jamie@1
|
1 /* libxtract feature extraction library
|
jamie@1
|
2 *
|
jamie@1
|
3 * Copyright (C) 2006 Jamie Bullock
|
jamie@1
|
4 *
|
jamie@1
|
5 * This program is free software; you can redistribute it and/or modify
|
jamie@1
|
6 * it under the terms of the GNU General Public License as published by
|
jamie@1
|
7 * the Free Software Foundation; either version 2 of the License, or
|
jamie@1
|
8 * (at your option) any later version.
|
jamie@1
|
9 *
|
jamie@1
|
10 * This program is distributed in the hope that it will be useful,
|
jamie@1
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
jamie@1
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
jamie@1
|
13 * GNU General Public License for more details.
|
jamie@1
|
14 *
|
jamie@1
|
15 * You should have received a copy of the GNU General Public License
|
jamie@1
|
16 * along with this program; if not, write to the Free Software
|
jamie@1
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
jamie@1
|
18 * USA.
|
jamie@1
|
19 */
|
jamie@1
|
20
|
jamie@1
|
21
|
jamie@1
|
22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
|
jamie@1
|
23
|
jamie@1
|
24 #include "xtract/libxtract.h"
|
jamie@1
|
25 #include "math.h"
|
jamie@1
|
26
|
jamie@1
|
27 int xtract_mean(float *data, int N, void *argv, float *result){
|
jamie@1
|
28
|
jamie@1
|
29 int n = N;
|
jamie@1
|
30
|
jamie@1
|
31 while(n--)
|
jamie@1
|
32 *result += *data++;
|
jamie@1
|
33
|
jamie@1
|
34 *result /= N;
|
jamie@1
|
35 }
|
jamie@1
|
36
|
jamie@1
|
37 int xtract_variance(float *data, int N, void *argv, float *result){
|
jamie@1
|
38
|
jamie@1
|
39 int n = N;
|
jamie@1
|
40
|
jamie@1
|
41 while(n--)
|
jamie@1
|
42 *result += *data++ - *(float *)argv;
|
jamie@1
|
43
|
jamie@1
|
44 *result = SQ(*result) / (N - 1);
|
jamie@1
|
45 }
|
jamie@1
|
46
|
jamie@1
|
47 int xtract_standard_deviation(float *data, int N, void *argv, float *result){
|
jamie@1
|
48
|
jamie@1
|
49 *result = sqrt(*(float *)argv);
|
jamie@1
|
50
|
jamie@1
|
51 }
|
jamie@1
|
52
|
jamie@1
|
53 int xtract_average_deviation(float *data, int N, void *argv, float *result){
|
jamie@1
|
54
|
jamie@1
|
55 int n = N;
|
jamie@1
|
56
|
jamie@1
|
57 while(n--)
|
jamie@1
|
58 *result += fabs(*data++ - *(float *)argv);
|
jamie@1
|
59
|
jamie@1
|
60 *result /= N;
|
jamie@1
|
61
|
jamie@1
|
62 }
|
jamie@1
|
63
|
jamie@1
|
64 int xtract_skewness(float *data, int N, void *argv, float *result){
|
jamie@1
|
65
|
jamie@1
|
66 int n = N;
|
jamie@1
|
67
|
jamie@1
|
68 while(n--)
|
jamie@1
|
69 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@1
|
70
|
jamie@1
|
71 *result = pow(*result, 3) / N;
|
jamie@1
|
72
|
jamie@1
|
73 }
|
jamie@1
