annotate src/scalar.c @ 43:4a36f70a76e9

Numerous fixes and enhancements, see ChangeLog.
author Jamie Bullock <jamie@postlude.co.uk>
date Fri, 15 Dec 2006 21:17:12 +0000
parents 84e69b155098
children b2e7e24c9a9c
rev   line source
jamie@1 1 /* libxtract feature extraction library
jamie@1 2 *
jamie@1 3 * Copyright (C) 2006 Jamie Bullock
jamie@1 4 *
jamie@1 5 * This program is free software; you can redistribute it and/or modify
jamie@1 6 * it under the terms of the GNU General Public License as published by
jamie@1 7 * the Free Software Foundation; either version 2 of the License, or
jamie@1 8 * (at your option) any later version.
jamie@1 9 *
jamie@1 10 * This program is distributed in the hope that it will be useful,
jamie@1 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
jamie@1 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
jamie@1 13 * GNU General Public License for more details.
jamie@1 14 *
jamie@1 15 * You should have received a copy of the GNU General Public License
jamie@1 16 * along with this program; if not, write to the Free Software
jamie@1 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
jamie@1 18 * USA.
jamie@1 19 */
jamie@1 20
jamie@1 21
jamie@1 22 /* xtract_scalar.c: defines functions that extract a feature as a single value from an input vector */
jamie@1 23
jamie@1 24 #include "xtract/libxtract.h"
jamie@1 25 #include "math.h"
jamie@5 26 #include <stdlib.h>
jamie@43 27 #include <string.h>
jamie@1 28
jamie@43 29 int xtract_mean(const float *data, const int N, const void *argv, float *result){
jamie@25 30
jamie@1 31 int n = N;
jamie@1 32
jamie@1 33 while(n--)
jamie@42 34 *result += data[n];
jamie@25 35
jamie@1 36 *result /= N;
jamie@38 37
jamie@38 38 return SUCCESS;
jamie@1 39 }
jamie@1 40
jamie@43 41 int xtract_variance(const float *data, const int N, const void *argv, float *result){
jamie@25 42
jamie@1 43 int n = N;
jamie@1 44
jamie@1 45 while(n--)
jamie@43 46 *result += pow(data[n] - *(float *)argv, 2);
jamie@25 47
jamie@43 48 *result = *result / (N - 1);
jamie@38 49
jamie@38 50 return SUCCESS;
jamie@1 51 }
jamie@1 52
jamie@43 53 int xtract_standard_deviation(const float *data, const int N, const void *argv, float *result){
jamie@25 54
jamie@1 55 *result = sqrt(*(float *)argv);
jamie@25 56
jamie@38 57 return SUCCESS;
jamie@1 58 }
jamie@1 59
jamie@43 60 int xtract_average_deviation(const float *data, const int N, const void *argv, float *result){
jamie@25 61
jamie@1 62 int n = N;
jamie@42 63
jamie@1 64 while(n--)
jamie@42 65 *result += fabs(data[n] - *(float *)argv);
jamie@25 66
jamie@1 67 *result /= N;
jamie@1 68
jamie@38 69 return SUCCESS;
jamie@1 70 }
jamie@1 71
jamie@43 72 int xtract_skewness(const float *data, const int N, const void *argv, float *result){
jamie@25 73
jamie@1 74 int n = N;
jamie@1 75
jamie@42 76 float temp;
jamie@25 77
jamie@42 78 while(n--){
jamie@42 79 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@42 80 *result += pow(temp, 3);
jamie@42 81 }
jamie@1 82
jamie@42 83 *result /= N;
jamie@42 84
jamie@38 85 return SUCCESS;
jamie@1 86 }
jamie@1 87
jamie@43 88 int xtract_kurtosis(const float *data, const int N, const void *argv, float *result){
jamie@25 89
jamie@1 90 int n = N;
jamie@1 91
jamie@42 92 float temp;
jamie@25 93
jamie@42 94 while(n--){
jamie@42 95 temp = (data[n] - ((float *)argv)[0]) / ((float *)argv)[1];
