annotate src/scalar.c @ 5:cac976b2a69d

Changed xtract_f0 to xtract_lowest_match
author Jamie Bullock <jamie@postlude.co.uk>
date Thu, 05 Oct 2006 16:59:51 +0000
parents 819937ea6359
children 81eb5810a301
rev   line source
jamie@1 1 /* libxtract feature extraction library
jamie@1 2 *
jamie@1 3 * Copyright (C) 2006 Jamie Bullock
jamie@1 4 *
jamie@1 5 * This program is free software; you can redistribute it and/or modify
jamie@1 6 * it under the terms of the GNU General Public License as published by
jamie@1 7 * the Free Software Foundation; either version 2 of the License, or
jamie@1 8 * (at your option) any later version.
jamie@1 9 *
jamie@1 10 * This program is distributed in the hope that it will be useful,
jamie@1 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
jamie@1 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
jamie@1 13 * GNU General Public License for more details.
jamie@1 14 *
jamie@1 15 * You should have received a copy of the GNU General Public License
jamie@1 16 * along with this program; if not, write to the Free Software
jamie@1 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
jamie@1 18 * USA.
jamie@1 19 */
jamie@1 20
jamie@1 21
jamie@1 22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
jamie@1 23
jamie@1 24 #include "xtract/libxtract.h"
jamie@1 25 #include "math.h"
jamie@5 26 #include <stdlib.h>
jamie@1 27
jamie@1 28 int xtract_mean(float *data, int N, void *argv, float *result){
jamie@1 29
jamie@1 30 int n = N;
jamie@1 31
jamie@1 32 while(n--)
jamie@1 33 *result += *data++;
jamie@1 34
jamie@1 35 *result /= N;
jamie@1 36 }
jamie@1 37
jamie@1 38 int xtract_variance(float *data, int N, void *argv, float *result){
jamie@1 39
jamie@1 40 int n = N;
jamie@1 41
jamie@1 42 while(n--)
jamie@1 43 *result += *data++ - *(float *)argv;
jamie@1 44
jamie@1 45 *result = SQ(*result) / (N - 1);
jamie@1 46 }
jamie@1 47
jamie@1 48 int xtract_standard_deviation(float *data, int N, void *argv, float *result){
jamie@1 49
jamie@1 50 *result = sqrt(*(float *)argv);
jamie@1 51
jamie@1 52 }
jamie@1 53
jamie@1 54 int xtract_average_deviation(float *data, int N, void *argv, float *result){
jamie@1 55
jamie@1 56 int n = N;
jamie@1 57
jamie@1 58 while(n--)
jamie@1 59 *result += fabs(*data++ - *(float *)argv);
jamie@1 60
jamie@1 61 *result /= N;
jamie@1 62
jamie@1 63 }
jamie@1 64
jamie@1 65 int xtract_skewness(float *data, int N, void *argv, float *result){
jamie@1 66
jamie@1 67 int n = N;
jamie@1 68
jamie@1 69 while(n--)
jamie@1 70 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@1 71
jamie@1 72 *result = pow(*result, 3) / N;
jamie@1 73
jamie@1 74 }
jamie@1 75
jamie@1 76 int xtract_kurtosis(float *data, int N, void *argv, float *result){
jamie@1 77
jamie@1 78 int n = N;
jamie@1 79
jamie@1 80 while(n--)
jamie@1 81 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@1 82
jamie@1 83 *result = pow(*result, 4) / N - 3;
jamie@1 84
jamie@1 85 }
jamie@1 86
jamie@1 87 int xtract_irregularity_k(float *data, int N, void *argv, float *result){