|
74
|
jamie@1
|
75 int xtract_kurtosis(float *data, int N, void *argv, float *result){
|
jamie@1
|
76
|
jamie@1
|
77 int n = N;
|
jamie@1
|
78
|
jamie@1
|
79 while(n--)
|
jamie@1
|
80 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@1
|
81
|
jamie@1
|
82 *result = pow(*result, 4) / N - 3;
|
jamie@1
|
83
|
jamie@1
|
84 }
|
jamie@1
|
85
|
jamie@1
|
86 int xtract_irregularity_k(float *data, int N, void *argv, float *result){
|
jamie@1
|
87
|
jamie@1
|
88 int n,
|
jamie@1
|
89 M = M - 1;
|
jamie@1
|
90
|
jamie@1
|
91 for(n = 1; n < M; n++)
|
jamie@1
|
92 *result += abs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
|
jamie@1
|
93
|
jamie@1
|
94 }
|
jamie@1
|
95
|
jamie@1
|
96 int xtract_irregularity_j(float *data, int N, void *argv, float *result){
|
jamie@1
|
97
|
jamie@1
|
98 int n = N;
|
jamie@1
|
99
|
jamie@1
|
100 float num, den;
|
jamie@1
|
101
|
jamie@1
|
102 while(n--){
|
jamie@1
|
103 num += data[n] - data[n+1];
|
jamie@1
|
104 den += data[n] * data[n];
|
jamie@1
|
105 }
|
jamie@1
|
106
|
jamie@1
|
107 *result = num / den;
|
jamie@1
|
108
|
jamie@1
|
109 }
|
jamie@1
|
110
|
jamie@1
|
111 int xtract_tristimulus_1(float *data, int N, void *argv, float *result){
|
jamie@1
|
112
|
jamie@1
|
113 int n = N;
|
jamie@1
|
114
|
jamie@1
|
115 float den;
|
jamie@1
|
116
|
jamie@1
|
117 while(n--)
|
jamie@1
|
118 den += data[n];
|
jamie@1
|
119
|
jamie@1
|
120 *result = data[0] / den;
|
jamie@1
|
121
|
jamie@1
|
122 }
|
jamie@1
|
123
|
jamie@1
|
124 int xtract_tristimulus_2(float *data, int N, void *argv, float *result){
|
jamie@1
|
125
|
jamie@1
|
126 int n = N;
|
jamie@1
|
127
|
jamie@1
|
128 float den;
|
jamie@1
|
129
|
jamie@1
|
130 while(n--)
|
jamie@1
|
131 den += data[n];
|
jamie@1
|
132
|
jamie@1
|
133 *result = (data[1] + data[2] + data[3]) / den;
|
jamie@1
|
134
|
jamie@1
|
135 }
|
jamie@1
|
136
|
jamie@1
|
137 int xtract_tristimulus_3(float *data, int N, void *argv, float *result){
|
jamie@1
|
138
|
jamie@1
|
139 int n = N;
|
jamie@1
|
140
|
jamie@1
|
141 float den, num;
|
jamie@1
|
142
|
jamie@1
|
143 while(n--)
|
jamie@1
|
144 den += data[n];
|
jamie@1
|
145
|
jamie@1
|
146 num = den - data[0] + data[1] + data[2] + data[3];
|
jamie@1
|
147
|
jamie@1
|
148 *result = num / den;
|
jamie@1
|
149
|
jamie@1
|
150 }
|
jamie@1
|
151
|
jamie@1
|
152 int xtract_smoothness(float *data, int N, void *argv, float *result){
|
jamie@1
|
153
|
jamie@1
|
154 int n = N;
|
jamie@1
|
155
|
jamie@1
|
156 if (data[0] <= 0) data[0] = 1;
|
jamie@1
|
157 if (data[1] <= 0) data[1] = 1;
|
jamie@1
|
158
|
jamie@1
|
159 for(n = 2; n < N; n++){
|
jamie@1
|
160 if(data[n] <= 0) data[n] = 1;
|
jamie@1
|
