annotate src/scalar.c @ 37:b699a37d27c4

Fixed typos in scalar.c (thanks to Chris Cannam) and added -Wall to CFLAGS so this doesn't happen again!
author Jamie Bullock <jamie@postlude.co.uk>
date Sat, 09 Dec 2006 11:42:13 +0000
parents 82c7b834a055
children 0ea4d6430cfc
rev   line source
jamie@1 1 /* libxtract feature extraction library
jamie@1 2 *
jamie@1 3 * Copyright (C) 2006 Jamie Bullock
jamie@1 4 *
jamie@1 5 * This program is free software; you can redistribute it and/or modify
jamie@1 6 * it under the terms of the GNU General Public License as published by
jamie@1 7 * the Free Software Foundation; either version 2 of the License, or
jamie@1 8 * (at your option) any later version.
jamie@1 9 *
jamie@1 10 * This program is distributed in the hope that it will be useful,
jamie@1 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
jamie@1 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
jamie@1 13 * GNU General Public License for more details.
jamie@1 14 *
jamie@1 15 * You should have received a copy of the GNU General Public License
jamie@1 16 * along with this program; if not, write to the Free Software
jamie@1 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
jamie@1 18 * USA.
jamie@1 19 */
jamie@1 20
jamie@1 21
jamie@1 22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
jamie@1 23
jamie@1 24 #include "xtract/libxtract.h"
jamie@1 25 #include "math.h"
jamie@5 26 #include <stdlib.h>
jamie@1 27
jamie@1 28 int xtract_mean(float *data, int N, void *argv, float *result){
jamie@25 29
jamie@1 30 int n = N;
jamie@1 31
jamie@1 32 while(n--)
jamie@25 33 *result += *data++;
jamie@25 34
jamie@1 35 *result /= N;
jamie@1 36 }
jamie@1 37
jamie@1 38 int xtract_variance(float *data, int N, void *argv, float *result){
jamie@25 39
jamie@1 40 int n = N;
jamie@1 41
jamie@1 42 while(n--)
jamie@25 43 *result += *data++ - *(float *)argv;
jamie@25 44
jamie@1 45 *result = SQ(*result) / (N - 1);
jamie@1 46 }
jamie@1 47
jamie@1 48 int xtract_standard_deviation(float *data, int N, void *argv, float *result){
jamie@25 49
jamie@1 50 *result = sqrt(*(float *)argv);
jamie@25 51
jamie@1 52 }
jamie@1 53
jamie@1 54 int xtract_average_deviation(float *data, int N, void *argv, float *result){
jamie@25 55
jamie@1 56 int n = N;
jamie@1 57
jamie@1 58 while(n--)
jamie@25 59 *result += fabs(*data++ - *(float *)argv);
jamie@25 60
jamie@1 61 *result /= N;
jamie@1 62
jamie@1 63 }
jamie@1 64
jamie@1 65 int xtract_skewness(float *data, int N, void *argv, float *result){
jamie@25 66
jamie@1 67 int n = N;
jamie@1 68
jamie@1 69 while(n--)
jamie@25 70 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@25 71
jamie@1 72 *result = pow(*result, 3) / N;
jamie@1 73
jamie@1 74 }
jamie@1 75
jamie@1 76 int xtract_kurtosis(float *data, int N, void *argv, float *result){
jamie@25 77
jamie@1 78 int n = N;
jamie@1 79
jamie@1 80 while(n--)
jamie@25 81 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@25 82
