annotate src/scalar.c @ 44:b2e7e24c9a9c

Fixed xtract_flatness()
author Jamie Bullock <jamie@postlude.co.uk>
date Wed, 20 Dec 2006 12:28:08 +0000
parents 4a36f70a76e9
children e8f4c56de591
rev   line source
jamie@1 1 /* libxtract feature extraction library
jamie@1 2 *
jamie@1 3 * Copyright (C) 2006 Jamie Bullock
jamie@1 4 *
jamie@1 5 * This program is free software; you can redistribute it and/or modify
jamie@1 6 * it under the terms of the GNU General Public License as published by
jamie@1 7 * the Free Software Foundation; either version 2 of the License, or
jamie@1 8 * (at your option) any later version.
jamie@1 9 *
jamie@1 10 * This program is distributed in the hope that it will be useful,
jamie@1 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
jamie@1 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
jamie@1 13 * GNU General Public License for more details.
jamie@1 14 *
jamie@1 15 * You should have received a copy of the GNU General Public License
jamie@1 16 * along with this program; if not, write to the Free Software
jamie@1 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
jamie@1 18 * USA.
jamie@1 19 */
jamie@1 20
jamie@1 21
jamie@1 22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
jamie@1 23
jamie@1 24 #include "xtract/libxtract.h"
jamie@1 25 #include "math.h"
jamie@5 26 #include <stdlib.h>
jamie@43 27 #include <string.h>
jamie@1 28
jamie@43 29 int xtract_mean(const float *data, const int N, const void *argv, float *result){
jamie@25 30
jamie@1 31 int n = N;
jamie@1 32
jamie@1 33 while(n--)
jamie@42 34 *result += data[n];
jamie@25 35
jamie@1 36 *result /= N;
jamie@38 37
jamie@38 38 return SUCCESS;
jamie@1 39 }
jamie@1 40
jamie@43 41 int xtract_variance(const float *data, const int N, const void *argv, float *result){
jamie@25 42
jamie@1 43 int n = N;
jamie@1 44
jamie@1 45 while(n--)
jamie@43 46 *result += pow(data[n] - *(float *)argv, 2);
jamie@25 47
jamie@43 48 *result = *result / (N - 1);
jamie@44 49
jamie@38 50 return SUCCESS;
jamie@1 51 }
jamie@1 52
jamie@43 53 int xtract_standard_deviation(const float *data, const int N, const void *argv, float *result){
jamie@25 54
jamie@1 55 *result = sqrt(*(float *)argv);
jamie@25 56
jamie@38 57 return SUCCESS;
jamie@1 58 }
jamie@1 59
jamie@43 60 int xtract_average_deviation(const float *data, const int N, const void *argv, float *result){
jamie@25 61
jamie@1 62 int n = N;
jamie@44 63
jamie@1 64 while(n--)
jamie@42 65 *result += fabs(data[n] - *(float *)argv);
jamie@25 66
jamie@1 67 *result /= N;
jamie@1 68
jamie@38 69 return SUCCESS;
jamie@1 70 }
jamie@1 71
jamie@43 72 int xtract_skewness(const float *data, const int N, const void *argv, float *result){
jamie@25 73
jamie@1 74 int n = N;
jamie@1 75
jamie@42 76 float temp;
jamie@25 77
jamie@42 78 while(n--){
jamie@42 79 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@42 80 *result += pow(temp, 3);
jamie@42 81 }
jamie@1 82
jamie@42 83 *result /= N;
jamie@44 84
jamie@38 85 return SUCCESS;
jamie@1 86 }
jamie@1 87
jamie@43 88 int xtract_kurtosis(const float *data, const int N, const void *argv, float *result){
jamie@25 89
jamie@1 90 int n = N;
jamie@1 91
