annotate src/scalar.c @ 42:84e69b155098

Numerous fixes, see ChangeLog
author Jamie Bullock <jamie@postlude.co.uk>
date Tue, 12 Dec 2006 21:47:42 +0000
parents afb9e6fee244
children 4a36f70a76e9
rev   line source
jamie@1 1 /* libxtract feature extraction library
jamie@1 2 *
jamie@1 3 * Copyright (C) 2006 Jamie Bullock
jamie@1 4 *
jamie@1 5 * This program is free software; you can redistribute it and/or modify
jamie@1 6 * it under the terms of the GNU General Public License as published by
jamie@1 7 * the Free Software Foundation; either version 2 of the License, or
jamie@1 8 * (at your option) any later version.
jamie@1 9 *
jamie@1 10 * This program is distributed in the hope that it will be useful,
jamie@1 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
jamie@1 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
jamie@1 13 * GNU General Public License for more details.
jamie@1 14 *
jamie@1 15 * You should have received a copy of the GNU General Public License
jamie@1 16 * along with this program; if not, write to the Free Software
jamie@1 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
jamie@1 18 * USA.
jamie@1 19 */
jamie@1 20
jamie@1 21
jamie@1 22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
jamie@1 23
jamie@1 24 #include "xtract/libxtract.h"
jamie@1 25 #include "math.h"
jamie@5 26 #include <stdlib.h>
jamie@1 27
jamie@1 28 int xtract_mean(float *data, int N, void *argv, float *result){
jamie@25 29
jamie@1 30 int n = N;
jamie@1 31
jamie@1 32 while(n--)
jamie@42 33 *result += data[n];
jamie@25 34
jamie@1 35 *result /= N;
jamie@38 36
jamie@38 37 return SUCCESS;
jamie@1 38 }
jamie@1 39
jamie@1 40 int xtract_variance(float *data, int N, void *argv, float *result){
jamie@25 41
jamie@1 42 int n = N;
jamie@1 43
jamie@1 44 while(n--)
jamie@42 45 *result += data[n] - *(float *)argv;
jamie@25 46
jamie@1 47 *result = SQ(*result) / (N - 1);
jamie@38 48
jamie@38 49 return SUCCESS;
jamie@1 50 }
jamie@1 51
jamie@1 52 int xtract_standard_deviation(float *data, int N, void *argv, float *result){
jamie@25 53
jamie@1 54 *result = sqrt(*(float *)argv);
jamie@25 55
jamie@38 56 return SUCCESS;
jamie@1 57 }
jamie@1 58
jamie@1 59 int xtract_average_deviation(float *data, int N, void *argv, float *result){
jamie@25 60
jamie@1 61 int n = N;
jamie@42 62
jamie@1 63 while(n--)
jamie@42 64 *result += fabs(data[n] - *(float *)argv);
jamie@25 65
jamie@1 66 *result /= N;
jamie@1 67
jamie@38 68 return SUCCESS;
jamie@1 69 }
jamie@1 70
jamie@1 71 int xtract_skewness(float *data, int N, void *argv, float *result){
jamie@25 72
jamie@1 73 int n = N;
jamie@1 74
jamie@42 75 float temp;
jamie@25 76
jamie@42 77 while(n--){
jamie@42 78 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@42 79 *result += pow(temp, 3);
jamie@42 80 }
jamie@1 81
jamie@42 82 *result /= N;
jamie@42 83
jamie@38 84 return SUCCESS;
jamie@1 85 }
jamie@1 86
jamie@1 87 int xtract_kurtosis(float *data, int N, void *argv, float *result){
jamie@25 88
jamie@1 89 int n = N;
jamie@1 90
jamie@42 91 float temp;
jamie@25 92
jamie@42 93 while(n--){
jamie@42 94 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@42 95 *result += pow(temp, 4);
jamie@42 96 }
jamie@25 97
jamie@42 98 *result /= N;
jamie@42 99 *result -= 3.0f;
jamie@42 100
jamie@38 101 return SUCCESS;
