jamie@1
|
1 /* libxtract feature extraction library
|
jamie@1
|
2 *
|
jamie@1
|
3 * Copyright (C) 2006 Jamie Bullock
|
jamie@1
|
4 *
|
jamie@1
|
5 * This program is free software; you can redistribute it and/or modify
|
jamie@1
|
6 * it under the terms of the GNU General Public License as published by
|
jamie@1
|
7 * the Free Software Foundation; either version 2 of the License, or
|
jamie@1
|
8 * (at your option) any later version.
|
jamie@1
|
9 *
|
jamie@1
|
10 * This program is distributed in the hope that it will be useful,
|
jamie@1
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
jamie@1
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
jamie@1
|
13 * GNU General Public License for more details.
|
jamie@1
|
14 *
|
jamie@1
|
15 * You should have received a copy of the GNU General Public License
|
jamie@1
|
16 * along with this program; if not, write to the Free Software
|
jamie@1
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
jamie@1
|
18 * USA.
|
jamie@1
|
19 */
|
jamie@1
|
20
|
jamie@1
|
21
|
jamie@1
|
22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
|
jamie@1
|
23
|
jamie@1
|
24 #include "xtract/libxtract.h"
|
jamie@1
|
25 #include "math.h"
|
jamie@5
|
26 #include <stdlib.h>
|
jamie@43
|
27 #include <string.h>
|
jamie@1
|
28
|
jamie@43
|
29 int xtract_mean(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
30
|
jamie@1
|
31 int n = N;
|
jamie@1
|
32
|
jamie@1
|
33 while(n--)
|
jamie@42
|
34 *result += data[n];
|
jamie@25
|
35
|
jamie@1
|
36 *result /= N;
|
jamie@38
|
37
|
jamie@38
|
38 return SUCCESS;
|
jamie@1
|
39 }
|
jamie@1
|
40
|
jamie@43
|
41 int xtract_variance(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
42
|
jamie@1
|
43 int n = N;
|
jamie@1
|
44
|
jamie@1
|
45 while(n--)
|
jamie@43
|
46 *result += pow(data[n] - *(float *)argv, 2);
|
jamie@25
|
47
|
jamie@43
|
48 *result = *result / (N - 1);
|
jamie@44
|
49
|
jamie@38
|
50 return SUCCESS;
|
jamie@1
|
51 }
|
jamie@1
|
52
|
jamie@43
|
53 int xtract_standard_deviation(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
54
|
jamie@1
|
55 *result = sqrt(*(float *)argv);
|
jamie@25
|
56
|
jamie@38
|
57 return SUCCESS;
|
jamie@1
|
58 }
|
jamie@1
|
59
|
jamie@43
|
60 int xtract_average_deviation(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
61
|
jamie@1
|
62 int n = N;
|
jamie@44
|
63
|
jamie@1
|
64 while(n--)
|
jamie@42
|
65 *result += fabs(data[n] - *(float *)argv);
|
jamie@25
|
66
|
jamie@1
|
67 *result /= N;
|
jamie@1
|
68
|
jamie@38
|
69 return SUCCESS;
|
jamie@1
|
70 }
|
jamie@1
|
71
|
jamie@43
|
72 int xtract_skewness(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
73
|
jamie@1
|
74 int n = N;
|
jamie@1
|
75
|
jamie@42
|
76 float temp;
|
jamie@25
|
77
|
jamie@42
|
78 while(n--){
|
jamie@42
|
79 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@42
|
80 *result += pow(temp, 3);
|
jamie@42
|
81 }
|
jamie@1
|
82
|
jamie@42
|
83 *result /= N;
