jamie@1
|
1 /* libxtract feature extraction library
|
jamie@1
|
2 *
|
jamie@1
|
3 * Copyright (C) 2006 Jamie Bullock
|
jamie@1
|
4 *
|
jamie@1
|
5 * This program is free software; you can redistribute it and/or modify
|
jamie@1
|
6 * it under the terms of the GNU General Public License as published by
|
jamie@1
|
7 * the Free Software Foundation; either version 2 of the License, or
|
jamie@1
|
8 * (at your option) any later version.
|
jamie@1
|
9 *
|
jamie@1
|
10 * This program is distributed in the hope that it will be useful,
|
jamie@1
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
jamie@1
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
jamie@1
|
13 * GNU General Public License for more details.
|
jamie@1
|
14 *
|
jamie@1
|
15 * You should have received a copy of the GNU General Public License
|
jamie@1
|
16 * along with this program; if not, write to the Free Software
|
jamie@1
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
jamie@1
|
18 * USA.
|
jamie@1
|
19 */
|
jamie@1
|
20
|
jamie@1
|
21
|
jamie@1
|
22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
|
jamie@1
|
23
|
jamie@1
|
24 #include "xtract/libxtract.h"
|
jamie@1
|
25 #include "math.h"
|
jamie@5
|
26 #include <stdlib.h>
|
jamie@1
|
27
|
jamie@1
|
28 int xtract_mean(float *data, int N, void *argv, float *result){
|
jamie@25
|
29
|
jamie@1
|
30 int n = N;
|
jamie@1
|
31
|
jamie@1
|
32 while(n--)
|
jamie@42
|
33 *result += data[n];
|
jamie@25
|
34
|
jamie@1
|
35 *result /= N;
|
jamie@38
|
36
|
jamie@38
|
37 return SUCCESS;
|
jamie@1
|
38 }
|
jamie@1
|
39
|
jamie@1
|
40 int xtract_variance(float *data, int N, void *argv, float *result){
|
jamie@25
|
41
|
jamie@1
|
42 int n = N;
|
jamie@1
|
43
|
jamie@1
|
44 while(n--)
|
jamie@42
|
45 *result += data[n] - *(float *)argv;
|
jamie@25
|
46
|
jamie@1
|
47 *result = SQ(*result) / (N - 1);
|
jamie@38
|
48
|
jamie@38
|
49 return SUCCESS;
|
jamie@1
|
50 }
|
jamie@1
|
51
|
jamie@1
|
52 int xtract_standard_deviation(float *data, int N, void *argv, float *result){
|
jamie@25
|
53
|
jamie@1
|
54 *result = sqrt(*(float *)argv);
|
jamie@25
|
55
|
jamie@38
|
56 return SUCCESS;
|
jamie@1
|
57 }
|
jamie@1
|
58
|
jamie@1
|
59 int xtract_average_deviation(float *data, int N, void *argv, float *result){
|
jamie@25
|
60
|
jamie@1
|
61 int n = N;
|
jamie@42
|
62
|
jamie@1
|
63 while(n--)
|
jamie@42
|
64 *result += fabs(data[n] - *(float *)argv);
|
jamie@25
|
65
|
jamie@1
|
66 *result /= N;
|
jamie@1
|
67
|
jamie@38
|
68 return SUCCESS;
|
jamie@1
|
69 }
|
jamie@1
|
70
|
jamie@1
|
71 int xtract_skewness(float *data, int N, void *argv, float *result){
|
jamie@25
