annotate src/scalar.c @ 38:0ea4d6430cfc

Implemented xtract_harmonics
author Jamie Bullock <jamie@postlude.co.uk>
date Sat, 09 Dec 2006 15:21:35 +0000
parents b699a37d27c4
children afb9e6fee244
rev   line source
jamie@1 1 /* libxtract feature extraction library
jamie@1 2 *
jamie@1 3 * Copyright (C) 2006 Jamie Bullock
jamie@1 4 *
jamie@1 5 * This program is free software; you can redistribute it and/or modify
jamie@1 6 * it under the terms of the GNU General Public License as published by
jamie@1 7 * the Free Software Foundation; either version 2 of the License, or
jamie@1 8 * (at your option) any later version.
jamie@1 9 *
jamie@1 10 * This program is distributed in the hope that it will be useful,
jamie@1 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
jamie@1 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
jamie@1 13 * GNU General Public License for more details.
jamie@1 14 *
jamie@1 15 * You should have received a copy of the GNU General Public License
jamie@1 16 * along with this program; if not, write to the Free Software
jamie@1 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
jamie@1 18 * USA.
jamie@1 19 */
jamie@1 20
jamie@1 21
jamie@1 22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
jamie@1 23
jamie@1 24 #include "xtract/libxtract.h"
jamie@1 25 #include "math.h"
jamie@5 26 #include <stdlib.h>
jamie@1 27
jamie@1 28 int xtract_mean(float *data, int N, void *argv, float *result){
jamie@25 29
jamie@1 30 int n = N;
jamie@1 31
jamie@1 32 while(n--)
jamie@25 33 *result += *data++;
jamie@25 34
jamie@1 35 *result /= N;
jamie@38 36
jamie@38 37 return SUCCESS;
jamie@1 38 }
jamie@1 39
jamie@1 40 int xtract_variance(float *data, int N, void *argv, float *result){
jamie@25 41
jamie@1 42 int n = N;
jamie@1 43
jamie@1 44 while(n--)
jamie@25 45 *result += *data++ - *(float *)argv;
jamie@25 46
jamie@1 47 *result = SQ(*result) / (N - 1);
jamie@38 48
jamie@38 49 return SUCCESS;
jamie@1 50 }
jamie@1 51
jamie@1 52 int xtract_standard_deviation(float *data, int N, void *argv, float *result){
jamie@25 53
jamie@1 54 *result = sqrt(*(float *)argv);
jamie@25 55
jamie@38 56 return SUCCESS;
jamie@1 57 }
jamie@1 58
jamie@1 59 int xtract_average_deviation(float *data, int N, void *argv, float *result){
jamie@25 60
jamie@1 61 int n = N;
jamie@1 62
jamie@1 63 while(n--)
jamie@25 64 *result += fabs(*data++ - *(float *)argv);
jamie@25 65
jamie@1 66 *result /= N;
jamie@1 67
jamie@38 68 return SUCCESS;
jamie@1 69 }
jamie@1 70
jamie@1 71 int xtract_skewness(float *data, int N, void *argv, float *result){
jamie@25 72
jamie@1 73 int n = N;
jamie@1 74
jamie@1 75 while(n--)
jamie@25 76 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@25 77
jamie@1 78 *result = pow(*result, 3) / N;
jamie@1 79
jamie@38 80 return SUCCESS;
jamie@1 81 }
jamie@1 82
jamie@1 83 int xtract_kurtosis(float *data, int N, void *argv, float *result){
jamie@25 84
jamie@1 85 int n = N;
jamie@1 86
jamie@1 87 while(n--)
jamie@25 88 *result += (*data++ - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@25 89
jamie@1 90 *result = pow(*result, 4) / N - 3;