|
jamie@44
|
84
|
jamie@38
|
85 return SUCCESS;
|
jamie@1
|
86 }
|
jamie@1
|
87
|
jamie@43
|
88 int xtract_kurtosis(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
89
|
jamie@1
|
90 int n = N;
|
jamie@1
|
91
|
jamie@42
|
92 float temp;
|
jamie@25
|
93
|
jamie@42
|
94 while(n--){
|
jamie@42
|
95 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@42
|
96 *result += pow(temp, 4);
|
jamie@42
|
97 }
|
jamie@25
|
98
|
jamie@42
|
99 *result /= N;
|
jamie@42
|
100 *result -= 3.0f;
|
jamie@44
|
101
|
jamie@38
|
102 return SUCCESS;
|
jamie@1
|
103 }
|
jamie@1
|
104
|
jamie@11
|
105
|
jamie@43
|
106 int xtract_centroid(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
107
|
jamie@37
|
108 int n = (N >> 1);
|
jamie@11
|
109
|
jamie@43
|
110 const float *freqs, *amps;
|
jamie@43
|
111 float FA = 0.f, A = 0.f;
|
jamie@11
|
112
|
jamie@25
|
113 freqs = data;
|
jamie@38
|
114 amps = data + n;
|
jamie@25
|
115
|
jamie@11
|
116 while(n--){
|
jamie@25
|
117 FA += freqs[n] * amps[n];
|
jamie@25
|
118 A += amps[n];
|
jamie@25
|
119 }
|
jamie@25
|
120
|
jamie@25
|
121 *result = FA / A;
|
jamie@11
|
122
|
jamie@38
|
123 return SUCCESS;
|
jamie@11
|
124 }
|
jamie@11
|
125
|
jamie@43
|
126 int xtract_irregularity_k(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
127
|
jamie@1
|
128 int n,
|
jamie@37
|
129 M = N - 1;
|
jamie@1
|
130
|
jamie@1
|
131 for(n = 1; n < M; n++)
|
jamie@42
|
132 *result += fabs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
|
jamie@1
|
133
|
jamie@38
|
134 return SUCCESS;
|
jamie@1
|
135 }
|
jamie@1
|
136
|
jamie@43
|
137 int xtract_irregularity_j(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
138
|
jamie@1
|
139 int n = N;
|
jamie@1
|
140
|
jamie@37
|
141 float num = 0.f, den = 0.f;
|
jamie@1
|
142
|
jamie@1
|
143 while(n--){
|
jamie@42
|
144 num += pow(data[n] - data[n+1], 2);
|
jamie@42
|
145 den += pow(data[n], 2);
|
jamie@1
|
146 }
|
jamie@25
|
147
|
jamie@1
|
148 *result = num / den;
|
jamie@1
|
149
|
jamie@38
|
150 return SUCCESS;
|
jamie@1
|
151 }
|
jamie@1
|
152
|
jamie@43
|
153 int xtract_tristimulus_1(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
154
|
jamie@1
|
155 int n = N;
|
jamie@1
|
156
|
jamie@42
|
157 float den, p1, temp;
|
jamie@1
|
158
|
jamie@42
|
159 den = p1 = temp = 0.f;
|
jamie@1
|
160
|
jamie@42
|
161 for(n = 0; n < N; n++){
|
jamie@42
|
162 if((temp = data[n])){
|
jamie@42
|
163 den += temp;
|
jamie@42
|
164 if(!p1)
|
jamie@42
|
165 p1 = temp;
|
jamie@42
|
166 }
|
jamie@42
|
167 }
|
jamie@42
|
168
|
jamie@42
|
169 *result = p1 / den;
|
jamie@1
|
170
|
jamie@38
|
171 return SUCCESS;
|
jamie@1
|
172 }
|
jamie@1
|
173
|
jamie@43
|
174 int xtract_tristimulus_2(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
175
|
jamie@1
|
176 int n = N;
|
jamie@1
|
177
|
jamie@42
|
178 float den, p2, p3, p4, temp;
|
jamie@1
|
179
|
jamie@42
|
180 den = p2 = p3 = p4 = temp = 0.f;
|
jamie@1