161 *result += abs(20 * log(data[n-1]) - (20 * log(data[n-2]) +
|
jamie@1
|
162 20 * log(data[n-1]) + 20 * log(data[n])) / 3);
|
jamie@1
|
163 }
|
jamie@1
|
164 }
|
jamie@1
|
165
|
jamie@1
|
166 int xtract_spread(float *data, int N, void *argv, float *result){
|
jamie@1
|
167
|
jamie@1
|
168 int n = N;
|
jamie@1
|
169
|
jamie@1
|
170 float num, den, tmp;
|
jamie@1
|
171
|
jamie@1
|
172 while(n--){
|
jamie@1
|
173 tmp = n - *(float *)argv;
|
jamie@1
|
174 num += SQ(tmp) * data[n];
|
jamie@1
|
175 den += data[n];
|
jamie@1
|
176 }
|
jamie@1
|
177
|
jamie@1
|
178 *result = sqrt(num / den);
|
jamie@1
|
179
|
jamie@1
|
180 }
|
jamie@1
|
181
|
jamie@1
|
182 int xtract_zcr(float *data, int N, void *argv, float *result){
|
jamie@1
|
183
|
jamie@1
|
184 int n = N;
|
jamie@1
|
185
|
jamie@1
|
186 for(n = 1; n < N; n++)
|
jamie@1
|
187 if(data[n] * data[n-1] < 0) (*result)++;
|
jamie@1
|
188
|
jamie@1
|
189 *result /= N;
|
jamie@1
|
190
|
jamie@1
|
191 }
|
jamie@1
|
192
|
jamie@1
|
193 int xtract_rolloff(float *data, int N, void *argv, float *result){
|
jamie@1
|
194
|
jamie@1
|
195 int n = N;
|
jamie@1
|
196 float pivot, temp;
|
jamie@1
|
197
|
jamie@1
|
198 while(n--) pivot += data[n];
|
jamie@1
|
199
|
jamie@1
|
200 pivot *= *(float *)argv;
|
jamie@1
|
201
|
jamie@1
|
202 for(n = 0; temp < pivot; temp += data[n++]);
|
jamie@1
|
203
|
jamie@1
|
204 *result = n;
|
jamie@1
|
205
|
jamie@1
|
206 }
|
jamie@1
|
207
|
jamie@1
|
208 int xtract_loudness(float *data, int N, void *argv, float *result){
|
jamie@1
|
209
|
jamie@1
|
210 int n = BARK_BANDS;
|
jamie@1
|
211
|
jamie@1
|
212 /*if(n != N) return BAD_VECTOR_SIZE; */
|
jamie@1
|
213
|
jamie@1
|
214 while(n--)
|
jamie@1
|
215 *result += pow(data[n], 0.23);
|
jamie@1
|
216 }
|
jamie@1
|
217
|
jamie@1
|
218
|
jamie@1
|
219 int xtract_flatness(float *data, int N, void *argv, float *result){
|
jamie@1
|
220
|
jamie@1
|
221 int n = N;
|
jamie@1
|
222
|
jamie@1
|
223 float num, den;
|
jamie@1
|
224
|
jamie@1
|
225 while(n--){
|
jamie@1
|
226 if(data[n] !=0){
|
jamie@1
|
227 num *= data[n];
|
jamie@1
|
228 den += data[n];
|
jamie@1
|
229 }
|
jamie@1
|
230 }
|
jamie@1
|
231
|
jamie@1
|
232 num = pow(num, 1 / N);
|
jamie@1
|
233 den /= N;
|
jamie@1
|
234
|
jamie@1
|
235 *result = 10 * log10(num / den);
|
jamie@1
|
236
|
jamie@1
|
237 }
|
jamie@1
|
238
|
jamie@1
|
239 int xtract_tonality(float *data, int N, void *argv, float *result){
|
jamie@1
|
240
|
jamie@1
|
241 float sfmdb, sfm;
|
jamie@1
|
242
|
jamie@1
|
243 sfm = *(float *)argv;
|
jamie@1
|
244
|
jamie@1
|
245 sfmdb = (sfm > 0 ? (10 * log10(sfm)) / -60 : 0);
|
jamie@1
|
246
|
jamie@1
|
247 *result = MIN(sfmdb, 1);
|