jamie@1 102 }
jamie@1 103
jamie@11 104
jamie@11 105 int xtract_centroid(float *data, int N, void *argv, float *result){
jamie@25 106
jamie@37 107 int n = (N >> 1);
jamie@11 108
jamie@37 109 float *freqs, *amps, FA = 0.f, A = 0.f;
jamie@11 110
jamie@25 111 freqs = data;
jamie@38 112 amps = data + n;
jamie@25 113
jamie@11 114 while(n--){
jamie@25 115 FA += freqs[n] * amps[n];
jamie@25 116 A += amps[n];
jamie@25 117 }
jamie@25 118
jamie@25 119 *result = FA / A;
jamie@11 120
jamie@38 121 return SUCCESS;
jamie@11 122 }
jamie@11 123
jamie@1 124 int xtract_irregularity_k(float *data, int N, void *argv, float *result){
jamie@25 125
jamie@1 126 int n,
jamie@37 127 M = N - 1;
jamie@1 128
jamie@1 129 for(n = 1; n < M; n++)
jamie@42 130 *result += fabs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
jamie@1 131
jamie@38 132 return SUCCESS;
jamie@1 133 }
jamie@1 134
jamie@1 135 int xtract_irregularity_j(float *data, int N, void *argv, float *result){
jamie@25 136
jamie@1 137 int n = N;
jamie@1 138
jamie@37 139 float num = 0.f, den = 0.f;
jamie@1 140
jamie@1 141 while(n--){
jamie@42 142 num += pow(data[n] - data[n+1], 2);
jamie@42 143 den += pow(data[n], 2);
jamie@1 144 }
jamie@25 145
jamie@1 146 *result = num / den;
jamie@1 147
jamie@38 148 return SUCCESS;
jamie@1 149 }
jamie@1 150
jamie@1 151 int xtract_tristimulus_1(float *data, int N, void *argv, float *result){
jamie@1 152
jamie@1 153 int n = N;
jamie@1 154
jamie@42 155 float den, p1, temp;
jamie@1 156
jamie@42 157 den = p1 = temp = 0.f;
jamie@1 158
jamie@42 159 for(n = 0; n < N; n++){
jamie@42 160 if((temp = data[n])){
jamie@42 161 den += temp;
jamie@42 162 if(!p1)
jamie@42 163 p1 = temp;
jamie@42 164 }
jamie@42 165 }
jamie@42 166
jamie@42 167 *result = p1 / den;
jamie@1 168
jamie@38 169 return SUCCESS;
jamie@1 170 }
jamie@1 171
jamie@1 172 int xtract_tristimulus_2(float *data, int N, void *argv, float *result){
jamie@25 173
jamie@1 174 int n = N;
jamie@1 175
jamie@42 176 float den, p2, p3, p4, temp;
jamie@1 177
jamie@42 178 den = p2 = p3 = p4 = temp = 0.f;
jamie@1 179
jamie@42 180 for(n = 0; n < N; n++){
jamie@42 181 if((temp = data[n])){
jamie@42 182 den += temp;
jamie@42 183 if(!p2)
jamie@42 184 p2 = temp;
jamie@42 185 else if(!p3)
jamie@42 186 p3 = temp;
jamie@42 187 else if(!p4)
jamie@42 188 p4 = temp;
jamie@42 189 }
jamie@42 190 }
jamie@42 191
jamie@42 192 *result = (p2 + p3 + p4) / den;
jamie@25 193
jamie@38 194 return SUCCESS;
jamie@1 195 }
jamie@1 196
jamie@1 197 int xtract_tristimulus_3(float *data, int N, void *argv, float *result){
jamie@25 198
jamie@42 199 int n = N, count = 0;
jamie@1 200
jamie@42 201 float den, num, temp;
jamie@1 202
jamie@42 203 den = num = temp = 0.f;
jamie@1 204
jamie@42 205 for(n = 0; n < N; n++){
jamie@42 206 if((temp = data[n])){
jamie@42 207 den += temp;
jamie@42 208 if(count >= 5)
jamie@42 209 num += temp;
jamie@42 210 count++;
jamie@42 211 }
jamie@42 212 }
jamie@25 213
jamie@1 214 *result = num / den;
jamie@25 215
jamie@38 216 return SUCCESS;
jamie@1 217 }
jamie@1 218
jamie@1 219 int xtract_smoothness(float *data, int N, void *argv, float *result){
jamie@25 220
jamie@1 221 int n = N;
jamie@1 222
jamie@1 223 if (data[0] <= 0) data[0] = 1;
jamie@1 224 if (data[1] <= 0) data[1] = 1;
jamie@25 225