jamie@42 92 float temp;
jamie@25 93
jamie@42 94 while(n--){
jamie@42 95 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@42 96 *result += pow(temp, 4);
jamie@42 97 }
jamie@25 98
jamie@42 99 *result /= N;
jamie@42 100 *result -= 3.0f;
jamie@44 101
jamie@38 102 return SUCCESS;
jamie@1 103 }
jamie@1 104
jamie@11 105
jamie@43 106 int xtract_centroid(const float *data, const int N, const void *argv, float *result){
jamie@25 107
jamie@37 108 int n = (N >> 1);
jamie@11 109
jamie@43 110 const float *freqs, *amps;
jamie@43 111 float FA = 0.f, A = 0.f;
jamie@11 112
jamie@25 113 freqs = data;
jamie@38 114 amps = data + n;
jamie@25 115
jamie@11 116 while(n--){
jamie@25 117 FA += freqs[n] * amps[n];
jamie@25 118 A += amps[n];
jamie@25 119 }
jamie@25 120
jamie@25 121 *result = FA / A;
jamie@11 122
jamie@38 123 return SUCCESS;
jamie@11 124 }
jamie@11 125
jamie@43 126 int xtract_irregularity_k(const float *data, const int N, const void *argv, float *result){
jamie@25 127
jamie@1 128 int n,
jamie@37 129 M = N - 1;
jamie@1 130
jamie@1 131 for(n = 1; n < M; n++)
jamie@42 132 *result += fabs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
jamie@1 133
jamie@38 134 return SUCCESS;
jamie@1 135 }
jamie@1 136
jamie@43 137 int xtract_irregularity_j(const float *data, const int N, const void *argv, float *result){
jamie@25 138
jamie@1 139 int n = N;
jamie@1 140
jamie@37 141 float num = 0.f, den = 0.f;
jamie@1 142
jamie@1 143 while(n--){
jamie@42 144 num += pow(data[n] - data[n+1], 2);
jamie@42 145 den += pow(data[n], 2);
jamie@1 146 }
jamie@25 147
jamie@1 148 *result = num / den;
jamie@1 149
jamie@38 150 return SUCCESS;
jamie@1 151 }
jamie@1 152
jamie@43 153 int xtract_tristimulus_1(const float *data, const int N, const void *argv, float *result){
jamie@1 154
jamie@1 155 int n = N;
jamie@1 156
jamie@42 157 float den, p1, temp;
jamie@1 158
jamie@42 159 den = p1 = temp = 0.f;
jamie@1 160
jamie@42 161 for(n = 0; n < N; n++){
jamie@42 162 if((temp = data[n])){
jamie@42 163 den += temp;
jamie@42 164 if(!p1)
jamie@42 165 p1 = temp;
jamie@42 166 }
jamie@42 167 }
jamie@42 168
jamie@42 169 *result = p1 / den;
jamie@1 170
jamie@38 171 return SUCCESS;
jamie@1 172 }
jamie@1 173
jamie@43 174 int xtract_tristimulus_2(const float *data, const int N, const void *argv, float *result){
jamie@25 175
jamie@1 176 int n = N;
jamie@1 177
jamie@42 178 float den, p2, p3, p4, temp;
jamie@1 179
jamie@42 180 den = p2 = p3 = p4 = temp = 0.f;
jamie@1 181
jamie@42 182 for(n = 0; n < N; n++){
jamie@42 183 if((temp = data[n])){
jamie@42 184 den += temp;
jamie@42 185 if(!p2)
jamie@42 186 p2 = temp;
jamie@42 187 else if(!p3)
jamie@42 188 p3 = temp;
jamie@42 189 else if(!p4)
jamie@42 190 p4 = temp;
jamie@42 191 }
jamie@42 192 }
jamie@42 193
jamie@42 194 *result = (p2 + p3 + p4) / den;
jamie@25 195
jamie@38 196 return SUCCESS;
jamie@1 197 }
jamie@1 198
jamie@43 199 int xtract_tristimulus_3(const float *data, const int N, const void *argv, float *result){
jamie@25 200
jamie@42 201 int n = N, count = 0;
jamie@1 202
jamie@42 203 float den, num, temp;
jamie@1 204
jamie@42 205 den = num = temp = 0.f;
jamie@1 206