jamie@1 83 *result = pow(*result, 4) / N - 3;
jamie@25 84
jamie@1 85 }
jamie@1 86
jamie@11 87
jamie@11 88 int xtract_centroid(float *data, int N, void *argv, float *result){
jamie@25 89
jamie@37 90 int n = (N >> 1);
jamie@11 91
jamie@37 92 float *freqs, *amps, FA = 0.f, A = 0.f;
jamie@11 93
jamie@25 94 freqs = data;
jamie@25 95 amps = data + (N >> 1);
jamie@25 96
jamie@11 97 while(n--){
jamie@25 98 FA += freqs[n] * amps[n];
jamie@25 99 A += amps[n];
jamie@25 100 }
jamie@25 101
jamie@25 102 *result = FA / A;
jamie@11 103
jamie@11 104 }
jamie@11 105
jamie@1 106 int xtract_irregularity_k(float *data, int N, void *argv, float *result){
jamie@25 107
jamie@1 108 int n,
jamie@37 109 M = N - 1;
jamie@1 110
jamie@1 111 for(n = 1; n < M; n++)
jamie@25 112 *result += abs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
jamie@1 113
jamie@1 114 }
jamie@1 115
jamie@1 116 int xtract_irregularity_j(float *data, int N, void *argv, float *result){
jamie@25 117
jamie@1 118 int n = N;
jamie@1 119
jamie@37 120 float num = 0.f, den = 0.f;
jamie@1 121
jamie@1 122 while(n--){
jamie@25 123 num += data[n] - data[n+1];
jamie@25 124 den += data[n] * data[n];
jamie@1 125 }
jamie@25 126
jamie@1 127 *result = num / den;
jamie@1 128
jamie@1 129 }
jamie@1 130
jamie@1 131 int xtract_tristimulus_1(float *data, int N, void *argv, float *result){
jamie@1 132
jamie@1 133 int n = N;
jamie@1 134
jamie@37 135 float den = 0.f;
jamie@1 136
jamie@1 137 while(n--)
jamie@25 138 den += data[n];
jamie@1 139
jamie@1 140 *result = data[0] / den;
jamie@1 141
jamie@1 142 }
jamie@1 143
jamie@1 144 int xtract_tristimulus_2(float *data, int N, void *argv, float *result){
jamie@25 145
jamie@1 146 int n = N;
jamie@1 147
jamie@37 148 float den = 0.f;
jamie@1 149
jamie@1 150 while(n--)
jamie@25 151 den += data[n];
jamie@1 152
jamie@1 153 *result = (data[1] + data[2] + data[3]) / den;
jamie@25 154
jamie@1 155 }
jamie@1 156
jamie@1 157 int xtract_tristimulus_3(float *data, int N, void *argv, float *result){
jamie@25 158
jamie@1 159 int n = N;
jamie@1 160
jamie@37 161 float den = 0.f, num = 0.f;
jamie@1 162
jamie@1 163 while(n--)
jamie@25 164 den += data[n];
jamie@1 165
jamie@1 166 num = den - data[0] + data[1] + data[2] + data[3];
jamie@25 167
jamie@1 168 *result = num / den;
jamie@25 169
jamie@1 170 }
jamie@1 171
jamie@1 172 int xtract_smoothness(float *data, int N, void *argv, float *result){
jamie@25 173
jamie@1 174 int n = N;
jamie@1 175
jamie@1 176 if (data[0] <= 0) data[0] = 1;
jamie@1 177 if (data[1] <= 0) data[1] = 1;
jamie@25 178
jamie@1 179 for(n = 2; n < N; n++){
jamie@25 180 if(data[n] <= 0) data[n] = 1;
jamie@25 181 *result += abs(20 * log(data[n-1]) - (20 * log(data[n-2]) +
jamie@25 182 20 * log(data[n-1]) + 20 * log(data[n])) / 3);
jamie@25 183 }
jamie@1 184 }
jamie@1 185
jamie@1 186 int xtract_spread(float *data, int N, void *argv, float *result){
jamie@1 187
jamie@1 188 int n = N;