jamie@25 91
jamie@38 92 return SUCCESS;
jamie@1 93 }
jamie@1 94
jamie@11 95
jamie@11 96 int xtract_centroid(float *data, int N, void *argv, float *result){
jamie@25 97
jamie@37 98 int n = (N >> 1);
jamie@11 99
jamie@37 100 float *freqs, *amps, FA = 0.f, A = 0.f;
jamie@11 101
jamie@25 102 freqs = data;
jamie@38 103 amps = data + n;
jamie@25 104
jamie@11 105 while(n--){
jamie@25 106 FA += freqs[n] * amps[n];
jamie@25 107 A += amps[n];
jamie@25 108 }
jamie@25 109
jamie@25 110 *result = FA / A;
jamie@11 111
jamie@38 112 return SUCCESS;
jamie@11 113 }
jamie@11 114
jamie@1 115 int xtract_irregularity_k(float *data, int N, void *argv, float *result){
jamie@25 116
jamie@1 117 int n,
jamie@37 118 M = N - 1;
jamie@1 119
jamie@1 120 for(n = 1; n < M; n++)
jamie@25 121 *result += abs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
jamie@1 122
jamie@38 123 return SUCCESS;
jamie@1 124 }
jamie@1 125
jamie@1 126 int xtract_irregularity_j(float *data, int N, void *argv, float *result){
jamie@25 127
jamie@1 128 int n = N;
jamie@1 129
jamie@37 130 float num = 0.f, den = 0.f;
jamie@1 131
jamie@1 132 while(n--){
jamie@25 133 num += data[n] - data[n+1];
jamie@25 134 den += data[n] * data[n];
jamie@1 135 }
jamie@25 136
jamie@1 137 *result = num / den;
jamie@1 138
jamie@38 139 return SUCCESS;
jamie@1 140 }
jamie@1 141
jamie@1 142 int xtract_tristimulus_1(float *data, int N, void *argv, float *result){
jamie@1 143
jamie@1 144 int n = N;
jamie@1 145
jamie@37 146 float den = 0.f;
jamie@1 147
jamie@1 148 while(n--)
jamie@25 149 den += data[n];
jamie@1 150
jamie@1 151 *result = data[0] / den;
jamie@1 152
jamie@38 153 return SUCCESS;
jamie@1 154 }
jamie@1 155
jamie@1 156 int xtract_tristimulus_2(float *data, int N, void *argv, float *result){
jamie@25 157
jamie@1 158 int n = N;
jamie@1 159
jamie@37 160 float den = 0.f;
jamie@1 161
jamie@1 162 while(n--)
jamie@25 163 den += data[n];
jamie@1 164
jamie@1 165 *result = (data[1] + data[2] + data[3]) / den;
jamie@25 166
jamie@38 167 return SUCCESS;
jamie@1 168 }
jamie@1 169
jamie@1 170 int xtract_tristimulus_3(float *data, int N, void *argv, float *result){
jamie@25 171
jamie@1 172 int n = N;
jamie@1 173
jamie@37 174 float den = 0.f, num = 0.f;
jamie@1 175
jamie@1 176 while(n--)
jamie@25 177 den += data[n];
jamie@1 178
jamie@1 179 num = den - data[0] + data[1] + data[2] + data[3];
jamie@25 180
jamie@1 181 *result = num / den;
jamie@25 182
jamie@38 183 return SUCCESS;
jamie@1 184 }
jamie@1 185
jamie@1 186 int xtract_smoothness(float *data, int N, void *argv, float *result){
jamie@25 187
jamie@1 188 int n = N;
jamie@1 189
jamie@1 190 if (data[0] <= 0) data[0] = 1;
jamie@1 191 if (data[1] <= 0) data[1] = 1;
jamie@25 192
jamie@1 193 for(n = 2; n < N; n++){
jamie@25 194 if(data[n] <= 0) data[n] = 1;
jamie@25 195 *result += abs(20 * log(data[n-1]) - (20 * log(data[n-2]) +
jamie@25 196 20 * log(data[n-1]) + 20 * log(data[n])) / 3);
jamie@25 197 }
jamie@38 198
jamie@38 199 return SUCCESS;
jamie@1 200 }
jamie@1 201
jamie@1 202 int xtract_spread(float *data, int N, void *argv, float *result){