jamie@42 207 for(n = 0; n < N; n++){
jamie@42 208 if((temp = data[n])){
jamie@42 209 den += temp;
jamie@42 210 if(count >= 5)
jamie@42 211 num += temp;
jamie@42 212 count++;
jamie@42 213 }
jamie@42 214 }
jamie@25 215
jamie@1 216 *result = num / den;
jamie@25 217
jamie@38 218 return SUCCESS;
jamie@1 219 }
jamie@1 220
jamie@43 221 int xtract_smoothness(const float *data, const int N, const void *argv, float *result){
jamie@25 222
jamie@1 223 int n = N;
jamie@1 224
jamie@43 225 float *input;
jamie@43 226
jamie@43 227 input = (float *)malloc(N * sizeof(float));
jamie@43 228 input = memcpy(input, data, N * sizeof(float));
jamie@43 229
jamie@43 230 if (input[0] <= 0) input[0] = 1;
jamie@43 231 if (input[1] <= 0) input[1] = 1;
jamie@25 232
jamie@1 233 for(n = 2; n < N; n++){
jamie@43 234 if(input[n] <= 0) input[n] = 1;
jamie@43 235 *result += abs(20 * log(input[n-1]) - (20 * log(input[n-2]) +
jamie@43 236 20 * log(input[n-1]) + 20 * log(input[n])) / 3);
jamie@25 237 }
jamie@43 238
jamie@43 239 free(input);
jamie@44 240
jamie@38 241 return SUCCESS;
jamie@1 242 }
jamie@1 243
jamie@43 244 int xtract_spread(const float *data, const int N, const void *argv, float *result){
jamie@1 245
jamie@1 246 int n = N;
jamie@1 247
jamie@37 248 float num = 0.f, den = 0.f, tmp;
jamie@1 249
jamie@1 250 while(n--){
jamie@25 251 tmp = n - *(float *)argv;
jamie@25 252 num += SQ(tmp) * data[n];
jamie@25 253 den += data[n];
jamie@1 254 }
jamie@1 255
jamie@1 256 *result = sqrt(num / den);
jamie@25 257
jamie@38 258 return SUCCESS;
jamie@1 259 }
jamie@1 260
jamie@43 261 int xtract_zcr(const float *data, const int N, const void *argv, float *result){
jamie@1 262
jamie@1 263 int n = N;
jamie@25 264
jamie@1 265 for(n = 1; n < N; n++)
jamie@25 266 if(data[n] * data[n-1] < 0) (*result)++;
jamie@25 267
jamie@1 268 *result /= N;
jamie@25 269
jamie@38 270 return SUCCESS;
jamie@1 271 }
jamie@1 272
jamie@43 273 int xtract_rolloff(const float *data, const int N, const void *argv, float *result){
jamie@1 274
jamie@1 275 int n = N;
jamie@42 276 float pivot, temp;
jamie@42 277
jamie@42 278 pivot = temp = 0.f;
jamie@25 279
jamie@1 280 while(n--) pivot += data[n];
jamie@25 281
jamie@42 282 pivot *= ((float *)argv)[0];
jamie@25 283
jamie@42 284 for(n = 0; temp < pivot; n++)
jamie@42 285 temp += data[n];
jamie@1 286
jamie@42 287 *result = (n / (float)N) * (((float *)argv)[1] * .5);
jamie@25 288
jamie@38 289 return SUCCESS;
jamie@1 290 }
jamie@1 291
jamie@43 292 int xtract_loudness(const float *data, const int N, const void *argv, float *result){
jamie@25 293
jamie@1 294 int n = BARK_BANDS;
jamie@25 295
jamie@1 296 /*if(n != N) return BAD_VECTOR_SIZE; */
jamie@1 297
jamie@1 298 while(n--)
jamie@25 299 *result += pow(data[n], 0.23);
jamie@38 300
jamie@38 301 return SUCCESS;
jamie@1 302 }
jamie@1 303
jamie@43 304 int xtract_flatness(const float *data, const int N, const void *argv, float *result){
jamie@1 305
jamie@42 306 int n;
jamie@1 307
jamie@44 308 double num, den, temp;
jamie@25 309
jamie@44 310 den = data[0];
jamie@44 311 num = (data[0] == 0.f ? 1.f : data[0]);
jamie@43 312
jamie@44 313 for(n = 1; n < N; n++){
jamie@44 314 if((temp = data[n]) != 0.f) {