|
181
|
jamie@42
|
182 for(n = 0; n < N; n++){
|
jamie@42
|
183 if((temp = data[n])){
|
jamie@42
|
184 den += temp;
|
jamie@42
|
185 if(!p2)
|
jamie@42
|
186 p2 = temp;
|
jamie@42
|
187 else if(!p3)
|
jamie@42
|
188 p3 = temp;
|
jamie@42
|
189 else if(!p4)
|
jamie@42
|
190 p4 = temp;
|
jamie@42
|
191 }
|
jamie@42
|
192 }
|
jamie@42
|
193
|
jamie@42
|
194 *result = (p2 + p3 + p4) / den;
|
jamie@25
|
195
|
jamie@38
|
196 return SUCCESS;
|
jamie@1
|
197 }
|
jamie@1
|
198
|
jamie@43
|
199 int xtract_tristimulus_3(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
200
|
jamie@42
|
201 int n = N, count = 0;
|
jamie@1
|
202
|
jamie@42
|
203 float den, num, temp;
|
jamie@1
|
204
|
jamie@42
|
205 den = num = temp = 0.f;
|
jamie@1
|
206
|
jamie@42
|
207 for(n = 0; n < N; n++){
|
jamie@42
|
208 if((temp = data[n])){
|
jamie@42
|
209 den += temp;
|
jamie@42
|
210 if(count >= 5)
|
jamie@42
|
211 num += temp;
|
jamie@42
|
212 count++;
|
jamie@42
|
213 }
|
jamie@42
|
214 }
|
jamie@25
|
215
|
jamie@1
|
216 *result = num / den;
|
jamie@25
|
217
|
jamie@38
|
218 return SUCCESS;
|
jamie@1
|
219 }
|
jamie@1
|
220
|
jamie@43
|
221 int xtract_smoothness(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
222
|
jamie@1
|
223 int n = N;
|
jamie@1
|
224
|
jamie@43
|
225 float *input;
|
jamie@43
|
226
|
jamie@43
|
227 input = (float *)malloc(N * sizeof(float));
|
jamie@43
|
228 input = memcpy(input, data, N * sizeof(float));
|
jamie@43
|
229
|
jamie@43
|
230 if (input[0] <= 0) input[0] = 1;
|
jamie@43
|
231 if (input[1] <= 0) input[1] = 1;
|
jamie@25
|
232
|
jamie@1
|
233 for(n = 2; n < N; n++){
|
jamie@43
|
234 if(input[n] <= 0) input[n] = 1;
|
jamie@43
|
235 *result += abs(20 * log(input[n-1]) - (20 * log(input[n-2]) +
|
jamie@43
|
236 20 * log(input[n-1]) + 20 * log(input[n])) / 3);
|
jamie@25
|
237 }
|
jamie@43
|
238
|
jamie@43
|
239 free(input);
|
jamie@44
|
240
|
jamie@38
|
241 return SUCCESS;
|
jamie@1
|
242 }
|
jamie@1
|
243
|
jamie@43
|
244 int xtract_spread(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
245
|
jamie@1
|
246 int n = N;
|
jamie@1
|
247
|
jamie@37
|
248 float num = 0.f, den = 0.f, tmp;
|
jamie@1
|
249
|
jamie@1
|
250 while(n--){
|
jamie@25
|
251 tmp = n - *(float *)argv;
|
jamie@25
|
252 num += SQ(tmp) * data[n];
|
jamie@25
|
253 den += data[n];
|
jamie@1
|
254 }
|
jamie@1
|
255
|
jamie@1
|
256 *result = sqrt(num / den);
|
jamie@25
|
257
|
jamie@38
|
258 return SUCCESS;
|
jamie@1
|
259 }
|
jamie@1
|
260
|
jamie@43
|
261 int xtract_zcr(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
262
|
jamie@1
|
263 int n = N;
|
jamie@25
|
264
|
jamie@1
|
265 for(n = 1; n < N; n++)
|
jamie@25
|
266 if(data[n] * data[n-1] < 0) (*result)++;
|
jamie@25
|
267
|
jamie@1
|
268 *result /= N;
|
jamie@25
|
269
|
jamie@38
|
270 return SUCCESS;
|
jamie@1
|
271 }
|
jamie@1
|
272
|
jamie@43
|
273 int xtract_rolloff(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