jamie@1 88
jamie@1 89 int n,
jamie@1 90 M = M - 1;
jamie@1 91
jamie@1 92 for(n = 1; n < M; n++)
jamie@1 93 *result += abs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
jamie@1 94
jamie@1 95 }
jamie@1 96
jamie@1 97 int xtract_irregularity_j(float *data, int N, void *argv, float *result){
jamie@1 98
jamie@1 99 int n = N;
jamie@1 100
jamie@1 101 float num, den;
jamie@1 102
jamie@1 103 while(n--){
jamie@1 104 num += data[n] - data[n+1];
jamie@1 105 den += data[n] * data[n];
jamie@1 106 }
jamie@1 107
jamie@1 108 *result = num / den;
jamie@1 109
jamie@1 110 }
jamie@1 111
jamie@1 112 int xtract_tristimulus_1(float *data, int N, void *argv, float *result){
jamie@1 113
jamie@1 114 int n = N;
jamie@1 115
jamie@1 116 float den;
jamie@1 117
jamie@1 118 while(n--)
jamie@1 119 den += data[n];
jamie@1 120
jamie@1 121 *result = data[0] / den;
jamie@1 122
jamie@1 123 }
jamie@1 124
jamie@1 125 int xtract_tristimulus_2(float *data, int N, void *argv, float *result){
jamie@1 126
jamie@1 127 int n = N;
jamie@1 128
jamie@1 129 float den;
jamie@1 130
jamie@1 131 while(n--)
jamie@1 132 den += data[n];
jamie@1 133
jamie@1 134 *result = (data[1] + data[2] + data[3]) / den;
jamie@1 135
jamie@1 136 }
jamie@1 137
jamie@1 138 int xtract_tristimulus_3(float *data, int N, void *argv, float *result){
jamie@1 139
jamie@1 140 int n = N;
jamie@1 141
jamie@1 142 float den, num;
jamie@1 143
jamie@1 144 while(n--)
jamie@1 145 den += data[n];
jamie@1 146
jamie@1 147 num = den - data[0] + data[1] + data[2] + data[3];
jamie@1 148
jamie@1 149 *result = num / den;
jamie@1 150
jamie@1 151 }
jamie@1 152
jamie@1 153 int xtract_smoothness(float *data, int N, void *argv, float *result){
jamie@1 154
jamie@1 155 int n = N;
jamie@1 156
jamie@1 157 if (data[0] <= 0) data[0] = 1;
jamie@1 158 if (data[1] <= 0) data[1] = 1;
jamie@1 159
jamie@1 160 for(n = 2; n < N; n++){
jamie@1 161 if(data[n] <= 0) data[n] = 1;
jamie@1 162 *result += abs(20 * log(data[n-1]) - (20 * log(data[n-2]) +
jamie@1 163 20 * log(data[n-1]) + 20 * log(data[n])) / 3);
jamie@1 164 }
jamie@1 165 }
jamie@1 166
jamie@1 167 int xtract_spread(float *data, int N, void *argv, float *result){
jamie@1 168
jamie@1 169 int n = N;
jamie@1 170
jamie@1 171 float num, den, tmp;
jamie@1 172
jamie@1 173 while(n--){
jamie@1 174 tmp = n - *(float *)argv;
jamie@1 175 num += SQ(tmp) * data[n];
jamie@1 176 den += data[n];
jamie@1 177 }
jamie@1 178
jamie@1 179 *result = sqrt(num / den);
jamie@1 180
jamie@1 181 }
jamie@1 182
jamie@1 183 int xtract_zcr(float *data, int N, void *argv, float *result){
jamie@1 184
jamie@1 185 int n = N;
jamie@1 186
jamie@1 187 for(n = 1; n < N; n++)
jamie@1 188 if(data[n] * data[n-1] < 0) (*result)++;
jamie@1 189
jamie@1 190 *result /= N;
jamie@1 191
jamie@1 192 }
jamie@1 193
jamie@1 194 int xtract_rolloff(float *data, int N, void *argv, float *result){
jamie@1 195
jamie@1 196 int n = N;
jamie@1 197 float pivot, temp;
jamie@1 198
jamie@1 199 while(n--) pivot += data[n];
jamie@1 200
jamie@1 201 pivot *= *(float *)argv;