|
72
|
jamie@1
|
73 int n = N;
|
jamie@1
|
74
|
jamie@42
|
75 float temp;
|
jamie@25
|
76
|
jamie@42
|
77 while(n--){
|
jamie@42
|
78 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@42
|
79 *result += pow(temp, 3);
|
jamie@42
|
80 }
|
jamie@1
|
81
|
jamie@42
|
82 *result /= N;
|
jamie@42
|
83
|
jamie@38
|
84 return SUCCESS;
|
jamie@1
|
85 }
|
jamie@1
|
86
|
jamie@1
|
87 int xtract_kurtosis(float *data, int N, void *argv, float *result){
|
jamie@25
|
88
|
jamie@1
|
89 int n = N;
|
jamie@1
|
90
|
jamie@42
|
91 float temp;
|
jamie@25
|
92
|
jamie@42
|
93 while(n--){
|
jamie@42
|
94 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
|
jamie@42
|
95 *result += pow(temp, 4);
|
jamie@42
|
96 }
|
jamie@25
|
97
|
jamie@42
|
98 *result /= N;
|
jamie@42
|
99 *result -= 3.0f;
|
jamie@42
|
100
|
jamie@38
|
101 return SUCCESS;
|
jamie@1
|
102 }
|
jamie@1
|
103
|
jamie@11
|
104
|
jamie@11
|
105 int xtract_centroid(float *data, int N, void *argv, float *result){
|
jamie@25
|
106
|
jamie@37
|
107 int n = (N >> 1);
|
jamie@11
|
108
|
jamie@37
|
109 float *freqs, *amps, FA = 0.f, A = 0.f;
|
jamie@11
|
110
|
jamie@25
|
111 freqs = data;
|
jamie@38
|
112 amps = data + n;
|
jamie@25
|
113
|
jamie@11
|
114 while(n--){
|
jamie@25
|
115 FA += freqs[n] * amps[n];
|
jamie@25
|
116 A += amps[n];
|
jamie@25
|
117 }
|
jamie@25
|
118
|
jamie@25
|
119 *result = FA / A;
|
jamie@11
|
120
|
jamie@38
|
121 return SUCCESS;
|
jamie@11
|
122 }
|
jamie@11
|
123
|
jamie@1
|
124 int xtract_irregularity_k(float *data, int N, void *argv, float *result){
|
jamie@25
|
125
|
jamie@1
|
126 int n,
|
jamie@37
|
127 M = N - 1;
|
jamie@1
|
128
|
jamie@1
|
129 for(n = 1; n < M; n++)
|
jamie@42
|
130 *result += fabs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
|
jamie@1
|
131
|
jamie@38
|
132 return SUCCESS;
|
jamie@1
|
133 }
|
jamie@1
|
134
|
jamie@1
|
135 int xtract_irregularity_j(float *data, int N, void *argv, float *result){
|
jamie@25
|
136
|
jamie@1
|
137 int n = N;
|
jamie@1
|
138
|
jamie@37
|
139 float num = 0.f, den = 0.f;
|
jamie@1
|
140
|
jamie@1
|
141 while(n--){
|
jamie@42
|
142 num += pow(data[n] - data[n+1], 2);
|
jamie@42
|
143 den += pow(data[n], 2);
|
jamie@1
|
144 }
|
jamie@25
|
145
|
jamie@1
|
146 *result = num / den;
|
jamie@1
|
147
|
jamie@38
|
148 return SUCCESS;
|
jamie@1
|
149 }
|
jamie@1
|
150
|
jamie@1
|
151 int xtract_tristimulus_1(float *data, int N, void *argv, float *result){
|
jamie@1
|
152
|
jamie@1
|
153 int n = N;
|
jamie@1
|
154
|
jamie@42
|
155 float den, p1, temp;
|
jamie@1
|
156
|
jamie@42
|
157 den = p1 = temp = 0.f;
|
jamie@1
|
158
|
jamie@42
|
159 for(n = 0; n < N; n++){