274
|
jamie@1
|
275 int n = N;
|
jamie@42
|
276 float pivot, temp;
|
jamie@42
|
277
|
jamie@42
|
278 pivot = temp = 0.f;
|
jamie@25
|
279
|
jamie@1
|
280 while(n--) pivot += data[n];
|
jamie@25
|
281
|
jamie@42
|
282 pivot *= ((float *)argv)[0];
|
jamie@25
|
283
|
jamie@42
|
284 for(n = 0; temp < pivot; n++)
|
jamie@42
|
285 temp += data[n];
|
jamie@1
|
286
|
jamie@42
|
287 *result = (n / (float)N) * (((float *)argv)[1] * .5);
|
jamie@25
|
288
|
jamie@38
|
289 return SUCCESS;
|
jamie@1
|
290 }
|
jamie@1
|
291
|
jamie@43
|
292 int xtract_loudness(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
293
|
jamie@1
|
294 int n = BARK_BANDS;
|
jamie@25
|
295
|
jamie@1
|
296 /*if(n != N) return BAD_VECTOR_SIZE; */
|
jamie@1
|
297
|
jamie@1
|
298 while(n--)
|
jamie@25
|
299 *result += pow(data[n], 0.23);
|
jamie@38
|
300
|
jamie@38
|
301 return SUCCESS;
|
jamie@1
|
302 }
|
jamie@1
|
303
|
jamie@43
|
304 int xtract_flatness(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
305
|
jamie@42
|
306 int n;
|
jamie@1
|
307
|
jamie@44
|
308 double num, den, temp;
|
jamie@25
|
309
|
jamie@44
|
310 den = data[0];
|
jamie@44
|
311 num = (data[0] == 0.f ? 1.f : data[0]);
|
jamie@43
|
312
|
jamie@44
|
313 for(n = 1; n < N; n++){
|
jamie@44
|
314 if((temp = data[n]) != 0.f) {
|
jamie@44
|
315 num *= temp;
|
jamie@44
|
316 den += temp;
|
jamie@25
|
317 }
|
jamie@1
|
318 }
|
jamie@44
|
319
|
jamie@44
|
320 num = pow(num, 1.f / N);
|
jamie@1
|
321 den /= N;
|
jamie@25
|
322
|
jamie@44
|
323 if(num < 1e-20)
|
jamie@44
|
324 num = 1e-20;
|
jamie@44
|
325
|
jamie@44
|
326 if(den < 1e-20)
|
jamie@44
|
327 den = 1e-20;
|
jamie@44
|
328
|
jamie@42
|
329 *result = num / den;
|
jamie@25
|
330
|
jamie@38
|
331 return SUCCESS;
|
jamie@44
|
332
|
jamie@1
|
333 }
|
jamie@1
|
334
|
jamie@43
|
335 int xtract_tonality(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
336
|
jamie@1
|
337 float sfmdb, sfm;
|
jamie@25
|
338
|
jamie@1
|
339 sfm = *(float *)argv;
|
jamie@1
|
340
|
jamie@1
|
341 sfmdb = (sfm > 0 ? (10 * log10(sfm)) / -60 : 0);
|
jamie@25
|
342
|
jamie@1
|
343 *result = MIN(sfmdb, 1);
|
jamie@25
|
344
|
jamie@38
|
345 return SUCCESS;
|
jamie@1
|
346 }
|
jamie@1
|
347
|
jamie@43
|
348 int xtract_crest(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
349
|
jamie@38
|
350 return FEATURE_NOT_IMPLEMENTED;
|
jamie@25
|
351
|
jamie@1
|
352 }
|
jamie@1
|
353
|
jamie@43
|
354 int xtract_noisiness(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
355
|
jamie@38
|
356 return FEATURE_NOT_IMPLEMENTED;
|
jamie@25
|
357
|
jamie@1
|
358 }
|
jamie@2
|
359
|
jamie@43
|
360 int xtract_rms_amplitude(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
361
|
jamie@1
|
362 int n = N;
|
jamie@1
|
363
|
jamie@1
|
364 while(n--) *result += SQ(data[n]);
|
jamie@1
|
365
|
jamie@1
|
366 *result = sqrt(*result / N);
|
jamie@25
|
367
|
jamie@38
|
368 return SUCCESS;
|
jamie@1
|
369 }
|
