annotate src/scalar.c @ 2:819937ea6359

Added doxygen tags and compile scripts
author Jamie Bullock <jamie@postlude.co.uk>
date Wed, 04 Oct 2006 18:19:25 +0000
parents b8f2448f7207
children cac976b2a69d
rev   line source
jamie@1 1 /* libxtract feature extraction library
jamie@1 2 *
jamie@1 3 * Copyright (C) 2006 Jamie Bullock
jamie@1 4 *
jamie@1 5 * This program is free software; you can redistribute it and/or modify
jamie@1 6 * it under the terms of the GNU General Public License as published by
jamie@1 7 * the Free Software Foundation; either version 2 of the License, or
jamie@1 8 * (at your option) any later version.
jamie@1 9 *
jamie@1 10 * This program is distributed in the hope that it will be useful,
jamie@1 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
jamie@1 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
jamie@1 13 * GNU General Public License for more details.
jamie@1 14 *
jamie@1 15 * You should have received a copy of the GNU General Public License
jamie@1 16 * along with this program; if not, write to the Free Software
jamie@1 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
jamie@1 18 * USA.
jamie@1 19 */
jamie@1 20
jamie@1 21
jamie@1 22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
jamie@1 23
jamie@1 24 #include "xtract/libxtract.h"
jamie@1 25 #include "math.h"
jamie@1 26
jamie@1 27 int xtract_mean(float *data, int N, void *argv, float *result){
jamie@1 28
jamie@1 29 int n = N;
jamie@1 30
jamie@1 31 while(n--)
jamie@1 32 *result += *data++;
jamie@1 33
jamie@1 34 *result /= N;
jamie@1 35 }
jamie@1 36
jamie@1 37 int xtract_variance(float *data, int N, void *argv, float *result){
jamie@1 38
jamie@1 39 int n = N;
jamie@1 40
jamie@1 41 while(n--)
jamie@1 42 *result += *data++ - *(float *)argv;
jamie@1 43
jamie@1 44 *result = SQ(*result) / (N - 1);
jamie@1 45 }
jamie@1 46
jamie@1 47 int xtract_standard_deviation(float *data, int N, void *argv, float *result){
jamie@1 48
jamie@1 49 *result = sqrt(*(float *)argv);
jamie@1 50
jamie@1 51 }
jamie@1 52
jamie@1 53 int xtract_average_deviation(float *data, int N, void *argv, float *result){
jamie@1 54
jamie@1 55 int n = N;
jamie@1 56
jamie@1 57 while(n--)
jamie@1 58 *result += fabs(*data++ - *(float *)argv);
jamie@1 59
jamie@1 60 *result /= N;
jamie@1 61
jamie@1 62 }
jamie@1 63
jamie@1 64 int xtract_skewness(float *data, int N, void *argv, float *result){
jamie@1 65
jamie@1 66 int n = N;
jamie@1 67
jamie@1 68 while(n--)
jamie@1 69 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@1 70
jamie@1 71 *result = pow(*result, 3) / N;
jamie@1 72
jamie@1 73 }
jamie@1 74
jamie@1 75 int xtract_kurtosis(float *data, int N, void *argv, float *result){
jamie@1 76
jamie@1 77 int n = N;
jamie@1 78
jamie@1 79 while(n--)
jamie@1 80 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@1 81
jamie@1 82 *result = pow(*result, 4) / N - 3;
jamie@1 83
jamie@1 84 }
jamie@1 85
jamie@1 86 int xtract_irregularity_k(float *data, int N, void *argv, float *result){
