25
|
49
|
jamie@1
|
50 *result = sqrt(*(float *)argv);
|
jamie@25
|
51
|
jamie@1
|
52 }
|
jamie@1
|
53
|
jamie@1
|
54 int xtract_average_deviation(float *data, int N, void *argv, float *result){
|
jamie@25
|
55
|
jamie@1
|
56 int n = N;
|
jamie@1
|
57
|
jamie@1
|
58 while(n--)
|
jamie@25
|
59 *result += fabs(*data++ - *(float *)argv);
|
jamie@25
|
60
|
jamie@1
|
61 *result /= N;
|
jamie@1
|
62
|
jamie@1
|
63 }
|
jamie@1
|
64
|
jamie@1
|
65 int xtract_skewness(float *data, int N, void *argv, float *result){
|
jamie@25
|
66
|
jamie@1
|
67 int n = N;
|
jamie@1
|
68
|
jamie@1
|
69 while(n--)
|
jamie@25
|
70 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@25
|
71
|
jamie@1
|
72 *result = pow(*result, 3) / N;
|
jamie@1
|
73
|
jamie@1
|
74 }
|
jamie@1
|
75
|
jamie@1
|
76 int xtract_kurtosis(float *data, int N, void *argv, float *result){
|
jamie@25
|
77
|
jamie@1
|
78 int n = N;
|
jamie@1
|
79
|
jamie@1
|
80 while(n--)
|
jamie@25
|
81 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@25
|
82
|
jamie@1
|
83 *result = pow(*result, 4) / N - 3;
|
jamie@25
|
84
|
jamie@1
|
85 }
|
jamie@1
|
86
|
jamie@11
|
87
|
jamie@11
|
88 int xtract_centroid(float *data, int N, void *argv, float *result){
|
jamie@25
|
89
|
jamie@37
|
90 int n = (N >> 1);
|
jamie@11
|
91
|
jamie@37
|
92 float *freqs, *amps, FA = 0.f, A = 0.f;
|
jamie@11
|
93
|
jamie@25
|
94 freqs = data;
|
jamie@25
|
95 amps = data + (N >> 1);
|
jamie@25
|
96
|
jamie@11
|
97 while(n--){
|
jamie@25
|
98 FA += freqs[n] * amps[n];
|
jamie@25
|
99 A += amps[n];
|
jamie@25
|
100 }
|
jamie@25
|
101
|
jamie@25
|
102 *result = FA / A;
|
jamie@11
|
103
|
jamie@11
|
104 }
|
jamie@11
|
105
|
jamie@1
|
106 int xtract_irregularity_k(float *data, int N, void *argv, float *result){
|
jamie@25
|
107
|
jamie@1
|
108 int n,
|
jamie@37
|
109 M = N - 1;
|
jamie@1
|
110
|
jamie@1
|
111 for(n = 1; n < M; n++)
|
jamie@25
|
112 *result += abs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
|
jamie@1
|
113
|
jamie@1
|
114 }
|
jamie@1
|
115
|
jamie@1
|
116 int xtract_irregularity_j(float *data, int N, void *argv, float *result){
|
jamie@25
|
117
|
jamie@1
|
118 int n = N;
|
jamie@1
|
119
|
jamie@37
|
120 float num = 0.f, den = 0.f;
|
jamie@1
|
121
|
jamie@1
|
122 while(n--){
|
jamie@25
|
123 num += data[n] - data[n+1];
|
jamie@25
|
124 den += data[n] * data[n];
|
jamie@1
|
125 }
|
jamie@25
|
126
|
jamie@1
|
127 *result = num / den;
|
jamie@1
|
128
|
jamie@1
|
129 }
|
jamie@1
|
130
|
jamie@1
|
131 int xtract_tristimulus_1(float *data, int N, void *argv, float *result){
|
jamie@1
|
132
|
jamie@1
|
133 int n = N;
|
jamie@1
|
134
|
jamie@37
|
135 float den = 0.f;
|
jamie@1
|
136
|
jamie@1
|
137 while(n--)
|
jamie@25
|
138 den += data[n];
|
jamie@1
|
139
|
jamie@1
|
140 *result = data[0] / den;
|
jamie@1
|
141
|
jamie@1
|
142 }
|
jamie@1
|
143
|
jamie@1
|