jamie@1 189
jamie@37 190 float num = 0.f, den = 0.f, tmp;
jamie@1 191
jamie@1 192 while(n--){
jamie@25 193 tmp = n - *(float *)argv;
jamie@25 194 num += SQ(tmp) * data[n];
jamie@25 195 den += data[n];
jamie@1 196 }
jamie@1 197
jamie@1 198 *result = sqrt(num / den);
jamie@25 199
jamie@1 200 }
jamie@1 201
jamie@1 202 int xtract_zcr(float *data, int N, void *argv, float *result){
jamie@1 203
jamie@1 204 int n = N;
jamie@25 205
jamie@1 206 for(n = 1; n < N; n++)
jamie@25 207 if(data[n] * data[n-1] < 0) (*result)++;
jamie@25 208
jamie@1 209 *result /= N;
jamie@25 210
jamie@1 211 }
jamie@1 212
jamie@1 213 int xtract_rolloff(float *data, int N, void *argv, float *result){
jamie@1 214
jamie@1 215 int n = N;
jamie@37 216 float pivot = 0.f, temp = 0.f;
jamie@25 217
jamie@1 218 while(n--) pivot += data[n];
jamie@25 219
jamie@1 220 pivot *= *(float *)argv;
jamie@25 221
jamie@1 222 for(n = 0; temp < pivot; temp += data[n++]);
jamie@1 223
jamie@1 224 *result = n;
jamie@25 225
jamie@1 226 }
jamie@1 227
jamie@1 228 int xtract_loudness(float *data, int N, void *argv, float *result){
jamie@25 229
jamie@1 230 int n = BARK_BANDS;
jamie@25 231
jamie@1 232 /*if(n != N) return BAD_VECTOR_SIZE; */
jamie@1 233
jamie@1 234 while(n--)
jamie@25 235 *result += pow(data[n], 0.23);
jamie@1 236 }
jamie@1 237
jamie@1 238
jamie@1 239 int xtract_flatness(float *data, int N, void *argv, float *result){
jamie@1 240
jamie@1 241 int n = N;
jamie@1 242
jamie@37 243 float num = 0.f, den = 0.f;
jamie@25 244
jamie@1 245 while(n--){
jamie@25 246 if(data[n] !=0){
jamie@25 247 num *= data[n];
jamie@25 248 den += data[n];
jamie@25 249 }
jamie@1 250 }
jamie@1 251
jamie@1 252 num = pow(num, 1 / N);
jamie@1 253 den /= N;
jamie@25 254
jamie@1 255 *result = 10 * log10(num / den);
jamie@25 256
jamie@1 257 }
jamie@1 258
jamie@1 259 int xtract_tonality(float *data, int N, void *argv, float *result){
jamie@25 260
jamie@1 261 float sfmdb, sfm;
jamie@25 262
jamie@1 263 sfm = *(float *)argv;
jamie@1 264
jamie@1 265 sfmdb = (sfm > 0 ? (10 * log10(sfm)) / -60 : 0);
jamie@25 266
jamie@1 267 *result = MIN(sfmdb, 1);
jamie@25 268
jamie@1 269 }
jamie@1 270
jamie@1 271 int xtract_crest(float *data, int N, void *argv, float *result){
jamie@25 272
jamie@25 273 NOT_IMPLEMENTED;
jamie@25 274
jamie@1 275 }
jamie@1 276
jamie@1 277 int xtract_noisiness(float *data, int N, void *argv, float *result){
jamie@25 278
jamie@25 279 NOT_IMPLEMENTED;
jamie@25 280
jamie@1 281 }
jamie@2 282
jamie@1 283 int xtract_rms_amplitude(float *data, int N, void *argv, float *result){
jamie@1 284
jamie@1 285 int n = N;
jamie@1 286
jamie@1 287 while(n--) *result += SQ(data[n]);
jamie@1 288
jamie@1 289 *result = sqrt(*result / N);
jamie@25 290
jamie@1 291 }
jamie@1 292
jamie@1 293 int xtract_inharmonicity(float *data, int N, void *argv, float *result){
jamie@1 294
jamie@1 295 int n = N;
jamie@37 296 float num = 0.f, den = 0.f,
jamie@25 297 *fund, *freq;