jamie@1
|
370
|
jamie@43
|
371 int xtract_inharmonicity(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
372
|
jamie@41
|
373 int n = N >> 1;
|
jamie@43
|
374 float num = 0.f, den = 0.f, fund;
|
jamie@43
|
375 const float *freqs, *amps;
|
jamie@1
|
376
|
jamie@41
|
377 fund = *(float *)argv;
|
jamie@41
|
378 freqs = data;
|
jamie@41
|
379 amps = data + n;
|
jamie@25
|
380
|
jamie@1
|
381 while(n--){
|
jamie@41
|
382 num += abs(freqs[n] - n * fund) * SQ(amps[n]);
|
jamie@41
|
383 den += SQ(amps[n]);
|
jamie@1
|
384 }
|
jamie@1
|
385
|
jamie@41
|
386 *result = (2 * num) / (fund * den);
|
jamie@25
|
387
|
jamie@38
|
388 return SUCCESS;
|
jamie@1
|
389 }
|
jamie@1
|
390
|
jamie@1
|
391
|
jamie@43
|
392 int xtract_power(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
393
|
jamie@38
|
394 return FEATURE_NOT_IMPLEMENTED;
|
jamie@25
|
395
|
jamie@1
|
396 }
|
jamie@1
|
397
|
jamie@43
|
398 int xtract_odd_even_ratio(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
399
|
jamie@43
|
400 int M = (N >> 1), n;
|
jamie@1
|
401
|
jamie@43
|
402 float num = 0.f, den = 0.f, temp, f0;
|
jamie@1
|
403
|
jamie@43
|
404 f0 = *(float *)argv;
|
jamie@44
|
405
|
jamie@43
|
406 for(n = 0; n < M; n++){
|
jamie@43
|
407 if((temp = data[n])){
|
jamie@43
|
408 if(((int)(rintf(temp / f0)) % 2) != 0){
|
jamie@43
|
409 num += data[M + n];
|
jamie@43
|
410 }
|
jamie@43
|
411 else{
|
jamie@43
|
412 den += data[M + n];
|
jamie@43
|
413 }
|
jamie@43
|
414 }
|
jamie@1
|
415 }
|
jamie@1
|
416
|
jamie@1
|
417 *result = num / den;
|
jamie@25
|
418
|
jamie@38
|
419 return SUCCESS;
|
jamie@1
|
420 }
|
jamie@1
|
421
|
jamie@43
|
422 int xtract_sharpness(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
423
|
jamie@38
|
424 return FEATURE_NOT_IMPLEMENTED;
|
jamie@25
|
425
|
jamie@1
|
426 }
|
jamie@1
|
427
|
jamie@43
|
428 int xtract_slope(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
429
|
jamie@38
|
430 return FEATURE_NOT_IMPLEMENTED;
|
jamie@25
|
431
|
jamie@1
|
432 }
|
jamie@1
|
433
|
jamie@43
|
434 int xtract_lowest(const float *data, const int N, const void *argv, float *result){
|
jamie@25
|
435
|
jamie@43
|
436 float lower, upper, lowest;
|
jamie@1
|
437 int n = N;
|
jamie@1
|
438
|
jamie@43
|
439 lower = *(float *)argv;
|
jamie@43
|
440 upper = *((float *)argv+1);
|
jamie@44
|
441
|
jamie@43
|
442 lowest = upper;
|
jamie@43
|
443
|
jamie@1
|
444 while(n--) {
|
jamie@43
|
445 if(data[n] > lower)
|
jamie@43
|
446 *result = MIN(lowest, data[n]);
|
jamie@1
|
447 }
|
jamie@1
|
448
|
jamie@43
|
449 *result = (*result == upper ? -0 : *result);
|
jamie@44
|
450
|
jamie@38
|
451 return SUCCESS;
|
jamie@1
|
452 }
|
jamie@1
|
453
|
jamie@43
|
454 int xtract_hps(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
455
|
jamie@1
|
456 int n = N, M, m, l, peak_index, position1_lwr;
|
jamie@1
|
457 float *coeffs2, *coeffs3, *product, L,
|
jamie@25
|
458 largest1_lwr, peak, ratio1, sr;