|
jamie@42
|
160 if((temp = data[n])){
|
jamie@42
|
161 den += temp;
|
jamie@42
|
162 if(!p1)
|
jamie@42
|
163 p1 = temp;
|
jamie@42
|
164 }
|
jamie@42
|
165 }
|
jamie@42
|
166
|
jamie@42
|
167 *result = p1 / den;
|
jamie@1
|
168
|
jamie@38
|
169 return SUCCESS;
|
jamie@1
|
170 }
|
jamie@1
|
171
|
jamie@1
|
172 int xtract_tristimulus_2(float *data, int N, void *argv, float *result){
|
jamie@25
|
173
|
jamie@1
|
174 int n = N;
|
jamie@1
|
175
|
jamie@42
|
176 float den, p2, p3, p4, temp;
|
jamie@1
|
177
|
jamie@42
|
178 den = p2 = p3 = p4 = temp = 0.f;
|
jamie@1
|
179
|
jamie@42
|
180 for(n = 0; n < N; n++){
|
jamie@42
|
181 if((temp = data[n])){
|
jamie@42
|
182 den += temp;
|
jamie@42
|
183 if(!p2)
|
jamie@42
|
184 p2 = temp;
|
jamie@42
|
185 else if(!p3)
|
jamie@42
|
186 p3 = temp;
|
jamie@42
|
187 else if(!p4)
|
jamie@42
|
188 p4 = temp;
|
jamie@42
|
189 }
|
jamie@42
|
190 }
|
jamie@42
|
191
|
jamie@42
|
192 *result = (p2 + p3 + p4) / den;
|
jamie@25
|
193
|
jamie@38
|
194 return SUCCESS;
|
jamie@1
|
195 }
|
jamie@1
|
196
|
jamie@1
|
197 int xtract_tristimulus_3(float *data, int N, void *argv, float *result){
|
jamie@25
|
198
|
jamie@42
|
199 int n = N, count = 0;
|
jamie@1
|
200
|
jamie@42
|
201 float den, num, temp;
|
jamie@1
|
202
|
jamie@42
|
203 den = num = temp = 0.f;
|
jamie@1
|
204
|
jamie@42
|
205 for(n = 0; n < N; n++){
|
jamie@42
|
206 if((temp = data[n])){
|
jamie@42
|
207 den += temp;
|
jamie@42
|
208 if(count >= 5)
|
jamie@42
|
209 num += temp;
|
jamie@42
|
210 count++;
|
jamie@42
|
211 }
|
jamie@42
|
212 }
|
jamie@25
|
213
|
jamie@1
|
214 *result = num / den;
|
jamie@25
|
215
|
jamie@38
|
216 return SUCCESS;
|
jamie@1
|
217 }
|
jamie@1
|
218
|
jamie@1
|
219 int xtract_smoothness(float *data, int N, void *argv, float *result){
|
jamie@25
|
220
|
jamie@1
|
221 int n = N;
|
jamie@1
|
222
|
jamie@1
|
223 if (data[0] <= 0) data[0] = 1;
|
jamie@1
|
224 if (data[1] <= 0) data[1] = 1;
|
jamie@25
|
225
|
jamie@1
|
226 for(n = 2; n < N; n++){
|
jamie@25
|
227 if(data[n] <= 0) data[n] = 1;
|
jamie@25
|
228 *result += abs(20 * log(data[n-1]) - (20 * log(data[n-2]) +
|
jamie@25
|
229 20 * log(data[n-1]) + 20 * log(data[n])) / 3);
|
jamie@25
|
230 }
|
jamie@38
|
231
|
jamie@38
|
232 return SUCCESS;
|
jamie@1
|
233 }
|
jamie@1
|
234
|
jamie@1
|
235 int xtract_spread(float *data, int N, void *argv, float *result){
|
jamie@1
|
236
|
jamie@1
|
237 int n = N;
|
jamie@1
|
238
|
jamie@37
|
239 float num = 0.f, den = 0.f, tmp;
|
jamie@1
|
240
|
jamie@1
|
241 while(n--){
|
jamie@25
|
242 tmp = n - *(float *)argv;
|
jamie@25
|
243 num += SQ(tmp) * data[n];
|