jamie@1 298
jamie@1 299 fund = *(float **)argv;
jamie@1 300 freq = fund+1;
jamie@25 301
jamie@1 302 while(n--){
jamie@25 303 num += abs(freq[n] - n * *fund) * SQ(data[n]);
jamie@25 304 den += SQ(data[n]);
jamie@1 305 }
jamie@1 306
jamie@1 307 *result = (2 * num) / (*fund * den);
jamie@25 308
jamie@1 309 }
jamie@1 310
jamie@1 311
jamie@1 312 int xtract_power(float *data, int N, void *argv, float *result){
jamie@1 313
jamie@25 314 NOT_IMPLEMENTED;
jamie@25 315
jamie@1 316 }
jamie@1 317
jamie@1 318 int xtract_odd_even_ratio(float *data, int N, void *argv, float *result){
jamie@1 319
jamie@1 320 int n = N >> 1, j, k;
jamie@1 321
jamie@37 322 float num = 0.f, den = 0.f;
jamie@1 323
jamie@1 324 while(n--){
jamie@25 325 j = n * 2;
jamie@25 326 k = j - 1;
jamie@25 327 num += data[k];
jamie@25 328 den += data[j];
jamie@1 329 }
jamie@1 330
jamie@1 331 *result = num / den;
jamie@25 332
jamie@1 333 }
jamie@1 334
jamie@1 335 int xtract_sharpness(float *data, int N, void *argv, float *result){
jamie@1 336
jamie@1 337 NOT_IMPLEMENTED;
jamie@25 338
jamie@1 339 }
jamie@1 340
jamie@1 341 int xtract_slope(float *data, int N, void *argv, float *result){
jamie@1 342
jamie@1 343 NOT_IMPLEMENTED;
jamie@25 344
jamie@1 345 }
jamie@1 346
jamie@5 347 int xtract_lowest_match(float *data, int N, void *argv, float *result){
jamie@25 348
jamie@22 349 float lowest_match = SR_LIMIT;
jamie@1 350 int n = N;
jamie@1 351
jamie@1 352 while(n--) {
jamie@25 353 if(data[n] > 0)
jamie@25 354 lowest_match = MIN(lowest_match, data[n]);
jamie@1 355 }
jamie@1 356
jamie@22 357 *result = (lowest_match == SR_LIMIT ? 0 : lowest_match);
jamie@25 358
jamie@1 359 }
jamie@1 360
jamie@1 361 int xtract_hps(float *data, int N, void *argv, float *result){
jamie@1 362
jamie@1 363 int n = N, M, m, l, peak_index, position1_lwr;
jamie@1 364 float *coeffs2, *coeffs3, *product, L,
jamie@25 365 largest1_lwr, peak, ratio1, sr;
jamie@1 366
jamie@25 367 sr = *(float*)argv;
jamie@25 368
jamie@1 369 coeffs2 = (float *)malloc(N * sizeof(float));
jamie@1 370 coeffs3 = (float *)malloc(N * sizeof(float));
jamie@1 371 product = (float *)malloc(N * sizeof(float));
jamie@25 372
jamie@1 373 while(n--) coeffs2[n] = coeffs3[n] = 1;
jamie@1 374
jamie@1 375 M = N >> 1;
jamie@1 376 L = N / 3;
jamie@1 377
jamie@1 378 while(M--){
jamie@25 379 m = M << 1;
jamie@25 380 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
jamie@1 381
jamie@25 382 if(M < L){
jamie@25 383 l = M * 3;
jamie@25 384 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
jamie@25 385 }
jamie@1 386 }
jamie@25 387
jamie@1 388 peak_index = peak = 0;
jamie@25 389
jamie@1 390 for(n = 1; n < N; n++){
jamie@25 391 product[n] = data[n] * coeffs2[n] * coeffs3[n];
jamie@25 392 if(product[n] > peak){
jamie@25 393 peak_index = n;
jamie@25 394 peak = product[n];
jamie@25 395 }
jamie@1 396 }
jamie@1 397
jamie@1 398 largest1_lwr = position1_lwr = 0;
jamie@1 399