jamie@1 202
jamie@1 203 for(n = 0; temp < pivot; temp += data[n++]);
jamie@1 204
jamie@1 205 *result = n;
jamie@1 206
jamie@1 207 }
jamie@1 208
jamie@1 209 int xtract_loudness(float *data, int N, void *argv, float *result){
jamie@1 210
jamie@1 211 int n = BARK_BANDS;
jamie@1 212
jamie@1 213 /*if(n != N) return BAD_VECTOR_SIZE; */
jamie@1 214
jamie@1 215 while(n--)
jamie@1 216 *result += pow(data[n], 0.23);
jamie@1 217 }
jamie@1 218
jamie@1 219
jamie@1 220 int xtract_flatness(float *data, int N, void *argv, float *result){
jamie@1 221
jamie@1 222 int n = N;
jamie@1 223
jamie@1 224 float num, den;
jamie@1 225
jamie@1 226 while(n--){
jamie@1 227 if(data[n] !=0){
jamie@1 228 num *= data[n];
jamie@1 229 den += data[n];
jamie@1 230 }
jamie@1 231 }
jamie@1 232
jamie@1 233 num = pow(num, 1 / N);
jamie@1 234 den /= N;
jamie@1 235
jamie@1 236 *result = 10 * log10(num / den);
jamie@1 237
jamie@1 238 }
jamie@1 239
jamie@1 240 int xtract_tonality(float *data, int N, void *argv, float *result){
jamie@1 241
jamie@1 242 float sfmdb, sfm;
jamie@1 243
jamie@1 244 sfm = *(float *)argv;
jamie@1 245
jamie@1 246 sfmdb = (sfm > 0 ? (10 * log10(sfm)) / -60 : 0);
jamie@1 247
jamie@1 248 *result = MIN(sfmdb, 1);
jamie@1 249
jamie@1 250 }
jamie@1 251
jamie@1 252 int xtract_crest(float *data, int N, void *argv, float *result){
jamie@1 253
jamie@1 254 NOT_IMPLEMENTED;
jamie@1 255
jamie@1 256 }
jamie@1 257
jamie@1 258 int xtract_noisiness(float *data, int N, void *argv, float *result){
jamie@1 259
jamie@1 260 NOT_IMPLEMENTED;
jamie@1 261
jamie@1 262 }
jamie@2 263
jamie@1 264 int xtract_rms_amplitude(float *data, int N, void *argv, float *result){
jamie@1 265
jamie@1 266 int n = N;
jamie@1 267
jamie@1 268 while(n--) *result += SQ(data[n]);
jamie@1 269
jamie@1 270 *result = sqrt(*result / N);
jamie@1 271
jamie@1 272 }
jamie@1 273
jamie@1 274 int xtract_inharmonicity(float *data, int N, void *argv, float *result){
jamie@1 275
jamie@1 276 int n = N;
jamie@1 277 float num, den,
jamie@1 278 *fund, *freq;
jamie@1 279
jamie@1 280 fund = *(float **)argv;
jamie@1 281 freq = fund+1;
jamie@1 282
jamie@1 283 while(n--){
jamie@1 284 num += abs(freq[n] - n * *fund) * SQ(data[n]);
jamie@1 285 den += SQ(data[n]);
jamie@1 286 }
jamie@1 287
jamie@1 288 *result = (2 * num) / (*fund * den);
jamie@1 289
jamie@1 290 }
jamie@1 291
jamie@1 292
jamie@1 293 int xtract_power(float *data, int N, void *argv, float *result){
jamie@1 294
jamie@1 295 NOT_IMPLEMENTED;
jamie@1 296
jamie@1 297 }
jamie@1 298
jamie@1 299 int xtract_odd_even_ratio(float *data, int N, void *argv, float *result){
jamie@1 300
jamie@1 301 int n = N >> 1, j, k;
jamie@1 302
jamie@1 303 float num, den;
jamie@1 304
jamie@1 305 while(n--){
jamie@1 306 j = n * 2;
jamie@1 307 k = j - 1;
jamie@1 308 num += data[k];
jamie@1 309 den += data[j];
jamie@1 310 }
jamie@1 311
jamie@1 312 *result = num / den;
jamie@1 313
jamie@1 314 }
jamie@1 315
jamie@1 316 int xtract_sharpness(float *data, int N, void *argv, float *result){
jamie@1 317