144 int xtract_tristimulus_2(float *data, int N, void *argv, float *result){
|
jamie@25
|
145
|
jamie@1
|
146 int n = N;
|
jamie@1
|
147
|
jamie@37
|
148 float den = 0.f;
|
jamie@1
|
149
|
jamie@1
|
150 while(n--)
|
jamie@25
|
151 den += data[n];
|
jamie@1
|
152
|
jamie@1
|
153 *result = (data[1] + data[2] + data[3]) / den;
|
jamie@25
|
154
|
jamie@1
|
155 }
|
jamie@1
|
156
|
jamie@1
|
157 int xtract_tristimulus_3(float *data, int N, void *argv, float *result){
|
jamie@25
|
158
|
jamie@1
|
159 int n = N;
|
jamie@1
|
160
|
jamie@37
|
161 float den = 0.f, num = 0.f;
|
jamie@1
|
162
|
jamie@1
|
163 while(n--)
|
jamie@25
|
164 den += data[n];
|
jamie@1
|
165
|
jamie@1
|
166 num = den - data[0] + data[1] + data[2] + data[3];
|
jamie@25
|
167
|
jamie@1
|
168 *result = num / den;
|
jamie@25
|
169
|
jamie@1
|
170 }
|
jamie@1
|
171
|
jamie@1
|
172 int xtract_smoothness(float *data, int N, void *argv, float *result){
|
jamie@25
|
173
|
jamie@1
|
174 int n = N;
|
jamie@1
|
175
|
jamie@1
|
176 if (data[0] <= 0) data[0] = 1;
|
jamie@1
|
177 if (data[1] <= 0) data[1] = 1;
|
jamie@25
|
178
|
jamie@1
|
179 for(n = 2; n < N; n++){
|
jamie@25
|
180 if(data[n] <= 0) data[n] = 1;
|
jamie@25
|
181 *result += abs(20 * log(data[n-1]) - (20 * log(data[n-2]) +
|
jamie@25
|
182 20 * log(data[n-1]) + 20 * log(data[n])) / 3);
|
jamie@25
|
183 }
|
jamie@1
|
184 }
|
jamie@1
|
185
|
jamie@1
|
186 int xtract_spread(float *data, int N, void *argv, float *result){
|
jamie@1
|
187
|
jamie@1
|
188 int n = N;
|
jamie@1
|
189
|
jamie@37
|
190 float num = 0.f, den = 0.f, tmp;
|
jamie@1
|
191
|
jamie@1
|
192 while(n--){
|
jamie@25
|
193 tmp = n - *(float *)argv;
|
jamie@25
|
194 num += SQ(tmp) * data[n];
|
jamie@25
|
195 den += data[n];
|
jamie@1
|
196 }
|
jamie@1
|
197
|
jamie@1
|
198 *result = sqrt(num / den);
|
jamie@25
|
199
|
jamie@1
|
200 }
|
jamie@1
|
201
|
jamie@1
|
202 int xtract_zcr(float *data, int N, void *argv, float *result){
|
jamie@1
|
203
|
jamie@1
|
204 int n = N;
|
jamie@25
|
205
|
jamie@1
|
206 for(n = 1; n < N; n++)
|
jamie@25
|
207 if(data[n] * data[n-1] < 0) (*result)++;
|
jamie@25
|
208
|
jamie@1
|
209 *result /= N;
|
jamie@25
|
210
|
jamie@1
|
211 }
|
jamie@1
|
212
|
jamie@1
|
213 int xtract_rolloff(float *data, int N, void *argv, float *result){
|
jamie@1
|
214
|
jamie@1
|
215 int n = N;
|
jamie@37
|
216 float pivot = 0.f, temp = 0.f;
|
jamie@25
|
217
|
jamie@1
|
218 while(n--) pivot += data[n];
|
jamie@25
|
219
|
jamie@1
|
220 pivot *= *(float *)argv;
|
jamie@25
|
221
|
jamie@1
|
222 for(n = 0; temp < pivot; temp += data[n++]);
|
jamie@1
|
223
|
jamie@1
|
224 *result = n;
|
jamie@25
|
225
|
jamie@1
|
226 }
|
jamie@1
|
227
|
jamie@1
|
228 int xtract_loudness(float *data, int N, void *argv, float *result){
|
jamie@25
|
229
|
jamie@1
|
230 int n = BARK_BANDS;
|
jamie@25
|
231
|
jamie@1
|
232 /*if(n != N) return BAD_VECTOR_SIZE; */