jamie@1 87
jamie@1 88 int n,
jamie@1 89 M = M - 1;
jamie@1 90
jamie@1 91 for(n = 1; n < M; n++)
jamie@1 92 *result += abs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
jamie@1 93
jamie@1 94 }
jamie@1 95
jamie@1 96 int xtract_irregularity_j(float *data, int N, void *argv, float *result){
jamie@1 97
jamie@1 98 int n = N;
jamie@1 99
jamie@1 100 float num, den;
jamie@1 101
jamie@1 102 while(n--){
jamie@1 103 num += data[n] - data[n+1];
jamie@1 104 den += data[n] * data[n];
jamie@1 105 }
jamie@1 106
jamie@1 107 *result = num / den;
jamie@1 108
jamie@1 109 }
jamie@1 110
jamie@1 111 int xtract_tristimulus_1(float *data, int N, void *argv, float *result){
jamie@1 112
jamie@1 113 int n = N;
jamie@1 114
jamie@1 115 float den;
jamie@1 116
jamie@1 117 while(n--)
jamie@1 118 den += data[n];
jamie@1 119
jamie@1 120 *result = data[0] / den;
jamie@1 121
jamie@1 122 }
jamie@1 123
jamie@1 124 int xtract_tristimulus_2(float *data, int N, void *argv, float *result){
jamie@1 125
jamie@1 126 int n = N;
jamie@1 127
jamie@1 128 float den;
jamie@1 129
jamie@1 130 while(n--)
jamie@1 131 den += data[n];
jamie@1 132
jamie@1 133 *result = (data[1] + data[2] + data[3]) / den;
jamie@1 134
jamie@1 135 }
jamie@1 136
jamie@1 137 int xtract_tristimulus_3(float *data, int N, void *argv, float *result){
jamie@1 138
jamie@1 139 int n = N;
jamie@1 140
jamie@1 141 float den, num;
jamie@1 142
jamie@1 143 while(n--)
jamie@1 144 den += data[n];
jamie@1 145
jamie@1 146 num = den - data[0] + data[1] + data[2] + data[3];
jamie@1 147
jamie@1 148 *result = num / den;
jamie@1 149
jamie@1 150 }
jamie@1 151
jamie@1 152 int xtract_smoothness(float *data, int N, void *argv, float *result){
jamie@1 153
jamie@1 154 int n = N;
jamie@1 155
jamie@1 156 if (data[0] <= 0) data[0] = 1;
jamie@1 157 if (data[1] <= 0) data[1] = 1;
jamie@1 158
jamie@1 159 for(n = 2; n < N; n++){
jamie@1 160 if(data[n] <= 0) data[n] = 1;
jamie@1 161 *result += abs(20 * log(data[n-1]) - (20 * log(data[n-2]) +
jamie@1 162 20 * log(data[n-1]) + 20 * log(data[n])) / 3);
jamie@1 163 }
jamie@1 164 }
jamie@1 165
jamie@1 166 int xtract_spread(float *data, int N, void *argv, float *result){
jamie@1 167
jamie@1 168 int n = N;
jamie@1 169
jamie@1 170 float num, den, tmp;
jamie@1 171
jamie@1 172 while(n--){
jamie@1 173 tmp = n - *(float *)argv;
jamie@1 174 num += SQ(tmp) * data[n];
jamie@1 175 den += data[n];
jamie@1 176 }
jamie@1 177
jamie@1 178 *result = sqrt(num / den);
jamie@1 179
jamie@1 180 }
jamie@1 181
jamie@1 182 int xtract_zcr(float *data, int N, void *argv, float *result){
jamie@1 183
jamie@1 184 int n = N;
jamie@1 185
jamie@1 186 for(n = 1; n < N; n++)
jamie@1 187 if(data[n] * data[n-1] < 0) (*result)++;
jamie@1 188
jamie@1 189 *result /= N;
jamie@1 190
jamie@1 191 }
jamie@1 192
jamie@1 193 int xtract_rolloff(float *data, int N, void *argv, float *result){
jamie@1 194
jamie@1 195 int n = N;
jamie@1 196 float pivot, temp;
jamie@1 197