jamie@1 203
jamie@1 204 int n = N;
jamie@1 205
jamie@37 206 float num = 0.f, den = 0.f, tmp;
jamie@1 207
jamie@1 208 while(n--){
jamie@25 209 tmp = n - *(float *)argv;
jamie@25 210 num += SQ(tmp) * data[n];
jamie@25 211 den += data[n];
jamie@1 212 }
jamie@1 213
jamie@1 214 *result = sqrt(num / den);
jamie@25 215
jamie@38 216 return SUCCESS;
jamie@1 217 }
jamie@1 218
jamie@1 219 int xtract_zcr(float *data, int N, void *argv, float *result){
jamie@1 220
jamie@1 221 int n = N;
jamie@25 222
jamie@1 223 for(n = 1; n < N; n++)
jamie@25 224 if(data[n] * data[n-1] < 0) (*result)++;
jamie@25 225
jamie@1 226 *result /= N;
jamie@25 227
jamie@38 228 return SUCCESS;
jamie@1 229 }
jamie@1 230
jamie@1 231 int xtract_rolloff(float *data, int N, void *argv, float *result){
jamie@1 232
jamie@1 233 int n = N;
jamie@37 234 float pivot = 0.f, temp = 0.f;
jamie@25 235
jamie@1 236 while(n--) pivot += data[n];
jamie@25 237
jamie@1 238 pivot *= *(float *)argv;
jamie@25 239
jamie@1 240 for(n = 0; temp < pivot; temp += data[n++]);
jamie@1 241
jamie@1 242 *result = n;
jamie@25 243
jamie@38 244 return SUCCESS;
jamie@1 245 }
jamie@1 246
jamie@1 247 int xtract_loudness(float *data, int N, void *argv, float *result){
jamie@25 248
jamie@1 249 int n = BARK_BANDS;
jamie@25 250
jamie@1 251 /*if(n != N) return BAD_VECTOR_SIZE; */
jamie@1 252
jamie@1 253 while(n--)
jamie@25 254 *result += pow(data[n], 0.23);
jamie@38 255
jamie@38 256 return SUCCESS;
jamie@1 257 }
jamie@1 258
jamie@1 259
jamie@1 260 int xtract_flatness(float *data, int N, void *argv, float *result){
jamie@1 261
jamie@1 262 int n = N;
jamie@1 263
jamie@37 264 float num = 0.f, den = 0.f;
jamie@25 265
jamie@1 266 while(n--){
jamie@25 267 if(data[n] !=0){
jamie@25 268 num *= data[n];
jamie@25 269 den += data[n];
jamie@25 270 }
jamie@1 271 }
jamie@1 272
jamie@1 273 num = pow(num, 1 / N);
jamie@1 274 den /= N;
jamie@25 275
jamie@1 276 *result = 10 * log10(num / den);
jamie@25 277
jamie@38 278 return SUCCESS;
jamie@1 279 }
jamie@1 280
jamie@1 281 int xtract_tonality(float *data, int N, void *argv, float *result){
jamie@25 282
jamie@1 283 float sfmdb, sfm;
jamie@25 284
jamie@1 285 sfm = *(float *)argv;
jamie@1 286
jamie@1 287 sfmdb = (sfm > 0 ? (10 * log10(sfm)) / -60 : 0);
jamie@25 288
jamie@1 289 *result = MIN(sfmdb, 1);
jamie@25 290
jamie@38 291 return SUCCESS;
jamie@1 292 }
jamie@1 293
jamie@1 294 int xtract_crest(float *data, int N, void *argv, float *result){
jamie@25 295
jamie@38 296 return FEATURE_NOT_IMPLEMENTED;
jamie@25 297
jamie@1 298 }
jamie@1 299
jamie@1 300 int xtract_noisiness(float *data, int N, void *argv, float *result){
jamie@25 301
jamie@38 302 return FEATURE_NOT_IMPLEMENTED;
jamie@25 303
jamie@1 304 }
jamie@2 305
jamie@1 306 int xtract_rms_amplitude(float *data, int N, void *argv, float *result){
jamie@1 307
jamie@1 308 int n = N;
jamie@1 309
jamie@1 310 while(n--) *result += SQ(data[n]);
jamie@1 311
jamie@1 312 *result = sqrt(*result / N);
jamie@25 313
jamie@38 314 return SUCCESS;
jamie@1 315 }
jamie@1 316