|
jamie@1
|
233
|
jamie@1
|
234 while(n--)
|
jamie@25
|
235 *result += pow(data[n], 0.23);
|
jamie@1
|
236 }
|
jamie@1
|
237
|
jamie@1
|
238
|
jamie@1
|
239 int xtract_flatness(float *data, int N, void *argv, float *result){
|
jamie@1
|
240
|
jamie@1
|
241 int n = N;
|
jamie@1
|
242
|
jamie@37
|
243 float num = 0.f, den = 0.f;
|
jamie@25
|
244
|
jamie@1
|
245 while(n--){
|
jamie@25
|
246 if(data[n] !=0){
|
jamie@25
|
247 num *= data[n];
|
jamie@25
|
248 den += data[n];
|
jamie@25
|
249 }
|
jamie@1
|
250 }
|
jamie@1
|
251
|
jamie@1
|
252 num = pow(num, 1 / N);
|
jamie@1
|
253 den /= N;
|
jamie@25
|
254
|
jamie@1
|
255 *result = 10 * log10(num / den);
|
jamie@25
|
256
|
jamie@1
|
257 }
|
jamie@1
|
258
|
jamie@1
|
259 int xtract_tonality(float *data, int N, void *argv, float *result){
|
jamie@25
|
260
|
jamie@1
|
261 float sfmdb, sfm;
|
jamie@25
|
262
|
jamie@1
|
263 sfm = *(float *)argv;
|
jamie@1
|
264
|
jamie@1
|
265 sfmdb = (sfm > 0 ? (10 * log10(sfm)) / -60 : 0);
|
jamie@25
|
266
|
jamie@1
|
267 *result = MIN(sfmdb, 1);
|
jamie@25
|
268
|
jamie@1
|
269 }
|
jamie@1
|
270
|
jamie@1
|
271 int xtract_crest(float *data, int N, void *argv, float *result){
|
jamie@25
|
272
|
jamie@25
|
273 NOT_IMPLEMENTED;
|
jamie@25
|
274
|
jamie@1
|
275 }
|
jamie@1
|
276
|
jamie@1
|
277 int xtract_noisiness(float *data, int N, void *argv, float *result){
|
jamie@25
|
278
|
jamie@25
|
279 NOT_IMPLEMENTED;
|
jamie@25
|
280
|
jamie@1
|
281 }
|
jamie@2
|
282
|
jamie@1
|
283 int xtract_rms_amplitude(float *data, int N, void *argv, float *result){
|
jamie@1
|
284
|
jamie@1
|
285 int n = N;
|
jamie@1
|
286
|
jamie@1
|
287 while(n--) *result += SQ(data[n]);
|
jamie@1
|
288
|
jamie@1
|
289 *result = sqrt(*result / N);
|
jamie@25
|
290
|
jamie@1
|
291 }
|
jamie@1
|
292
|
jamie@1
|
293 int xtract_inharmonicity(float *data, int N, void *argv, float *result){
|
jamie@1
|
294
|
jamie@1
|
295 int n = N;
|
jamie@37
|
296 float num = 0.f, den = 0.f,
|
jamie@25
|
297 *fund, *freq;
|
jamie@1
|
298
|
jamie@1
|
299 fund = *(float **)argv;
|
jamie@1
|
300 freq = fund+1;
|
jamie@25
|
301
|
jamie@1
|
302 while(n--){
|
jamie@25
|
303 num += abs(freq[n] - n * *fund) * SQ(data[n]);
|
jamie@25
|
304 den += SQ(data[n]);
|
jamie@1
|
305 }
|
jamie@1
|
306
|
jamie@1
|
307 *result = (2 * num) / (*fund * den);
|
jamie@25
|
308
|
jamie@1
|
309 }
|
jamie@1
|
310
|
jamie@1
|
311
|
jamie@1
|
312 int xtract_power(float *data, int N, void *argv, float *result){
|
jamie@1
|
313
|
jamie@25
|
314 NOT_IMPLEMENTED;
|
jamie@25
|
315
|
jamie@1
|
316 }
|
jamie@1
|
317
|
jamie@1
|
318 int xtract_odd_even_ratio(float *data, int N, void *argv, float *result){
|
jamie@1
|
319
|
jamie@1
|
320 int n = N >> 1, j, k;
|
jamie@1
|
321
|
jamie@37
|
322 float num = 0.f, den = 0.f;
|
jamie@1
|
323
|
jamie@1
|
324 while(n--){
|
jamie@25
|
325 j = n * 2;
|
jamie@25