jamie@1
|
248
|
jamie@1
|
249 }
|
jamie@1
|
250
|
jamie@1
|
251 int xtract_crest(float *data, int N, void *argv, float *result){
|
jamie@1
|
252
|
jamie@1
|
253 NOT_IMPLEMENTED;
|
jamie@1
|
254
|
jamie@1
|
255 }
|
jamie@1
|
256
|
jamie@1
|
257 int xtract_noisiness(float *data, int N, void *argv, float *result){
|
jamie@1
|
258
|
jamie@1
|
259 NOT_IMPLEMENTED;
|
jamie@1
|
260
|
jamie@1
|
261 }
|
jamie@2
|
262
|
jamie@1
|
263 int xtract_rms_amplitude(float *data, int N, void *argv, float *result){
|
jamie@1
|
264
|
jamie@1
|
265 int n = N;
|
jamie@1
|
266
|
jamie@1
|
267 while(n--) *result += SQ(data[n]);
|
jamie@1
|
268
|
jamie@1
|
269 *result = sqrt(*result / N);
|
jamie@1
|
270
|
jamie@1
|
271 }
|
jamie@1
|
272
|
jamie@1
|
273 int xtract_inharmonicity(float *data, int N, void *argv, float *result){
|
jamie@1
|
274
|
jamie@1
|
275 int n = N;
|
jamie@1
|
276 float num, den,
|
jamie@1
|
277 *fund, *freq;
|
jamie@1
|
278
|
jamie@1
|
279 fund = *(float **)argv;
|
jamie@1
|
280 freq = fund+1;
|
jamie@1
|
281
|
jamie@1
|
282 while(n--){
|
jamie@1
|
283 num += abs(freq[n] - n * *fund) * SQ(data[n]);
|
jamie@1
|
284 den += SQ(data[n]);
|
jamie@1
|
285 }
|
jamie@1
|
286
|
jamie@1
|
287 *result = (2 * num) / (*fund * den);
|
jamie@1
|
288
|
jamie@1
|
289 }
|
jamie@1
|
290
|
jamie@1
|
291
|
jamie@1
|
292 int xtract_power(float *data, int N, void *argv, float *result){
|
jamie@1
|
293
|
jamie@1
|
294 NOT_IMPLEMENTED;
|
jamie@1
|
295
|
jamie@1
|
296 }
|
jamie@1
|
297
|
jamie@1
|
298 int xtract_odd_even_ratio(float *data, int N, void *argv, float *result){
|
jamie@1
|
299
|
jamie@1
|
300 int n = N >> 1, j, k;
|
jamie@1
|
301
|
jamie@1
|
302 float num, den;
|
jamie@1
|
303
|
jamie@1
|
304 while(n--){
|
jamie@1
|
305 j = n * 2;
|
jamie@1
|
306 k = j - 1;
|
jamie@1
|
307 num += data[k];
|
jamie@1
|
308 den += data[j];
|
jamie@1
|
309 }
|
jamie@1
|
310
|
jamie@1
|
311 *result = num / den;
|
jamie@1
|
312
|
jamie@1
|
313 }
|
jamie@1
|
314
|
jamie@1
|
315 int xtract_sharpness(float *data, int N, void *argv, float *result){
|
jamie@1
|
316
|
jamie@1
|
317 NOT_IMPLEMENTED;
|
jamie@1
|
318
|
jamie@1
|
319 }
|
jamie@1
|
320
|
jamie@1
|
321 int xtract_slope(float *data, int N, void *argv, float *result){
|
jamie@1
|
322
|
jamie@1
|
323 NOT_IMPLEMENTED;
|
jamie@1
|
324
|
jamie@1
|
325 }
|
jamie@1
|
326
|
jamie@1
|
327 int xtract_f0(float *data, int N, void *argv, float *result){
|
jamie@1
|
328
|
jamie@1
|
329 /* int n, M = N >> 1;
|
jamie@1
|
330 float guess, error, minimum_error = 1000000, f0, freq;
|
jamie@1
|
331
|
jamie@1
|
332 guess = *(float *)argv;
|
jamie@1
|
333
|
jamie@1
|
334 for(n = 0; n < M; n++){
|
jamie@1
|