jamie@25
|
244 den += data[n];
|
jamie@1
|
245 }
|
jamie@1
|
246
|
jamie@1
|
247 *result = sqrt(num / den);
|
jamie@25
|
248
|
jamie@38
|
249 return SUCCESS;
|
jamie@1
|
250 }
|
jamie@1
|
251
|
jamie@1
|
252 int xtract_zcr(float *data, int N, void *argv, float *result){
|
jamie@1
|
253
|
jamie@1
|
254 int n = N;
|
jamie@25
|
255
|
jamie@1
|
256 for(n = 1; n < N; n++)
|
jamie@25
|
257 if(data[n] * data[n-1] < 0) (*result)++;
|
jamie@25
|
258
|
jamie@1
|
259 *result /= N;
|
jamie@25
|
260
|
jamie@38
|
261 return SUCCESS;
|
jamie@1
|
262 }
|
jamie@1
|
263
|
jamie@1
|
264 int xtract_rolloff(float *data, int N, void *argv, float *result){
|
jamie@1
|
265
|
jamie@1
|
266 int n = N;
|
jamie@42
|
267 float pivot, temp;
|
jamie@42
|
268
|
jamie@42
|
269 pivot = temp = 0.f;
|
jamie@25
|
270
|
jamie@1
|
271 while(n--) pivot += data[n];
|
jamie@25
|
272
|
jamie@42
|
273 pivot *= ((float *)argv)[0];
|
jamie@25
|
274
|
jamie@42
|
275 for(n = 0; temp < pivot; n++)
|
jamie@42
|
276 temp += data[n];
|
jamie@1
|
277
|
jamie@42
|
278 *result = (n / (float)N) * (((float *)argv)[1] * .5);
|
jamie@25
|
279
|
jamie@38
|
280 return SUCCESS;
|
jamie@1
|
281 }
|
jamie@1
|
282
|
jamie@1
|
283 int xtract_loudness(float *data, int N, void *argv, float *result){
|
jamie@25
|
284
|
jamie@1
|
285 int n = BARK_BANDS;
|
jamie@25
|
286
|
jamie@1
|
287 /*if(n != N) return BAD_VECTOR_SIZE; */
|
jamie@1
|
288
|
jamie@1
|
289 while(n--)
|
jamie@25
|
290 *result += pow(data[n], 0.23);
|
jamie@38
|
291
|
jamie@38
|
292 return SUCCESS;
|
jamie@1
|
293 }
|
jamie@1
|
294
|
jamie@1
|
295
|
jamie@1
|
296 int xtract_flatness(float *data, int N, void *argv, float *result){
|
jamie@1
|
297
|
jamie@42
|
298 int n;
|
jamie@1
|
299
|
jamie@42
|
300 float num, den, temp;
|
jamie@25
|
301
|
jamie@42
|
302 den = temp = num = 0.f;
|
jamie@42
|
303
|
jamie@42
|
304 for(n = 0; n < N; n++){
|
jamie@42
|
305 if((temp = data[n])){
|
jamie@42
|
306 if(!num)
|
jamie@42
|
307 num = den = temp;
|
jamie@42
|
308 else{
|
jamie@42
|
309 num *= temp;
|
jamie@42
|
310 den += temp;
|
jamie@42
|
311 }
|
jamie@25
|
312 }
|
jamie@1
|
313 }
|
jamie@42
|
314
|
jamie@42
|
315 num = powf(num, 1.0f / N);
|
jamie@1
|
316 den /= N;
|
jamie@25
|
317
|
jamie@42
|
318 *result = num / den;
|
jamie@25
|
319
|
jamie@38
|
320 return SUCCESS;
|
jamie@1
|
321 }
|
jamie@1
|
322
|
jamie@1
|
323 int xtract_tonality(float *data, int N, void *argv, float *result){
|
jamie@25
|
324
|
jamie@1
|
325 float sfmdb, sfm;
|
jamie@25
|
326
|
jamie@1
|
327 sfm = *(float *)argv;
|
jamie@1
|
328
|
jamie@1
|
329 sfmdb = (sfm > 0 ? (10 * log10(sfm)) / -60 : 0);
|
jamie@25
|
330