|
326 k = j - 1;
|
jamie@25
|
327 num += data[k];
|
jamie@25
|
328 den += data[j];
|
jamie@1
|
329 }
|
jamie@1
|
330
|
jamie@1
|
331 *result = num / den;
|
jamie@25
|
332
|
jamie@1
|
333 }
|
jamie@1
|
334
|
jamie@1
|
335 int xtract_sharpness(float *data, int N, void *argv, float *result){
|
jamie@1
|
336
|
jamie@1
|
337 NOT_IMPLEMENTED;
|
jamie@25
|
338
|
jamie@1
|
339 }
|
jamie@1
|
340
|
jamie@1
|
341 int xtract_slope(float *data, int N, void *argv, float *result){
|
jamie@1
|
342
|
jamie@1
|
343 NOT_IMPLEMENTED;
|
jamie@25
|
344
|
jamie@1
|
345 }
|
jamie@1
|
346
|
jamie@5
|
347 int xtract_lowest_match(float *data, int N, void *argv, float *result){
|
jamie@25
|
348
|
jamie@22
|
349 float lowest_match = SR_LIMIT;
|
jamie@1
|
350 int n = N;
|
jamie@1
|
351
|
jamie@1
|
352 while(n--) {
|
jamie@25
|
353 if(data[n] > 0)
|
jamie@25
|
354 lowest_match = MIN(lowest_match, data[n]);
|
jamie@1
|
355 }
|
jamie@1
|
356
|
jamie@22
|
357 *result = (lowest_match == SR_LIMIT ? 0 : lowest_match);
|
jamie@25
|
358
|
jamie@1
|
359 }
|
jamie@1
|
360
|
jamie@1
|
361 int xtract_hps(float *data, int N, void *argv, float *result){
|
jamie@1
|
362
|
jamie@1
|
363 int n = N, M, m, l, peak_index, position1_lwr;
|
jamie@1
|
364 float *coeffs2, *coeffs3, *product, L,
|
jamie@25
|
365 largest1_lwr, peak, ratio1, sr;
|
jamie@1
|
366
|
jamie@25
|
367 sr = *(float*)argv;
|
jamie@25
|
368
|
jamie@1
|
369 coeffs2 = (float *)malloc(N * sizeof(float));
|
jamie@1
|
370 coeffs3 = (float *)malloc(N * sizeof(float));
|
jamie@1
|
371 product = (float *)malloc(N * sizeof(float));
|
jamie@25
|
372
|
jamie@1
|
373 while(n--) coeffs2[n] = coeffs3[n] = 1;
|
jamie@1
|
374
|
jamie@1
|
375 M = N >> 1;
|
jamie@1
|
376 L = N / 3;
|
jamie@1
|
377
|
jamie@1
|
378 while(M--){
|
jamie@25
|
379 m = M << 1;
|
jamie@25
|
380 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
|
jamie@1
|
381
|
jamie@25
|
382 if(M < L){
|
jamie@25
|
383 l = M * 3;
|
jamie@25
|
384 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
|
jamie@25
|
385 }
|
jamie@1
|
386 }
|
jamie@25
|
387
|
jamie@1
|
388 peak_index = peak = 0;
|
jamie@25
|
389
|
jamie@1
|
390 for(n = 1; n < N; n++){
|
jamie@25
|
391 product[n] = data[n] * coeffs2[n] * coeffs3[n];
|
jamie@25
|
392 if(product[n] > peak){
|
jamie@25
|
393 peak_index = n;
|
jamie@25
|
394 peak = product[n];
|
jamie@25
|
395 }
|
jamie@1
|
396 }
|
jamie@1
|
397
|
jamie@1
|
398 largest1_lwr = position1_lwr = 0;
|
jamie@1
|
399
|
jamie@1
|
400 for(n = 0; n < N; n++){
|
jamie@25
|
401 if(data[n] > largest1_lwr && n != peak_index){
|
jamie@25
|
402 largest1_lwr = data[n];
|
jamie@25
|
403 position1_lwr = n;
|
jamie@25
|
404 }
|
jamie@1
|
405 }
|
jamie@1
|
406
|
jamie@1
|
407 ratio1 = data[position1_lwr] / data[peak_index];
|
jamie@1
|
408
|
jamie@1
|
409 if(position1_lwr > peak_index * 0.4 && position1_lwr <
|
jamie@25
|