|
jamie@1
|
459
|
jamie@25
|
460 sr = *(float*)argv;
|
jamie@25
|
461
|
jamie@1
|
462 coeffs2 = (float *)malloc(N * sizeof(float));
|
jamie@1
|
463 coeffs3 = (float *)malloc(N * sizeof(float));
|
jamie@1
|
464 product = (float *)malloc(N * sizeof(float));
|
jamie@25
|
465
|
jamie@1
|
466 while(n--) coeffs2[n] = coeffs3[n] = 1;
|
jamie@1
|
467
|
jamie@1
|
468 M = N >> 1;
|
jamie@1
|
469 L = N / 3;
|
jamie@1
|
470
|
jamie@1
|
471 while(M--){
|
jamie@25
|
472 m = M << 1;
|
jamie@25
|
473 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
|
jamie@1
|
474
|
jamie@25
|
475 if(M < L){
|
jamie@25
|
476 l = M * 3;
|
jamie@25
|
477 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
|
jamie@25
|
478 }
|
jamie@1
|
479 }
|
jamie@25
|
480
|
jamie@1
|
481 peak_index = peak = 0;
|
jamie@25
|
482
|
jamie@1
|
483 for(n = 1; n < N; n++){
|
jamie@25
|
484 product[n] = data[n] * coeffs2[n] * coeffs3[n];
|
jamie@25
|
485 if(product[n] > peak){
|
jamie@25
|
486 peak_index = n;
|
jamie@25
|
487 peak = product[n];
|
jamie@25
|
488 }
|
jamie@1
|
489 }
|
jamie@1
|
490
|
jamie@1
|
491 largest1_lwr = position1_lwr = 0;
|
jamie@1
|
492
|
jamie@1
|
493 for(n = 0; n < N; n++){
|
jamie@25
|
494 if(data[n] > largest1_lwr && n != peak_index){
|
jamie@25
|
495 largest1_lwr = data[n];
|
jamie@25
|
496 position1_lwr = n;
|
jamie@25
|
497 }
|
jamie@1
|
498 }
|
jamie@1
|
499
|
jamie@1
|
500 ratio1 = data[position1_lwr] / data[peak_index];
|
jamie@1
|
501
|
jamie@1
|
502 if(position1_lwr > peak_index * 0.4 && position1_lwr <
|
jamie@25
|
503 peak_index * 0.6 && ratio1 > 0.1)
|
jamie@25
|
504 peak_index = position1_lwr;
|
jamie@1
|
505
|
jamie@22
|
506 *result = sr / (float)peak_index;
|
jamie@25
|
507
|
jamie@1
|
508 free(coeffs2);
|
jamie@1
|
509 free(coeffs3);
|
jamie@1
|
510 free(product);
|
jamie@25
|
511
|
jamie@38
|
512 return SUCCESS;
|
jamie@1
|
513 }
|
jamie@5
|
514
|
jamie@5
|
515
|
jamie@43
|
516 int xtract_f0(const float *data, const int N, const void *argv, float *result){
|
jamie@5
|
517
|
jamie@25
|
518 int M, sr, tau, n;
|
jamie@43
|
519 size_t bytes;
|
jamie@43
|
520 float f0, err_tau_1, err_tau_x, array_max,
|
jamie@43
|
521 threshold_peak, threshold_centre,
|
jamie@43
|
522 *input;
|
jamie@22
|
523
|
jamie@25
|
524 sr = *(float *)argv;
|
jamie@43
|
525
|
jamie@43
|
526 input = (float *)malloc(bytes = N * sizeof(float));
|
jamie@43
|
527 input = memcpy(input, data, bytes);
|
jamie@25
|
528 /* threshold_peak = *((float *)argv+1);
|
jamie@25
|
529 threshold_centre = *((float *)argv+2);
|
jamie@25
|
530 printf("peak: %.2f\tcentre: %.2f\n", threshold_peak, threshold_centre);*/
|
jamie@25
|
531 /* add temporary dynamic control over thresholds to test clipping effects */
|
jamie@22
|
532
|
jamie@25
|
533 /* FIX: tweak and make into macros */
|
jamie@25
|
534 threshold_peak = .8;
|
jamie@25
|
535 threshold_centre = .3;
|
jamie@25
|
536 M = N >> 1;
|
jamie@25
|