jamie@1 226 for(n = 2; n < N; n++){
jamie@25 227 if(data[n] <= 0) data[n] = 1;
jamie@25 228 *result += abs(20 * log(data[n-1]) - (20 * log(data[n-2]) +
jamie@25 229 20 * log(data[n-1]) + 20 * log(data[n])) / 3);
jamie@25 230 }
jamie@38 231
jamie@38 232 return SUCCESS;
jamie@1 233 }
jamie@1 234
jamie@1 235 int xtract_spread(float *data, int N, void *argv, float *result){
jamie@1 236
jamie@1 237 int n = N;
jamie@1 238
jamie@37 239 float num = 0.f, den = 0.f, tmp;
jamie@1 240
jamie@1 241 while(n--){
jamie@25 242 tmp = n - *(float *)argv;
jamie@25 243 num += SQ(tmp) * data[n];
jamie@25 244 den += data[n];
jamie@1 245 }
jamie@1 246
jamie@1 247 *result = sqrt(num / den);
jamie@25 248
jamie@38 249 return SUCCESS;
jamie@1 250 }
jamie@1 251
jamie@1 252 int xtract_zcr(float *data, int N, void *argv, float *result){
jamie@1 253
jamie@1 254 int n = N;
jamie@25 255
jamie@1 256 for(n = 1; n < N; n++)
jamie@25 257 if(data[n] * data[n-1] < 0) (*result)++;
jamie@25 258
jamie@1 259 *result /= N;
jamie@25 260
jamie@38 261 return SUCCESS;
jamie@1 262 }
jamie@1 263
jamie@1 264 int xtract_rolloff(float *data, int N, void *argv, float *result){
jamie@1 265
jamie@1 266 int n = N;
jamie@42 267 float pivot, temp;
jamie@42 268
jamie@42 269 pivot = temp = 0.f;
jamie@25 270
jamie@1 271 while(n--) pivot += data[n];
jamie@25 272
jamie@42 273 pivot *= ((float *)argv)[0];
jamie@25 274
jamie@42 275 for(n = 0; temp < pivot; n++)
jamie@42 276 temp += data[n];
jamie@1 277
jamie@42 278 *result = (n / (float)N) * (((float *)argv)[1] * .5);
jamie@25 279
jamie@38 280 return SUCCESS;
jamie@1 281 }
jamie@1 282
jamie@1 283 int xtract_loudness(float *data, int N, void *argv, float *result){
jamie@25 284
jamie@1 285 int n = BARK_BANDS;
jamie@25 286
jamie@1 287 /*if(n != N) return BAD_VECTOR_SIZE; */
jamie@1 288
jamie@1 289 while(n--)
jamie@25 290 *result += pow(data[n], 0.23);
jamie@38 291
jamie@38 292 return SUCCESS;
jamie@1 293 }
jamie@1 294
jamie@1 295
jamie@1 296 int xtract_flatness(float *data, int N, void *argv, float *result){
jamie@1 297
jamie@42 298 int n;
jamie@1 299
jamie@42 300 float num, den, temp;
jamie@25 301
jamie@42 302 den = temp = num = 0.f;
jamie@42 303
jamie@42 304 for(n = 0; n < N; n++){
jamie@42 305 if((temp = data[n])){
jamie@42 306 if(!num)
jamie@42 307 num = den = temp;
jamie@42 308 else{
jamie@42 309 num *= temp;
jamie@42 310 den += temp;
jamie@42 311 }
jamie@25 312 }
jamie@1 313 }
jamie@42 314
jamie@42 315 num = powf(num, 1.0f / N);
jamie@1 316 den /= N;
jamie@25 317
jamie@42 318 *result = num / den;
jamie@25 319
jamie@38 320 return SUCCESS;
jamie@1 321 }
jamie@1 322
jamie@1 323 int xtract_tonality(float *data, int N, void *argv, float *result){
jamie@25 324
jamie@1 325 float sfmdb, sfm;
jamie@25 326
jamie@1 327 sfm = *(float *)argv;
jamie@1 328
jamie@1 329 sfmdb = (sfm > 0 ? (10 * log10(sfm)) / -60 : 0);
jamie@25 330
jamie@1 331 *result = MIN(sfmdb, 1);
jamie@25 332
jamie@38 333 return SUCCESS;
jamie@1 334 }
jamie@1 335
jamie@1 336 int xtract_crest(float *data, int N, void *argv, float *result){
jamie@25 337
jamie@38 338 return FEATURE_NOT_IMPLEMENTED;
jamie@25 339
jamie@1 340 }
jamie@1 341
jamie@1 342 int xtract_noisiness(float *data, int N, void *argv, float *result){
jamie@25 343
jamie@38 344 return FEATURE_NOT_IMPLEMENTED;
jamie@25 345