jamie@44 315 num *= temp;
jamie@44 316 den += temp;
jamie@25 317 }
jamie@1 318 }
jamie@44 319
jamie@44 320 num = pow(num, 1.f / N);
jamie@1 321 den /= N;
jamie@25 322
jamie@44 323 if(num < 1e-20)
jamie@44 324 num = 1e-20;
jamie@44 325
jamie@44 326 if(den < 1e-20)
jamie@44 327 den = 1e-20;
jamie@44 328
jamie@42 329 *result = num / den;
jamie@25 330
jamie@38 331 return SUCCESS;
jamie@44 332
jamie@1 333 }
jamie@1 334
jamie@43 335 int xtract_tonality(const float *data, const int N, const void *argv, float *result){
jamie@25 336
jamie@1 337 float sfmdb, sfm;
jamie@25 338
jamie@1 339 sfm = *(float *)argv;
jamie@1 340
jamie@1 341 sfmdb = (sfm > 0 ? (10 * log10(sfm)) / -60 : 0);
jamie@25 342
jamie@1 343 *result = MIN(sfmdb, 1);
jamie@25 344
jamie@38 345 return SUCCESS;
jamie@1 346 }
jamie@1 347
jamie@43 348 int xtract_crest(const float *data, const int N, const void *argv, float *result){
jamie@25 349
jamie@38 350 return FEATURE_NOT_IMPLEMENTED;
jamie@25 351
jamie@1 352 }
jamie@1 353
jamie@43 354 int xtract_noisiness(const float *data, const int N, const void *argv, float *result){
jamie@25 355
jamie@38 356 return FEATURE_NOT_IMPLEMENTED;
jamie@25 357
jamie@1 358 }
jamie@2 359
jamie@43 360 int xtract_rms_amplitude(const float *data, const int N, const void *argv, float *result){
jamie@1 361
jamie@1 362 int n = N;
jamie@1 363
jamie@1 364 while(n--) *result += SQ(data[n]);
jamie@1 365
jamie@1 366 *result = sqrt(*result / N);
jamie@25 367
jamie@38 368 return SUCCESS;
jamie@1 369 }
jamie@1 370
jamie@43 371 int xtract_inharmonicity(const float *data, const int N, const void *argv, float *result){
jamie@1 372
jamie@41 373 int n = N >> 1;
jamie@43 374 float num = 0.f, den = 0.f, fund;
jamie@43 375 const float *freqs, *amps;
jamie@1 376
jamie@41 377 fund = *(float *)argv;
jamie@41 378 freqs = data;
jamie@41 379 amps = data + n;
jamie@25 380
jamie@1 381 while(n--){
jamie@41 382 num += abs(freqs[n] - n * fund) * SQ(amps[n]);
jamie@41 383 den += SQ(amps[n]);
jamie@1 384 }
jamie@1 385
jamie@41 386 *result = (2 * num) / (fund * den);
jamie@25 387
jamie@38 388 return SUCCESS;
jamie@1 389 }
jamie@1 390
jamie@1 391
jamie@43 392 int xtract_power(const float *data, const int N, const void *argv, float *result){
jamie@1 393
jamie@38 394 return FEATURE_NOT_IMPLEMENTED;
jamie@25 395
jamie@1 396 }
jamie@1 397
jamie@43 398 int xtract_odd_even_ratio(const float *data, const int N, const void *argv, float *result){
jamie@1 399
jamie@43 400 int M = (N >> 1), n;
jamie@1 401
jamie@43 402 float num = 0.f, den = 0.f, temp, f0;
jamie@1 403
jamie@43 404 f0 = *(float *)argv;
jamie@44 405
jamie@43 406 for(n = 0; n < M; n++){
jamie@43 407 if((temp = data[n])){
jamie@43 408 if(((int)(rintf(temp / f0)) % 2) != 0){
jamie@43 409 num += data[M + n];
jamie@43 410 }
jamie@43 411 else{
jamie@43 412 den += data[M + n];
jamie@43 413 }
jamie@43 414 }
jamie@1 415 }
jamie@1 416
jamie@1 417 *result = num / den;
jamie@25 418
jamie@38 419 return SUCCESS;
jamie@1 420 }
jamie@1 421
jamie@43 422 int xtract_sharpness(const float *data, const int N, const void *argv, float *result){
jamie@1 423
jamie@38 424 return FEATURE_NOT_IMPLEMENTED;