jamie@1 198 while(n--) pivot += data[n];
jamie@1 199
jamie@1 200 pivot *= *(float *)argv;
jamie@1 201
jamie@1 202 for(n = 0; temp < pivot; temp += data[n++]);
jamie@1 203
jamie@1 204 *result = n;
jamie@1 205
jamie@1 206 }
jamie@1 207
jamie@1 208 int xtract_loudness(float *data, int N, void *argv, float *result){
jamie@1 209
jamie@1 210 int n = BARK_BANDS;
jamie@1 211
jamie@1 212 /*if(n != N) return BAD_VECTOR_SIZE; */
jamie@1 213
jamie@1 214 while(n--)
jamie@1 215 *result += pow(data[n], 0.23);
jamie@1 216 }
jamie@1 217
jamie@1 218
jamie@1 219 int xtract_flatness(float *data, int N, void *argv, float *result){
jamie@1 220
jamie@1 221 int n = N;
jamie@1 222
jamie@1 223 float num, den;
jamie@1 224
jamie@1 225 while(n--){
jamie@1 226 if(data[n] !=0){
jamie@1 227 num *= data[n];
jamie@1 228 den += data[n];
jamie@1 229 }
jamie@1 230 }
jamie@1 231
jamie@1 232 num = pow(num, 1 / N);
jamie@1 233 den /= N;
jamie@1 234
jamie@1 235 *result = 10 * log10(num / den);
jamie@1 236
jamie@1 237 }
jamie@1 238
jamie@1 239 int xtract_tonality(float *data, int N, void *argv, float *result){
jamie@1 240
jamie@1 241 float sfmdb, sfm;
jamie@1 242
jamie@1 243 sfm = *(float *)argv;
jamie@1 244
jamie@1 245 sfmdb = (sfm > 0 ? (10 * log10(sfm)) / -60 : 0);
jamie@1 246
jamie@1 247 *result = MIN(sfmdb, 1);
jamie@1 248
jamie@1 249 }
jamie@1 250
jamie@1 251 int xtract_crest(float *data, int N, void *argv, float *result){
jamie@1 252
jamie@1 253 NOT_IMPLEMENTED;
jamie@1 254
jamie@1 255 }
jamie@1 256
jamie@1 257 int xtract_noisiness(float *data, int N, void *argv, float *result){
jamie@1 258
jamie@1 259 NOT_IMPLEMENTED;
jamie@1 260
jamie@1 261 }
jamie@2 262
jamie@1 263 int xtract_rms_amplitude(float *data, int N, void *argv, float *result){
jamie@1 264
jamie@1 265 int n = N;
jamie@1 266
jamie@1 267 while(n--) *result += SQ(data[n]);
jamie@1 268
jamie@1 269 *result = sqrt(*result / N);
jamie@1 270
jamie@1 271 }
jamie@1 272
jamie@1 273 int xtract_inharmonicity(float *data, int N, void *argv, float *result){
jamie@1 274
jamie@1 275 int n = N;
jamie@1 276 float num, den,
jamie@1 277 *fund, *freq;
jamie@1 278
jamie@1 279 fund = *(float **)argv;
jamie@1 280 freq = fund+1;
jamie@1 281
jamie@1 282 while(n--){
jamie@1 283 num += abs(freq[n] - n * *fund) * SQ(data[n]);
jamie@1 284 den += SQ(data[n]);
jamie@1 285 }
jamie@1 286
jamie@1 287 *result = (2 * num) / (*fund * den);
jamie@1 288
jamie@1 289 }
jamie@1 290
jamie@1 291
jamie@1 292 int xtract_power(float *data, int N, void *argv, float *result){
jamie@1 293
jamie@1 294 NOT_IMPLEMENTED;
jamie@1 295
jamie@1 296 }
jamie@1 297
jamie@1 298 int xtract_odd_even_ratio(float *data, int N, void *argv, float *result){
jamie@1 299
jamie@1 300 int n = N >> 1, j, k;
jamie@1 301
jamie@1 302 float num, den;
jamie@1 303
jamie@1 304 while(n--){
jamie@1 305 j = n * 2;
jamie@1 306 k = j - 1;
jamie@1 307 num += data[k];
jamie@1 308 den += data[j];
jamie@1 309 }
jamie@1 310
jamie@1 311 *result = num / den;
jamie@1 312
jamie@1 313 }