537 err_tau_1 = 0;
|
jamie@25
|
538 array_max = 0;
|
jamie@25
|
539
|
jamie@25
|
540 /* Find the array max */
|
jamie@25
|
541 for(n = 0; n < N; n++){
|
jamie@43
|
542 if (input[n] > array_max)
|
jamie@43
|
543 array_max = input[n];
|
jamie@12
|
544 }
|
jamie@25
|
545
|
jamie@25
|
546 threshold_peak *= array_max;
|
jamie@25
|
547
|
jamie@25
|
548 /* peak clip */
|
jamie@25
|
549 for(n = 0; n < N; n++){
|
jamie@43
|
550 if(input[n] > threshold_peak)
|
jamie@43
|
551 input[n] = threshold_peak;
|
jamie@43
|
552 else if(input[n] < -threshold_peak)
|
jamie@43
|
553 input[n] = -threshold_peak;
|
jamie@25
|
554 }
|
jamie@25
|
555
|
jamie@25
|
556 threshold_centre *= array_max;
|
jamie@25
|
557
|
jamie@25
|
558 /* Centre clip */
|
jamie@25
|
559 for(n = 0; n < N; n++){
|
jamie@43
|
560 if (input[n] < threshold_centre)
|
jamie@43
|
561 input[n] = 0;
|
jamie@25
|
562 else
|
jamie@43
|
563 input[n] -= threshold_centre;
|
jamie@25
|
564 }
|
jamie@25
|
565
|
jamie@25
|
566 /* Estimate fundamental freq */
|
jamie@25
|
567 for (n = 1; n < M; n++)
|
jamie@43
|
568 err_tau_1 = err_tau_1 + fabs(input[n] - input[n+1]);
|
jamie@25
|
569 /* FIX: this doesn't pose too much load if it returns 'early', but if it can't find f0, load can be significant for larger block sizes M^2 iterations! */
|
jamie@25
|
570 for (tau = 2; tau < M; tau++){
|
jamie@25
|
571 err_tau_x = 0;
|
jamie@25
|
572 for (n = 1; n < M; n++){
|
jamie@43
|
573 err_tau_x = err_tau_x + fabs(input[n] - input[n+tau]);
|
jamie@25
|
574 }
|
jamie@25
|
575 if (err_tau_x < err_tau_1) {
|
jamie@25
|
576 f0 = sr / (tau + (err_tau_x / err_tau_1));
|
jamie@25
|
577 *result = f0;
|
jamie@43
|
578 free(input);
|
jamie@25
|
579 return SUCCESS;
|
jamie@25
|
580 }
|
jamie@25
|
581 }
|
jamie@43
|
582 *result = -0;
|
jamie@43
|
583 free(input);
|
jamie@25
|
584 return NO_RESULT;
|
jamie@5
|
585 }
|
jamie@43
|
586
|
jamie@43
|
587 int xtract_failsafe_f0(const float *data, const int N, const void *argv, float *result){
|
jamie@44
|
588
|
jamie@43
|
589 float *magnitudes = NULL, argf[2], *peaks = NULL, return_code;
|
jamie@44
|
590
|
jamie@43
|
591 return_code = xtract_f0(data, N, argv, result);
|
jamie@44
|
592
|
jamie@43
|
593 if(return_code == NO_RESULT){
|
jamie@44
|
594
|
jamie@43
|
595 magnitudes = (float *)malloc(N * sizeof(float));
|
jamie@43
|
596 peaks = (float *)malloc(N * sizeof(float));
|
jamie@43
|
597 xtract_magnitude_spectrum(data, N, NULL, magnitudes);
|
jamie@43
|
598 argf[0] = 10.f;
|
jamie@43
|
599 argf[1] = *(float *)argv;
|
jamie@43
|
600 xtract_peaks(magnitudes, N, argf, peaks);
|
jamie@43
|
601 argf[0] = 0.f;
|
jamie@43
|
602 argf[1] = N >> 1;
|
jamie@43
|
603 xtract_lowest(peaks, argf[1], argf, result);
|
jamie@44
|
604
|
jamie@43
|
605 free(magnitudes);
|
jamie@43
|
606 free(peaks);
|
jamie@43
|
607 }
|
jamie@43
|
608
|
jamie@43
|
609 return SUCCESS;
|
jamie@43
|
610
|
jamie@43
|
611 }
|
jamie@44
|
612
|