jamie@25 425
jamie@1 426 }
jamie@1 427
jamie@43 428 int xtract_slope(const float *data, const int N, const void *argv, float *result){
jamie@1 429
jamie@38 430 return FEATURE_NOT_IMPLEMENTED;
jamie@25 431
jamie@1 432 }
jamie@1 433
jamie@43 434 int xtract_lowest(const float *data, const int N, const void *argv, float *result){
jamie@25 435
jamie@43 436 float lower, upper, lowest;
jamie@1 437 int n = N;
jamie@1 438
jamie@43 439 lower = *(float *)argv;
jamie@43 440 upper = *((float *)argv+1);
jamie@44 441
jamie@43 442 lowest = upper;
jamie@43 443
jamie@1 444 while(n--) {
jamie@43 445 if(data[n] > lower)
jamie@43 446 *result = MIN(lowest, data[n]);
jamie@1 447 }
jamie@1 448
jamie@43 449 *result = (*result == upper ? -0 : *result);
jamie@44 450
jamie@38 451 return SUCCESS;
jamie@1 452 }
jamie@1 453
jamie@43 454 int xtract_hps(const float *data, const int N, const void *argv, float *result){
jamie@1 455
jamie@1 456 int n = N, M, m, l, peak_index, position1_lwr;
jamie@1 457 float *coeffs2, *coeffs3, *product, L,
jamie@25 458 largest1_lwr, peak, ratio1, sr;
jamie@1 459
jamie@25 460 sr = *(float*)argv;
jamie@25 461
jamie@1 462 coeffs2 = (float *)malloc(N * sizeof(float));
jamie@1 463 coeffs3 = (float *)malloc(N * sizeof(float));
jamie@1 464 product = (float *)malloc(N * sizeof(float));
jamie@25 465
jamie@1 466 while(n--) coeffs2[n] = coeffs3[n] = 1;
jamie@1 467
jamie@1 468 M = N >> 1;
jamie@1 469 L = N / 3;
jamie@1 470
jamie@1 471 while(M--){
jamie@25 472 m = M << 1;
jamie@25 473 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
jamie@1 474
jamie@25 475 if(M < L){
jamie@25 476 l = M * 3;
jamie@25 477 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
jamie@25 478 }
jamie@1 479 }
jamie@25 480
jamie@1 481 peak_index = peak = 0;
jamie@25 482
jamie@1 483 for(n = 1; n < N; n++){
jamie@25 484 product[n] = data[n] * coeffs2[n] * coeffs3[n];
jamie@25 485 if(product[n] > peak){
jamie@25 486 peak_index = n;
jamie@25 487 peak = product[n];
jamie@25 488 }
jamie@1 489 }
jamie@1 490
jamie@1 491 largest1_lwr = position1_lwr = 0;
jamie@1 492
jamie@1 493 for(n = 0; n < N; n++){
jamie@25 494 if(data[n] > largest1_lwr && n != peak_index){
jamie@25 495 largest1_lwr = data[n];
jamie@25 496 position1_lwr = n;
jamie@25 497 }
jamie@1 498 }
jamie@1 499
jamie@1 500 ratio1 = data[position1_lwr] / data[peak_index];
jamie@1 501
jamie@1 502 if(position1_lwr > peak_index * 0.4 && position1_lwr <
jamie@25 503 peak_index * 0.6 && ratio1 > 0.1)
jamie@25 504 peak_index = position1_lwr;
jamie@1 505
jamie@22 506 *result = sr / (float)peak_index;
jamie@25 507
jamie@1 508 free(coeffs2);
jamie@1 509 free(coeffs3);
jamie@1 510 free(product);
jamie@25 511
jamie@38 512 return SUCCESS;
jamie@1 513 }
jamie@5 514
jamie@5 515
jamie@43 516 int xtract_f0(const float *data, const int N, const void *argv, float *result){
jamie@5 517
jamie@25 518 int M, sr, tau, n;
jamie@43 519 size_t bytes;
jamie@43 520 float f0, err_tau_1, err_tau_x, array_max,
jamie@43 521 threshold_peak, threshold_centre,
jamie@43 522 *input;
jamie@22 523
jamie@25 524 sr = *(float *)argv;
jamie@43 525
jamie@43 526 input = (float *)malloc(bytes = N * sizeof(float));