jamie@1 314
jamie@1 315 int xtract_sharpness(float *data, int N, void *argv, float *result){
jamie@1 316
jamie@1 317 NOT_IMPLEMENTED;
jamie@1 318
jamie@1 319 }
jamie@1 320
jamie@1 321 int xtract_slope(float *data, int N, void *argv, float *result){
jamie@1 322
jamie@1 323 NOT_IMPLEMENTED;
jamie@1 324
jamie@1 325 }
jamie@1 326
jamie@1 327 int xtract_f0(float *data, int N, void *argv, float *result){
jamie@1 328
jamie@1 329 /* int n, M = N >> 1;
jamie@1 330 float guess, error, minimum_error = 1000000, f0, freq;
jamie@1 331
jamie@1 332 guess = *(float *)argv;
jamie@1 333
jamie@1 334 for(n = 0; n < M; n++){
jamie@1 335 if(freq = data[n]){
jamie@1 336 error = abs(guess - freq);
jamie@1 337 if(error < minimum_error){
jamie@1 338 f0 = freq;
jamie@1 339 minimum_error = error;
jamie@1 340 }
jamie@1 341 }
jamie@1 342 }
jamie@1 343 *result = f0;*/
jamie@1 344
jamie@1 345
jamie@1 346 float f0 = SR_LIMIT;
jamie@1 347 int n = N;
jamie@1 348
jamie@1 349 while(n--) {
jamie@1 350 if(data[n] > 0)
jamie@1 351 f0 = MIN(f0, data[n]);
jamie@1 352 }
jamie@1 353
jamie@1 354 *result = (f0 == SR_LIMIT ? 0 : f0);
jamie@1 355
jamie@1 356 }
jamie@1 357
jamie@1 358 int xtract_hps(float *data, int N, void *argv, float *result){
jamie@1 359
jamie@1 360 int n = N, M, m, l, peak_index, position1_lwr;
jamie@1 361 float *coeffs2, *coeffs3, *product, L,
jamie@1 362 largest1_lwr, peak, ratio1;
jamie@1 363
jamie@1 364 coeffs2 = (float *)malloc(N * sizeof(float));
jamie@1 365 coeffs3 = (float *)malloc(N * sizeof(float));
jamie@1 366 product = (float *)malloc(N * sizeof(float));
jamie@1 367
jamie@1 368 while(n--) coeffs2[n] = coeffs3[n] = 1;
jamie@1 369
jamie@1 370 M = N >> 1;
jamie@1 371 L = N / 3;
jamie@1 372
jamie@1 373 while(M--){
jamie@1 374 m = M << 1;
jamie@1 375 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
jamie@1 376
jamie@1 377 if(M < L){
jamie@1 378 l = M * 3;
jamie@1 379 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
jamie@1 380 }
jamie@1 381 }
jamie@1 382
jamie@1 383 peak_index = peak = 0;
jamie@1 384
jamie@1 385 for(n = 1; n < N; n++){
jamie@1 386 product[n] = data[n] * coeffs2[n] * coeffs3[n];
jamie@1 387 if(product[n] > peak){
jamie@1 388 peak_index = n;
jamie@1 389 peak = product[n];
jamie@1 390 }
jamie@1 391 }
jamie@1 392
jamie@1 393 largest1_lwr = position1_lwr = 0;
jamie@1 394
jamie@1 395 for(n = 0; n < N; n++){
jamie@1 396 if(data[n] > largest1_lwr && n != peak_index){
jamie@1 397 largest1_lwr = data[n];
jamie@1 398 position1_lwr = n;
jamie@1 399 }
jamie@1 400 }
jamie@1 401
jamie@1 402 ratio1 = data[position1_lwr] / data[peak_index];
jamie@1 403
jamie@1 404 if(position1_lwr > peak_index * 0.4 && position1_lwr <
jamie@1 405 peak_index * 0.6 && ratio1 > 0.1)
jamie@1 406 peak_index = position1_lwr;
jamie@1 407
jamie@1 408 *result = 22050 * (float)peak_index / (float)N;
jamie@1 409
jamie@1 410 free(coeffs2);
jamie@1 411 free(coeffs3);
jamie@1 412 free(product);
jamie@1 413
jamie@1 414 }
jamie@1 415