jamie@1 317 int xtract_inharmonicity(float *data, int N, void *argv, float *result){
jamie@1 318
jamie@1 319 int n = N;
jamie@37 320 float num = 0.f, den = 0.f,
jamie@25 321 *fund, *freq;
jamie@1 322
jamie@1 323 fund = *(float **)argv;
jamie@1 324 freq = fund+1;
jamie@25 325
jamie@1 326 while(n--){
jamie@25 327 num += abs(freq[n] - n * *fund) * SQ(data[n]);
jamie@25 328 den += SQ(data[n]);
jamie@1 329 }
jamie@1 330
jamie@1 331 *result = (2 * num) / (*fund * den);
jamie@25 332
jamie@38 333 return SUCCESS;
jamie@1 334 }
jamie@1 335
jamie@1 336
jamie@1 337 int xtract_power(float *data, int N, void *argv, float *result){
jamie@1 338
jamie@38 339 return FEATURE_NOT_IMPLEMENTED;
jamie@25 340
jamie@1 341 }
jamie@1 342
jamie@1 343 int xtract_odd_even_ratio(float *data, int N, void *argv, float *result){
jamie@1 344
jamie@38 345 int n = N, j, k;
jamie@1 346
jamie@37 347 float num = 0.f, den = 0.f;
jamie@1 348
jamie@1 349 while(n--){
jamie@25 350 j = n * 2;
jamie@25 351 k = j - 1;
jamie@25 352 num += data[k];
jamie@25 353 den += data[j];
jamie@1 354 }
jamie@1 355
jamie@1 356 *result = num / den;
jamie@25 357
jamie@38 358 return SUCCESS;
jamie@1 359 }
jamie@1 360
jamie@1 361 int xtract_sharpness(float *data, int N, void *argv, float *result){
jamie@1 362
jamie@38 363 return FEATURE_NOT_IMPLEMENTED;
jamie@25 364
jamie@1 365 }
jamie@1 366
jamie@1 367 int xtract_slope(float *data, int N, void *argv, float *result){
jamie@1 368
jamie@38 369 return FEATURE_NOT_IMPLEMENTED;
jamie@25 370
jamie@1 371 }
jamie@1 372
jamie@5 373 int xtract_lowest_match(float *data, int N, void *argv, float *result){
jamie@25 374
jamie@22 375 float lowest_match = SR_LIMIT;
jamie@1 376 int n = N;
jamie@1 377
jamie@1 378 while(n--) {
jamie@25 379 if(data[n] > 0)
jamie@25 380 lowest_match = MIN(lowest_match, data[n]);
jamie@1 381 }
jamie@1 382
jamie@22 383 *result = (lowest_match == SR_LIMIT ? 0 : lowest_match);
jamie@25 384
jamie@38 385 return SUCCESS;
jamie@1 386 }
jamie@1 387
jamie@1 388 int xtract_hps(float *data, int N, void *argv, float *result){
jamie@1 389
jamie@1 390 int n = N, M, m, l, peak_index, position1_lwr;
jamie@1 391 float *coeffs2, *coeffs3, *product, L,
jamie@25 392 largest1_lwr, peak, ratio1, sr;
jamie@1 393
jamie@25 394 sr = *(float*)argv;
jamie@25 395
jamie@1 396 coeffs2 = (float *)malloc(N * sizeof(float));
jamie@1 397 coeffs3 = (float *)malloc(N * sizeof(float));
jamie@1 398 product = (float *)malloc(N * sizeof(float));
jamie@25 399
jamie@1 400 while(n--) coeffs2[n] = coeffs3[n] = 1;
jamie@1 401
jamie@1 402 M = N >> 1;
jamie@1 403 L = N / 3;
jamie@1 404
jamie@1 405 while(M--){
jamie@25 406 m = M << 1;
jamie@25 407 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
jamie@1 408
jamie@25 409 if(M < L){
jamie@25 410 l = M * 3;
jamie@25 411 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
jamie@25 412 }
jamie@1 413 }
jamie@25 414
jamie@1 415 peak_index = peak = 0;
jamie@25 416
jamie@1 417 for(n = 1; n < N; n++){
jamie@25 418 product[n] = data[n] * coeffs2[n] * coeffs3[n];
jamie@25 419 if(product[n] > peak){
jamie@25 420 peak_index = n;