jamie@43 527 input = memcpy(input, data, bytes);
jamie@25 528 /* threshold_peak = *((float *)argv+1);
jamie@25 529 threshold_centre = *((float *)argv+2);
jamie@25 530 printf("peak: %.2f\tcentre: %.2f\n", threshold_peak, threshold_centre);*/
jamie@25 531 /* add temporary dynamic control over thresholds to test clipping effects */
jamie@22 532
jamie@25 533 /* FIX: tweak and make into macros */
jamie@25 534 threshold_peak = .8;
jamie@25 535 threshold_centre = .3;
jamie@25 536 M = N >> 1;
jamie@25 537 err_tau_1 = 0;
jamie@25 538 array_max = 0;
jamie@25 539
jamie@25 540 /* Find the array max */
jamie@25 541 for(n = 0; n < N; n++){
jamie@43 542 if (input[n] > array_max)
jamie@43 543 array_max = input[n];
jamie@12 544 }
jamie@25 545
jamie@25 546 threshold_peak *= array_max;
jamie@25 547
jamie@25 548 /* peak clip */
jamie@25 549 for(n = 0; n < N; n++){
jamie@43 550 if(input[n] > threshold_peak)
jamie@43 551 input[n] = threshold_peak;
jamie@43 552 else if(input[n] < -threshold_peak)
jamie@43 553 input[n] = -threshold_peak;
jamie@25 554 }
jamie@25 555
jamie@25 556 threshold_centre *= array_max;
jamie@25 557
jamie@25 558 /* Centre clip */
jamie@25 559 for(n = 0; n < N; n++){
jamie@43 560 if (input[n] < threshold_centre)
jamie@43 561 input[n] = 0;
jamie@25 562 else
jamie@43 563 input[n] -= threshold_centre;
jamie@25 564 }
jamie@25 565
jamie@25 566 /* Estimate fundamental freq */
jamie@25 567 for (n = 1; n < M; n++)
jamie@43 568 err_tau_1 = err_tau_1 + fabs(input[n] - input[n+1]);
jamie@25 569 /* FIX: this doesn't pose too much load if it returns 'early', but if it can't find f0, load can be significant for larger block sizes M^2 iterations! */
jamie@25 570 for (tau = 2; tau < M; tau++){
jamie@25 571 err_tau_x = 0;
jamie@25 572 for (n = 1; n < M; n++){
jamie@43 573 err_tau_x = err_tau_x + fabs(input[n] - input[n+tau]);
jamie@25 574 }
jamie@25 575 if (err_tau_x < err_tau_1) {
jamie@25 576 f0 = sr / (tau + (err_tau_x / err_tau_1));
jamie@25 577 *result = f0;
jamie@43 578 free(input);
jamie@25 579 return SUCCESS;
jamie@25 580 }
jamie@25 581 }
jamie@43 582 *result = -0;
jamie@43 583 free(input);
jamie@25 584 return NO_RESULT;
jamie@5 585 }
jamie@43 586
jamie@43 587 int xtract_failsafe_f0(const float *data, const int N, const void *argv, float *result){
jamie@44 588
jamie@43 589 float *magnitudes = NULL, argf[2], *peaks = NULL, return_code;
jamie@44 590
jamie@43 591 return_code = xtract_f0(data, N, argv, result);
jamie@44 592
jamie@43 593 if(return_code == NO_RESULT){
jamie@44 594
jamie@43 595 magnitudes = (float *)malloc(N * sizeof(float));
jamie@43 596 peaks = (float *)malloc(N * sizeof(float));
jamie@43 597 xtract_magnitude_spectrum(data, N, NULL, magnitudes);
jamie@43 598 argf[0] = 10.f;
jamie@43 599 argf[1] = *(float *)argv;
jamie@43 600 xtract_peaks(magnitudes, N, argf, peaks);
jamie@43 601 argf[0] = 0.f;
jamie@43 602 argf[1] = N >> 1;
jamie@43 603 xtract_lowest(peaks, argf[1], argf, result);
jamie@44 604
jamie@43 605 free(magnitudes);
jamie@43 606 free(peaks);
jamie@43 607 }
jamie@43 608
jamie@43 609 return SUCCESS;
jamie@43 610
jamie@43 611 }
jamie@44 612