jamie@1 346 }
jamie@2 347
jamie@1 348 int xtract_rms_amplitude(float *data, int N, void *argv, float *result){
jamie@1 349
jamie@1 350 int n = N;
jamie@1 351
jamie@1 352 while(n--) *result += SQ(data[n]);
jamie@1 353
jamie@1 354 *result = sqrt(*result / N);
jamie@25 355
jamie@38 356 return SUCCESS;
jamie@1 357 }
jamie@1 358
jamie@1 359 int xtract_inharmonicity(float *data, int N, void *argv, float *result){
jamie@1 360
jamie@41 361 int n = N >> 1;
jamie@37 362 float num = 0.f, den = 0.f,
jamie@41 363 fund, *freqs, *amps;
jamie@1 364
jamie@41 365 fund = *(float *)argv;
jamie@41 366 freqs = data;
jamie@41 367 amps = data + n;
jamie@25 368
jamie@1 369 while(n--){
jamie@41 370 num += abs(freqs[n] - n * fund) * SQ(amps[n]);
jamie@41 371 den += SQ(amps[n]);
jamie@1 372 }
jamie@1 373
jamie@41 374 *result = (2 * num) / (fund * den);
jamie@25 375
jamie@38 376 return SUCCESS;
jamie@1 377 }
jamie@1 378
jamie@1 379
jamie@1 380 int xtract_power(float *data, int N, void *argv, float *result){
jamie@1 381
jamie@38 382 return FEATURE_NOT_IMPLEMENTED;
jamie@25 383
jamie@1 384 }
jamie@1 385
jamie@1 386 int xtract_odd_even_ratio(float *data, int N, void *argv, float *result){
jamie@1 387
jamie@38 388 int n = N, j, k;
jamie@1 389
jamie@37 390 float num = 0.f, den = 0.f;
jamie@1 391
jamie@1 392 while(n--){
jamie@25 393 j = n * 2;
jamie@25 394 k = j - 1;
jamie@25 395 num += data[k];
jamie@25 396 den += data[j];
jamie@1 397 }
jamie@1 398
jamie@1 399 *result = num / den;
jamie@25 400
jamie@38 401 return SUCCESS;
jamie@1 402 }
jamie@1 403
jamie@1 404 int xtract_sharpness(float *data, int N, void *argv, float *result){
jamie@1 405
jamie@38 406 return FEATURE_NOT_IMPLEMENTED;
jamie@25 407
jamie@1 408 }
jamie@1 409
jamie@1 410 int xtract_slope(float *data, int N, void *argv, float *result){
jamie@1 411
jamie@38 412 return FEATURE_NOT_IMPLEMENTED;
jamie@25 413
jamie@1 414 }
jamie@1 415
jamie@5 416 int xtract_lowest_match(float *data, int N, void *argv, float *result){
jamie@25 417
jamie@22 418 float lowest_match = SR_LIMIT;
jamie@1 419 int n = N;
jamie@1 420
jamie@1 421 while(n--) {
jamie@25 422 if(data[n] > 0)
jamie@25 423 lowest_match = MIN(lowest_match, data[n]);
jamie@1 424 }
jamie@1 425
jamie@22 426 *result = (lowest_match == SR_LIMIT ? 0 : lowest_match);
jamie@25 427
jamie@38 428 return SUCCESS;
jamie@1 429 }
jamie@1 430
jamie@1 431 int xtract_hps(float *data, int N, void *argv, float *result){
jamie@1 432
jamie@1 433 int n = N, M, m, l, peak_index, position1_lwr;
jamie@1 434 float *coeffs2, *coeffs3, *product, L,
jamie@25 435 largest1_lwr, peak, ratio1, sr;
jamie@1 436
jamie@25 437 sr = *(float*)argv;
jamie@25 438
jamie@1 439 coeffs2 = (float *)malloc(N * sizeof(float));
jamie@1 440 coeffs3 = (float *)malloc(N * sizeof(float));
jamie@1 441 product = (float *)malloc(N * sizeof(float));
jamie@25 442
jamie@1 443 while(n--) coeffs2[n] = coeffs3[n] = 1;
jamie@1 444
jamie@1 445 M = N >> 1;
jamie@1 446 L = N / 3;
jamie@1 447
jamie@1 448 while(M--){
jamie@25 449 m = M << 1;
jamie@25 450 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
jamie@1 451
jamie@25 452 if(M < L){
jamie@25 453 l = M * 3;
jamie@25 454 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
jamie@25 455 }
jamie@1 456 }
jamie@25 457
jamie@1 458 peak_index = peak = 0;