|
jamie@1
|
331 *result = MIN(sfmdb, 1);
|
jamie@25
|
332
|
jamie@38
|
333 return SUCCESS;
|
jamie@1
|
334 }
|
jamie@1
|
335
|
jamie@1
|
336 int xtract_crest(float *data, int N, void *argv, float *result){
|
jamie@25
|
337
|
jamie@38
|
338 return FEATURE_NOT_IMPLEMENTED;
|
jamie@25
|
339
|
jamie@1
|
340 }
|
jamie@1
|
341
|
jamie@1
|
342 int xtract_noisiness(float *data, int N, void *argv, float *result){
|
jamie@25
|
343
|
jamie@38
|
344 return FEATURE_NOT_IMPLEMENTED;
|
jamie@25
|
345
|
jamie@1
|
346 }
|
jamie@2
|
347
|
jamie@1
|
348 int xtract_rms_amplitude(float *data, int N, void *argv, float *result){
|
jamie@1
|
349
|
jamie@1
|
350 int n = N;
|
jamie@1
|
351
|
jamie@1
|
352 while(n--) *result += SQ(data[n]);
|
jamie@1
|
353
|
jamie@1
|
354 *result = sqrt(*result / N);
|
jamie@25
|
355
|
jamie@38
|
356 return SUCCESS;
|
jamie@1
|
357 }
|
jamie@1
|
358
|
jamie@1
|
359 int xtract_inharmonicity(float *data, int N, void *argv, float *result){
|
jamie@1
|
360
|
jamie@41
|
361 int n = N >> 1;
|
jamie@37
|
362 float num = 0.f, den = 0.f,
|
jamie@41
|
363 fund, *freqs, *amps;
|
jamie@1
|
364
|
jamie@41
|
365 fund = *(float *)argv;
|
jamie@41
|
366 freqs = data;
|
jamie@41
|
367 amps = data + n;
|
jamie@25
|
368
|
jamie@1
|
369 while(n--){
|
jamie@41
|
370 num += abs(freqs[n] - n * fund) * SQ(amps[n]);
|
jamie@41
|
371 den += SQ(amps[n]);
|
jamie@1
|
372 }
|
jamie@1
|
373
|
jamie@41
|
374 *result = (2 * num) / (fund * den);
|
jamie@25
|
375
|
jamie@38
|
376 return SUCCESS;
|
jamie@1
|
377 }
|
jamie@1
|
378
|
jamie@1
|
379
|
jamie@1
|
380 int xtract_power(float *data, int N, void *argv, float *result){
|
jamie@1
|
381
|
jamie@38
|
382 return FEATURE_NOT_IMPLEMENTED;
|
jamie@25
|
383
|
jamie@1
|
384 }
|
jamie@1
|
385
|
jamie@1
|
386 int xtract_odd_even_ratio(float *data, int N, void *argv, float *result){
|
jamie@1
|
387
|
jamie@38
|
388 int n = N, j, k;
|
jamie@1
|
389
|
jamie@37
|
390 float num = 0.f, den = 0.f;
|
jamie@1
|
391
|
jamie@1
|
392 while(n--){
|
jamie@25
|
393 j = n * 2;
|
jamie@25
|
394 k = j - 1;
|
jamie@25
|
395 num += data[k];
|
jamie@25
|
396 den += data[j];
|
jamie@1
|
397 }
|
jamie@1
|
398
|
jamie@1
|
399 *result = num / den;
|
jamie@25
|
400
|
jamie@38
|
401 return SUCCESS;
|
jamie@1
|
402 }
|
jamie@1
|
403
|
jamie@1
|
404 int xtract_sharpness(float *data, int N, void *argv, float *result){
|
jamie@1
|
405
|
jamie@38
|
406 return FEATURE_NOT_IMPLEMENTED;
|
jamie@25
|
407
|
jamie@1
|
408 }
|
jamie@1
|
409
|
jamie@1
|
410 int xtract_slope(float *data, int N, void *argv, float *result){
|
jamie@1
|
411
|
jamie@38
|
412 return FEATURE_NOT_IMPLEMENTED;
|