jamie@25 421 peak = product[n];
jamie@25 422 }
jamie@1 423 }
jamie@1 424
jamie@1 425 largest1_lwr = position1_lwr = 0;
jamie@1 426
jamie@1 427 for(n = 0; n < N; n++){
jamie@25 428 if(data[n] > largest1_lwr && n != peak_index){
jamie@25 429 largest1_lwr = data[n];
jamie@25 430 position1_lwr = n;
jamie@25 431 }
jamie@1 432 }
jamie@1 433
jamie@1 434 ratio1 = data[position1_lwr] / data[peak_index];
jamie@1 435
jamie@1 436 if(position1_lwr > peak_index * 0.4 && position1_lwr <
jamie@25 437 peak_index * 0.6 && ratio1 > 0.1)
jamie@25 438 peak_index = position1_lwr;
jamie@1 439
jamie@22 440 *result = sr / (float)peak_index;
jamie@25 441
jamie@1 442 free(coeffs2);
jamie@1 443 free(coeffs3);
jamie@1 444 free(product);
jamie@25 445
jamie@38 446 return SUCCESS;
jamie@1 447 }
jamie@5 448
jamie@5 449
jamie@5 450 int xtract_f0(float *data, int N, void *argv, float *result){
jamie@5 451
jamie@25 452 int M, sr, tau, n;
jamie@25 453 float f0, err_tau_1, err_tau_x, array_max, threshold_peak, threshold_centre;
jamie@22 454
jamie@25 455 sr = *(float *)argv;
jamie@25 456 /* threshold_peak = *((float *)argv+1);
jamie@25 457 threshold_centre = *((float *)argv+2);
jamie@25 458 printf("peak: %.2f\tcentre: %.2f\n", threshold_peak, threshold_centre);*/
jamie@25 459 /* add temporary dynamic control over thresholds to test clipping effects */
jamie@22 460
jamie@25 461 /* FIX: tweak and make into macros */
jamie@25 462 threshold_peak = .8;
jamie@25 463 threshold_centre = .3;
jamie@25 464 M = N >> 1;
jamie@25 465 err_tau_1 = 0;
jamie@25 466 array_max = 0;
jamie@25 467
jamie@25 468 /* Find the array max */
jamie@25 469 for(n = 0; n < N; n++){
jamie@25 470 if (data[n] > array_max)
jamie@25 471 array_max = data[n];
jamie@12 472 }
jamie@25 473
jamie@25 474 threshold_peak *= array_max;
jamie@25 475
jamie@25 476 /* peak clip */
jamie@25 477 for(n = 0; n < N; n++){
jamie@25 478 if(data[n] > threshold_peak)
jamie@25 479 data[n] = threshold_peak;
jamie@25 480 else if(data[n] < -threshold_peak)
jamie@25 481 data[n] = -threshold_peak;
jamie@25 482 }
jamie@25 483
jamie@25 484 threshold_centre *= array_max;
jamie@25 485
jamie@25 486 /* Centre clip */
jamie@25 487 for(n = 0; n < N; n++){
jamie@25 488 if (data[n] < threshold_centre)
jamie@25 489 data[n] = 0;
jamie@25 490 else
jamie@25 491 data[n] -= threshold_centre;
jamie@25 492 }
jamie@25 493
jamie@25 494 /* Estimate fundamental freq */
jamie@25 495 for (n = 1; n < M; n++)
jamie@25 496 err_tau_1 = err_tau_1 + fabs(data[n] - data[n+1]);
jamie@25 497 /* FIX: this doesn't pose too much load if it returns 'early', but if it can't find f0, load can be significant for larger block sizes M^2 iterations! */
jamie@25 498 for (tau = 2; tau < M; tau++){
jamie@25 499 err_tau_x = 0;
jamie@25 500 for (n = 1; n < M; n++){
jamie@25 501 err_tau_x = err_tau_x + fabs(data[n] - data[n+tau]);
jamie@25 502 }
jamie@25 503 if (err_tau_x < err_tau_1) {
jamie@25 504 f0 = sr / (tau + (err_tau_x / err_tau_1));
jamie@25 505 *result = f0;
jamie@25 506 return SUCCESS;
jamie@25 507 }
jamie@25 508 }
jamie@25 509 return NO_RESULT;
jamie@5 510 }