jamie@1 400 for(n = 0; n < N; n++){
jamie@25 401 if(data[n] > largest1_lwr && n != peak_index){
jamie@25 402 largest1_lwr = data[n];
jamie@25 403 position1_lwr = n;
jamie@25 404 }
jamie@1 405 }
jamie@1 406
jamie@1 407 ratio1 = data[position1_lwr] / data[peak_index];
jamie@1 408
jamie@1 409 if(position1_lwr > peak_index * 0.4 && position1_lwr <
jamie@25 410 peak_index * 0.6 && ratio1 > 0.1)
jamie@25 411 peak_index = position1_lwr;
jamie@1 412
jamie@22 413 *result = sr / (float)peak_index;
jamie@25 414
jamie@1 415 free(coeffs2);
jamie@1 416 free(coeffs3);
jamie@1 417 free(product);
jamie@25 418
jamie@1 419 }
jamie@5 420
jamie@5 421
jamie@5 422 int xtract_f0(float *data, int N, void *argv, float *result){
jamie@5 423
jamie@25 424 int M, sr, tau, n;
jamie@25 425 float f0, err_tau_1, err_tau_x, array_max, threshold_peak, threshold_centre;
jamie@22 426
jamie@25 427 sr = *(float *)argv;
jamie@25 428 /* threshold_peak = *((float *)argv+1);
jamie@25 429 threshold_centre = *((float *)argv+2);
jamie@25 430 printf("peak: %.2f\tcentre: %.2f\n", threshold_peak, threshold_centre);*/
jamie@25 431 /* add temporary dynamic control over thresholds to test clipping effects */
jamie@22 432
jamie@25 433 /* FIX: tweak and make into macros */
jamie@25 434 threshold_peak = .8;
jamie@25 435 threshold_centre = .3;
jamie@25 436 M = N >> 1;
jamie@25 437 err_tau_1 = 0;
jamie@25 438 array_max = 0;
jamie@25 439
jamie@25 440 /* Find the array max */
jamie@25 441 for(n = 0; n < N; n++){
jamie@25 442 if (data[n] > array_max)
jamie@25 443 array_max = data[n];
jamie@12 444 }
jamie@25 445
jamie@25 446 threshold_peak *= array_max;
jamie@25 447
jamie@25 448 /* peak clip */
jamie@25 449 for(n = 0; n < N; n++){
jamie@25 450 if(data[n] > threshold_peak)
jamie@25 451 data[n] = threshold_peak;
jamie@25 452 else if(data[n] < -threshold_peak)
jamie@25 453 data[n] = -threshold_peak;
jamie@25 454 }
jamie@25 455
jamie@25 456 threshold_centre *= array_max;
jamie@25 457
jamie@25 458 /* Centre clip */
jamie@25 459 for(n = 0; n < N; n++){
jamie@25 460 if (data[n] < threshold_centre)
jamie@25 461 data[n] = 0;
jamie@25 462 else
jamie@25 463 data[n] -= threshold_centre;
jamie@25 464 }
jamie@25 465
jamie@25 466 /* Estimate fundamental freq */
jamie@25 467 for (n = 1; n < M; n++)
jamie@25 468 err_tau_1 = err_tau_1 + fabs(data[n] - data[n+1]);
jamie@25 469 /* FIX: this doesn't pose too much load if it returns 'early', but if it can't find f0, load can be significant for larger block sizes M^2 iterations! */
jamie@25 470 for (tau = 2; tau < M; tau++){
jamie@25 471 err_tau_x = 0;
jamie@25 472 for (n = 1; n < M; n++){
jamie@25 473 err_tau_x = err_tau_x + fabs(data[n] - data[n+tau]);
jamie@25 474 }
jamie@25 475 if (err_tau_x < err_tau_1) {
jamie@25 476 f0 = sr / (tau + (err_tau_x / err_tau_1));
jamie@25 477 *result = f0;
jamie@25 478 return SUCCESS;
jamie@25 479 }
jamie@25 480 }
jamie@25 481 return NO_RESULT;
jamie@5 482 }