jamie@25
|
413
|
jamie@1
|
414 }
|
jamie@1
|
415
|
jamie@5
|
416 int xtract_lowest_match(float *data, int N, void *argv, float *result){
|
jamie@25
|
417
|
jamie@22
|
418 float lowest_match = SR_LIMIT;
|
jamie@1
|
419 int n = N;
|
jamie@1
|
420
|
jamie@1
|
421 while(n--) {
|
jamie@25
|
422 if(data[n] > 0)
|
jamie@25
|
423 lowest_match = MIN(lowest_match, data[n]);
|
jamie@1
|
424 }
|
jamie@1
|
425
|
jamie@22
|
426 *result = (lowest_match == SR_LIMIT ? 0 : lowest_match);
|
jamie@25
|
427
|
jamie@38
|
428 return SUCCESS;
|
jamie@1
|
429 }
|
jamie@1
|
430
|
jamie@1
|
431 int xtract_hps(float *data, int N, void *argv, float *result){
|
jamie@1
|
432
|
jamie@1
|
433 int n = N, M, m, l, peak_index, position1_lwr;
|
jamie@1
|
434 float *coeffs2, *coeffs3, *product, L,
|
jamie@25
|
435 largest1_lwr, peak, ratio1, sr;
|
jamie@1
|
436
|
jamie@25
|
437 sr = *(float*)argv;
|
jamie@25
|
438
|
jamie@1
|
439 coeffs2 = (float *)malloc(N * sizeof(float));
|
jamie@1
|
440 coeffs3 = (float *)malloc(N * sizeof(float));
|
jamie@1
|
441 product = (float *)malloc(N * sizeof(float));
|
jamie@25
|
442
|
jamie@1
|
443 while(n--) coeffs2[n] = coeffs3[n] = 1;
|
jamie@1
|
444
|
jamie@1
|
445 M = N >> 1;
|
jamie@1
|
446 L = N / 3;
|
jamie@1
|
447
|
jamie@1
|
448 while(M--){
|
jamie@25
|
449 m = M << 1;
|
jamie@25
|
450 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
|
jamie@1
|
451
|
jamie@25
|
452 if(M < L){
|
jamie@25
|
453 l = M * 3;
|
jamie@25
|
454 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
|
jamie@25
|
455 }
|
jamie@1
|
456 }
|
jamie@25
|
457
|
jamie@1
|
458 peak_index = peak = 0;
|
jamie@25
|
459
|
jamie@1
|
460 for(n = 1; n < N; n++){
|
jamie@25
|
461 product[n] = data[n] * coeffs2[n] * coeffs3[n];
|
jamie@25
|
462 if(product[n] > peak){
|
jamie@25
|
463 peak_index = n;
|
jamie@25
|
464 peak = product[n];
|
jamie@25
|
465 }
|
jamie@1
|
466 }
|
jamie@1
|
467
|
jamie@1
|
468 largest1_lwr = position1_lwr = 0;
|
jamie@1
|
469
|
jamie@1
|
470 for(n = 0; n < N; n++){
|
jamie@25
|
471 if(data[n] > largest1_lwr && n != peak_index){
|
jamie@25
|
472 largest1_lwr = data[n];
|
jamie@25
|
473 position1_lwr = n;
|
jamie@25
|
474 }
|
jamie@1
|
475 }
|
jamie@1
|
476
|
jamie@1
|
477 ratio1 = data[position1_lwr] / data[peak_index];
|
jamie@1
|
478
|
jamie@1
|
479 if(position1_lwr > peak_index * 0.4 && position1_lwr <
|
jamie@25
|
480 peak_index * 0.6 && ratio1 > 0.1)
|
jamie@25
|
481 peak_index = position1_lwr;
|
jamie@1
|
482
|
jamie@22
|
483 *result = sr / (float)peak_index;
|
jamie@25
|
484
|
jamie@1
|
485 free(coeffs2);
|
jamie@1
|
486 free(coeffs3);
|
jamie@1
|
487 free(product);
|