jamie@25 459
jamie@1 460 for(n = 1; n < N; n++){
jamie@25 461 product[n] = data[n] * coeffs2[n] * coeffs3[n];
jamie@25 462 if(product[n] > peak){
jamie@25 463 peak_index = n;
jamie@25 464 peak = product[n];
jamie@25 465 }
jamie@1 466 }
jamie@1 467
jamie@1 468 largest1_lwr = position1_lwr = 0;
jamie@1 469
jamie@1 470 for(n = 0; n < N; n++){
jamie@25 471 if(data[n] > largest1_lwr && n != peak_index){
jamie@25 472 largest1_lwr = data[n];
jamie@25 473 position1_lwr = n;
jamie@25 474 }
jamie@1 475 }
jamie@1 476
jamie@1 477 ratio1 = data[position1_lwr] / data[peak_index];
jamie@1 478
jamie@1 479 if(position1_lwr > peak_index * 0.4 && position1_lwr <
jamie@25 480 peak_index * 0.6 && ratio1 > 0.1)
jamie@25 481 peak_index = position1_lwr;
jamie@1 482
jamie@22 483 *result = sr / (float)peak_index;
jamie@25 484
jamie@1 485 free(coeffs2);
jamie@1 486 free(coeffs3);
jamie@1 487 free(product);
jamie@25 488
jamie@38 489 return SUCCESS;
jamie@1 490 }
jamie@5 491
jamie@5 492
jamie@5 493 int xtract_f0(float *data, int N, void *argv, float *result){
jamie@5 494
jamie@25 495 int M, sr, tau, n;
jamie@25 496 float f0, err_tau_1, err_tau_x, array_max, threshold_peak, threshold_centre;
jamie@22 497
jamie@25 498 sr = *(float *)argv;
jamie@25 499 /* threshold_peak = *((float *)argv+1);
jamie@25 500 threshold_centre = *((float *)argv+2);
jamie@25 501 printf("peak: %.2f\tcentre: %.2f\n", threshold_peak, threshold_centre);*/
jamie@25 502 /* add temporary dynamic control over thresholds to test clipping effects */
jamie@22 503
jamie@25 504 /* FIX: tweak and make into macros */
jamie@25 505 threshold_peak = .8;
jamie@25 506 threshold_centre = .3;
jamie@25 507 M = N >> 1;
jamie@25 508 err_tau_1 = 0;
jamie@25 509 array_max = 0;
jamie@25 510
jamie@25 511 /* Find the array max */
jamie@25 512 for(n = 0; n < N; n++){
jamie@25 513 if (data[n] > array_max)
jamie@25 514 array_max = data[n];
jamie@12 515 }
jamie@25 516
jamie@25 517 threshold_peak *= array_max;
jamie@25 518
jamie@25 519 /* peak clip */
jamie@25 520 for(n = 0; n < N; n++){
jamie@25 521 if(data[n] > threshold_peak)
jamie@25 522 data[n] = threshold_peak;
jamie@25 523 else if(data[n] < -threshold_peak)
jamie@25 524 data[n] = -threshold_peak;
jamie@25 525 }
jamie@25 526
jamie@25 527 threshold_centre *= array_max;
jamie@25 528
jamie@25 529 /* Centre clip */
jamie@25 530 for(n = 0; n < N; n++){
jamie@25 531 if (data[n] < threshold_centre)
jamie@25 532 data[n] = 0;
jamie@25 533 else
jamie@25 534 data[n] -= threshold_centre;
jamie@25 535 }
jamie@25 536
jamie@25 537 /* Estimate fundamental freq */
jamie@25 538 for (n = 1; n < M; n++)
jamie@25 539 err_tau_1 = err_tau_1 + fabs(data[n] - data[n+1]);
jamie@25 540 /* FIX: this doesn't pose too much load if it returns 'early', but if it can't find f0, load can be significant for larger block sizes M^2 iterations! */
jamie@25 541 for (tau = 2; tau < M; tau++){
jamie@25 542 err_tau_x = 0;
jamie@25 543 for (n = 1; n < M; n++){
jamie@25 544 err_tau_x = err_tau_x + fabs(data[n] - data[n+tau]);
jamie@25 545 }
jamie@25 546 if (err_tau_x < err_tau_1) {
jamie@25 547 f0 = sr / (tau + (err_tau_x / err_tau_1));
jamie@25 548 *result = f0;
jamie@25 549 return SUCCESS;
jamie@25 550 }
jamie@25 551 }
jamie@25 552 return NO_RESULT;
jamie@5 553 }