jamie@1 318 NOT_IMPLEMENTED;
jamie@1 319
jamie@1 320 }
jamie@1 321
jamie@1 322 int xtract_slope(float *data, int N, void *argv, float *result){
jamie@1 323
jamie@1 324 NOT_IMPLEMENTED;
jamie@1 325
jamie@1 326 }
jamie@1 327
jamie@5 328 int xtract_lowest_match(float *data, int N, void *argv, float *result){
jamie@1 329
jamie@1 330 /* int n, M = N >> 1;
jamie@1 331 float guess, error, minimum_error = 1000000, f0, freq;
jamie@1 332
jamie@1 333 guess = *(float *)argv;
jamie@1 334
jamie@1 335 for(n = 0; n < M; n++){
jamie@1 336 if(freq = data[n]){
jamie@1 337 error = abs(guess - freq);
jamie@1 338 if(error < minimum_error){
jamie@1 339 f0 = freq;
jamie@1 340 minimum_error = error;
jamie@1 341 }
jamie@1 342 }
jamie@1 343 }
jamie@1 344 *result = f0;*/
jamie@1 345
jamie@1 346
jamie@1 347 float f0 = SR_LIMIT;
jamie@1 348 int n = N;
jamie@1 349
jamie@1 350 while(n--) {
jamie@1 351 if(data[n] > 0)
jamie@1 352 f0 = MIN(f0, data[n]);
jamie@1 353 }
jamie@1 354
jamie@1 355 *result = (f0 == SR_LIMIT ? 0 : f0);
jamie@1 356
jamie@1 357 }
jamie@1 358
jamie@1 359 int xtract_hps(float *data, int N, void *argv, float *result){
jamie@1 360
jamie@1 361 int n = N, M, m, l, peak_index, position1_lwr;
jamie@1 362 float *coeffs2, *coeffs3, *product, L,
jamie@1 363 largest1_lwr, peak, ratio1;
jamie@1 364
jamie@1 365 coeffs2 = (float *)malloc(N * sizeof(float));
jamie@1 366 coeffs3 = (float *)malloc(N * sizeof(float));
jamie@1 367 product = (float *)malloc(N * sizeof(float));
jamie@1 368
jamie@1 369 while(n--) coeffs2[n] = coeffs3[n] = 1;
jamie@1 370
jamie@1 371 M = N >> 1;
jamie@1 372 L = N / 3;
jamie@1 373
jamie@1 374 while(M--){
jamie@1 375 m = M << 1;
jamie@1 376 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
jamie@1 377
jamie@1 378 if(M < L){
jamie@1 379 l = M * 3;
jamie@1 380 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
jamie@1 381 }
jamie@1 382 }
jamie@1 383
jamie@1 384 peak_index = peak = 0;
jamie@1 385
jamie@1 386 for(n = 1; n < N; n++){
jamie@1 387 product[n] = data[n] * coeffs2[n] * coeffs3[n];
jamie@1 388 if(product[n] > peak){
jamie@1 389 peak_index = n;
jamie@1 390 peak = product[n];
jamie@1 391 }
jamie@1 392 }
jamie@1 393
jamie@1 394 largest1_lwr = position1_lwr = 0;
jamie@1 395
jamie@1 396 for(n = 0; n < N; n++){
jamie@1 397 if(data[n] > largest1_lwr && n != peak_index){
jamie@1 398 largest1_lwr = data[n];
jamie@1 399 position1_lwr = n;
jamie@1 400 }
jamie@1 401 }
jamie@1 402
jamie@1 403 ratio1 = data[position1_lwr] / data[peak_index];
jamie@1 404
jamie@1 405 if(position1_lwr > peak_index * 0.4 && position1_lwr <
jamie@1 406 peak_index * 0.6 && ratio1 > 0.1)
jamie@1 407 peak_index = position1_lwr;
jamie@1 408
jamie@1 409 *result = 22050 * (float)peak_index / (float)N;
jamie@1 410
jamie@1 411 free(coeffs2);
jamie@1 412 free(coeffs3);
jamie@1 413 free(product);
jamie@1 414
jamie@1 415 }
jamie@5 416
jamie@5 417
jamie@5 418 int xtract_f0(float *data, int N, void *argv, float *result){
jamie@5 419
jamie@5 420 NOT_IMPLEMENTED;
jamie@5 421
jamie@5 422 }