335 if(freq = data[n]){
|
jamie@1
|
336 error = abs(guess - freq);
|
jamie@1
|
337 if(error < minimum_error){
|
jamie@1
|
338 f0 = freq;
|
jamie@1
|
339 minimum_error = error;
|
jamie@1
|
340 }
|
jamie@1
|
341 }
|
jamie@1
|
342 }
|
jamie@1
|
343 *result = f0;*/
|
jamie@1
|
344
|
jamie@1
|
345
|
jamie@1
|
346 float f0 = SR_LIMIT;
|
jamie@1
|
347 int n = N;
|
jamie@1
|
348
|
jamie@1
|
349 while(n--) {
|
jamie@1
|
350 if(data[n] > 0)
|
jamie@1
|
351 f0 = MIN(f0, data[n]);
|
jamie@1
|
352 }
|
jamie@1
|
353
|
jamie@1
|
354 *result = (f0 == SR_LIMIT ? 0 : f0);
|
jamie@1
|
355
|
jamie@1
|
356 }
|
jamie@1
|
357
|
jamie@1
|
358 int xtract_hps(float *data, int N, void *argv, float *result){
|
jamie@1
|
359
|
jamie@1
|
360 int n = N, M, m, l, peak_index, position1_lwr;
|
jamie@1
|
361 float *coeffs2, *coeffs3, *product, L,
|
jamie@1
|
362 largest1_lwr, peak, ratio1;
|
jamie@1
|
363
|
jamie@1
|
364 coeffs2 = (float *)malloc(N * sizeof(float));
|
jamie@1
|
365 coeffs3 = (float *)malloc(N * sizeof(float));
|
jamie@1
|
366 product = (float *)malloc(N * sizeof(float));
|
jamie@1
|
367
|
jamie@1
|
368 while(n--) coeffs2[n] = coeffs3[n] = 1;
|
jamie@1
|
369
|
jamie@1
|
370 M = N >> 1;
|
jamie@1
|
371 L = N / 3;
|
jamie@1
|
372
|
jamie@1
|
373 while(M--){
|
jamie@1
|
374 m = M << 1;
|
jamie@1
|
375 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
|
jamie@1
|
376
|
jamie@1
|
377 if(M < L){
|
jamie@1
|
378 l = M * 3;
|
jamie@1
|
379 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
|
jamie@1
|
380 }
|
jamie@1
|
381 }
|
jamie@1
|
382
|
jamie@1
|
383 peak_index = peak = 0;
|
jamie@1
|
384
|
jamie@1
|
385 for(n = 1; n < N; n++){
|
jamie@1
|
386 product[n] = data[n] * coeffs2[n] * coeffs3[n];
|
jamie@1
|
387 if(product[n] > peak){
|
jamie@1
|
388 peak_index = n;
|
jamie@1
|
389 peak = product[n];
|
jamie@1
|
390 }
|
jamie@1
|
391 }
|
jamie@1
|
392
|
jamie@1
|
393 largest1_lwr = position1_lwr = 0;
|
jamie@1
|
394
|
jamie@1
|
395 for(n = 0; n < N; n++){
|
jamie@1
|
396 if(data[n] > largest1_lwr && n != peak_index){
|
jamie@1
|
397 largest1_lwr = data[n];
|
jamie@1
|
398 position1_lwr = n;
|
jamie@1
|
399 }
|
jamie@1
|
400 }
|
jamie@1
|
401
|
jamie@1
|
402 ratio1 = data[position1_lwr] / data[peak_index];
|
jamie@1
|
403
|
jamie@1
|
404 if(position1_lwr > peak_index * 0.4 && position1_lwr <
|
jamie@1
|
405 peak_index * 0.6 && ratio1 > 0.1)
|
jamie@1
|
406 peak_index = position1_lwr;
|
jamie@1
|
407
|
jamie@1
|
408 *result = 22050 * (float)peak_index / (float)N;
|
jamie@1
|
409
|
jamie@1
|
410 free(coeffs2);
|
jamie@1
|
411 free(coeffs3);
|
jamie@1
|
412 free(product);
|
jamie@1
|
413
|
jamie@1
|
414 }
|
jamie@1
|
415
|