jamie@25
|
488
|
jamie@38
|
489 return SUCCESS;
|
jamie@1
|
490 }
|
jamie@5
|
491
|
jamie@5
|
492
|
jamie@5
|
493 int xtract_f0(float *data, int N, void *argv, float *result){
|
jamie@5
|
494
|
jamie@25
|
495 int M, sr, tau, n;
|
jamie@25
|
496 float f0, err_tau_1, err_tau_x, array_max, threshold_peak, threshold_centre;
|
jamie@22
|
497
|
jamie@25
|
498 sr = *(float *)argv;
|
jamie@25
|
499 /* threshold_peak = *((float *)argv+1);
|
jamie@25
|
500 threshold_centre = *((float *)argv+2);
|
jamie@25
|
501 printf("peak: %.2f\tcentre: %.2f\n", threshold_peak, threshold_centre);*/
|
jamie@25
|
502 /* add temporary dynamic control over thresholds to test clipping effects */
|
jamie@22
|
503
|
jamie@25
|
504 /* FIX: tweak and make into macros */
|
jamie@25
|
505 threshold_peak = .8;
|
jamie@25
|
506 threshold_centre = .3;
|
jamie@25
|
507 M = N >> 1;
|
jamie@25
|
508 err_tau_1 = 0;
|
jamie@25
|
509 array_max = 0;
|
jamie@25
|
510
|
jamie@25
|
511 /* Find the array max */
|
jamie@25
|
512 for(n = 0; n < N; n++){
|
jamie@25
|
513 if (data[n] > array_max)
|
jamie@25
|
514 array_max = data[n];
|
jamie@12
|
515 }
|
jamie@25
|
516
|
jamie@25
|
517 threshold_peak *= array_max;
|
jamie@25
|
518
|
jamie@25
|
519 /* peak clip */
|
jamie@25
|
520 for(n = 0; n < N; n++){
|
jamie@25
|
521 if(data[n] > threshold_peak)
|
jamie@25
|
522 data[n] = threshold_peak;
|
jamie@25
|
523 else if(data[n] < -threshold_peak)
|
jamie@25
|
524 data[n] = -threshold_peak;
|
jamie@25
|
525 }
|
jamie@25
|
526
|
jamie@25
|
527 threshold_centre *= array_max;
|
jamie@25
|
528
|
jamie@25
|
529 /* Centre clip */
|
jamie@25
|
530 for(n = 0; n < N; n++){
|
jamie@25
|
531 if (data[n] < threshold_centre)
|
jamie@25
|
532 data[n] = 0;
|
jamie@25
|
533 else
|
jamie@25
|
534 data[n] -= threshold_centre;
|
jamie@25
|
535 }
|
jamie@25
|
536
|
jamie@25
|
537 /* Estimate fundamental freq */
|
jamie@25
|
538 for (n = 1; n < M; n++)
|
jamie@25
|
539 err_tau_1 = err_tau_1 + fabs(data[n] - data[n+1]);
|
jamie@25
|
540 /* FIX: this doesn't pose too much load if it returns 'early', but if it can't find f0, load can be significant for larger block sizes M^2 iterations! */
|
jamie@25
|
541 for (tau = 2; tau < M; tau++){
|
jamie@25
|
542 err_tau_x = 0;
|
jamie@25
|
543 for (n = 1; n < M; n++){
|
jamie@25
|
544 err_tau_x = err_tau_x + fabs(data[n] - data[n+tau]);
|
jamie@25
|
545 }
|
jamie@25
|
546 if (err_tau_x < err_tau_1) {
|
jamie@25
|
547 f0 = sr / (tau + (err_tau_x / err_tau_1));
|
jamie@25
|
548 *result = f0;
|
jamie@25
|
549 return SUCCESS;
|
jamie@25
|
550 }
|
jamie@25
|
551 }
|
jamie@25
|
552 return NO_RESULT;
|
jamie@5
|
553 }
|