410 peak_index * 0.6 && ratio1 > 0.1)
|
jamie@25
|
411 peak_index = position1_lwr;
|
jamie@1
|
412
|
jamie@22
|
413 *result = sr / (float)peak_index;
|
jamie@25
|
414
|
jamie@1
|
415 free(coeffs2);
|
jamie@1
|
416 free(coeffs3);
|
jamie@1
|
417 free(product);
|
jamie@25
|
418
|
jamie@1
|
419 }
|
jamie@5
|
420
|
jamie@5
|
421
|
jamie@5
|
422 int xtract_f0(float *data, int N, void *argv, float *result){
|
jamie@5
|
423
|
jamie@25
|
424 int M, sr, tau, n;
|
jamie@25
|
425 float f0, err_tau_1, err_tau_x, array_max, threshold_peak, threshold_centre;
|
jamie@22
|
426
|
jamie@25
|
427 sr = *(float *)argv;
|
jamie@25
|
428 /* threshold_peak = *((float *)argv+1);
|
jamie@25
|
429 threshold_centre = *((float *)argv+2);
|
jamie@25
|
430 printf("peak: %.2f\tcentre: %.2f\n", threshold_peak, threshold_centre);*/
|
jamie@25
|
431 /* add temporary dynamic control over thresholds to test clipping effects */
|
jamie@22
|
432
|
jamie@25
|
433 /* FIX: tweak and make into macros */
|
jamie@25
|
434 threshold_peak = .8;
|
jamie@25
|
435 threshold_centre = .3;
|
jamie@25
|
436 M = N >> 1;
|
jamie@25
|
437 err_tau_1 = 0;
|
jamie@25
|
438 array_max = 0;
|
jamie@25
|
439
|
jamie@25
|
440 /* Find the array max */
|
jamie@25
|
441 for(n = 0; n < N; n++){
|
jamie@25
|
442 if (data[n] > array_max)
|
jamie@25
|
443 array_max = data[n];
|
jamie@12
|
444 }
|
jamie@25
|
445
|
jamie@25
|
446 threshold_peak *= array_max;
|
jamie@25
|
447
|
jamie@25
|
448 /* peak clip */
|
jamie@25
|
449 for(n = 0; n < N; n++){
|
jamie@25
|
450 if(data[n] > threshold_peak)
|
jamie@25
|
451 data[n] = threshold_peak;
|
jamie@25
|
452 else if(data[n] < -threshold_peak)
|
jamie@25
|
453 data[n] = -threshold_peak;
|
jamie@25
|
454 }
|
jamie@25
|
455
|
jamie@25
|
456 threshold_centre *= array_max;
|
jamie@25
|
457
|
jamie@25
|
458 /* Centre clip */
|
jamie@25
|
459 for(n = 0; n < N; n++){
|
jamie@25
|
460 if (data[n] < threshold_centre)
|
jamie@25
|
461 data[n] = 0;
|
jamie@25
|
462 else
|
jamie@25
|
463 data[n] -= threshold_centre;
|
jamie@25
|
464 }
|
jamie@25
|
465
|
jamie@25
|
466 /* Estimate fundamental freq */
|
jamie@25
|
467 for (n = 1; n < M; n++)
|
jamie@25
|
468 err_tau_1 = err_tau_1 + fabs(data[n] - data[n+1]);
|
jamie@25
|
469 /* FIX: this doesn't pose too much load if it returns 'early', but if it can't find f0, load can be significant for larger block sizes M^2 iterations! */
|
jamie@25
|
470 for (tau = 2; tau < M; tau++){
|
jamie@25
|
471 err_tau_x = 0;
|
jamie@25
|
472 for (n = 1; n < M; n++){
|
jamie@25
|
473 err_tau_x = err_tau_x + fabs(data[n] - data[n+tau]);
|
jamie@25
|
474 }
|
jamie@25
|
475 if (err_tau_x < err_tau_1) {
|
jamie@25
|
476 f0 = sr / (tau + (err_tau_x / err_tau_1));
|
jamie@25
|
477 *result = f0;
|
jamie@25
|
478 return SUCCESS;
|
jamie@25
|
479 }
|
jamie@25
|
480 }
|
jamie@25
|
481 return NO_RESULT;
|
jamie@5
|
482 }
|