jamie@42 96 *result += pow(temp, 4);
jamie@42 97 }
jamie@25 98
jamie@42 99 *result /= N;
jamie@42 100 *result -= 3.0f;
jamie@42 101
jamie@38 102 return SUCCESS;
jamie@1 103 }
jamie@1 104
jamie@11 105
jamie@43 106 int xtract_centroid(const float *data, const int N, const void *argv, float *result){
jamie@25 107
jamie@37 108 int n = (N >> 1);
jamie@11 109
jamie@43 110 const float *freqs, *amps;
jamie@43 111 float FA = 0.f, A = 0.f;
jamie@11 112
jamie@25 113 freqs = data;
jamie@38 114 amps = data + n;
jamie@25 115
jamie@11 116 while(n--){
jamie@25 117 FA += freqs[n] * amps[n];
jamie@25 118 A += amps[n];
jamie@25 119 }
jamie@25 120
jamie@25 121 *result = FA / A;
jamie@11 122
jamie@38 123 return SUCCESS;
jamie@11 124 }
jamie@11 125
jamie@43 126 int xtract_irregularity_k(const float *data, const int N, const void *argv, float *result){
jamie@25 127
jamie@1 128 int n,
jamie@37 129 M = N - 1;
jamie@1 130
jamie@1 131 for(n = 1; n < M; n++)
jamie@42 132 *result += fabs(data[n] - (data[n-1] + data[n] + data[n+1]) / 3);
jamie@1 133
jamie@38 134 return SUCCESS;
jamie@1 135 }
jamie@1 136
jamie@43 137 int xtract_irregularity_j(const float *data, const int N, const void *argv, float *result){
jamie@25 138
jamie@1 139 int n = N;
jamie@1 140
jamie@37 141 float num = 0.f, den = 0.f;
jamie@1 142
jamie@1 143 while(n--){
jamie@42 144 num += pow(data[n] - data[n+1], 2);
jamie@42 145 den += pow(data[n], 2);
jamie@1 146 }
jamie@25 147
jamie@1 148 *result = num / den;
jamie@1 149
jamie@38 150 return SUCCESS;
jamie@1 151 }
jamie@1 152
jamie@43 153 int xtract_tristimulus_1(const float *data, const int N, const void *argv, float *result){
jamie@1 154
jamie@1 155 int n = N;
jamie@1 156
jamie@42 157 float den, p1, temp;
jamie@1 158
jamie@42 159 den = p1 = temp = 0.f;
jamie@1 160
jamie@42 161 for(n = 0; n < N; n++){
jamie@42 162 if((temp = data[n])){
jamie@42 163 den += temp;
jamie@42 164 if(!p1)
jamie@42 165 p1 = temp;
jamie@42 166 }
jamie@42 167 }
jamie@42 168
jamie@42 169 *result = p1 / den;
jamie@1 170
jamie@38 171 return SUCCESS;
jamie@1 172 }
jamie@1 173
jamie@43 174 int xtract_tristimulus_2(const float *data, const int N, const void *argv, float *result){
jamie@25 175
jamie@1 176 int n = N;
jamie@1 177
jamie@42 178 float den, p2, p3, p4, temp;
jamie@1 179
jamie@42 180 den = p2 = p3 = p4 = temp = 0.f;
jamie@1 181
jamie@42 182 for(n = 0; n < N; n++){
jamie@42 183 if((temp = data[n])){
jamie@42 184 den += temp;
jamie@42 185 if(!p2)
jamie@42 186 p2 = temp;
jamie@42 187 else if(!p3)
jamie@42 188 p3 = temp;
jamie@42 189 else if(!p4)
jamie@42 190 p4 = temp;
jamie@42 191 }
jamie@42 192 }
jamie@42 193
jamie@42 194 *result = (p2 + p3 + p4) / den;
jamie@25 195
jamie@38 196 return SUCCESS;
jamie@1 197 }
jamie@1 198
jamie@43 199 int xtract_tristimulus_3(const float *data, const int N, const void *argv, float *result){
jamie@25 200
jamie@42 201 int n = N, count = 0;
jamie@1 202
jamie@42 203 float den, num, temp;
jamie@1 204
jamie@42 205 den = num = temp = 0.f;
jamie@1 206
jamie@42 207 for(n = 0; n < N; n++){
jamie@42 208 if((temp = data[n])){
jamie@42 209 den += temp;
jamie@42 210 if(count >= 5)
jamie@42 211 num += temp;
jamie@42 212 count++;
jamie@42 213 }
jamie@42 214 }
jamie@25 215
jamie@1 216 *result = num / den;
jamie@25 217
jamie@38 218 return SUCCESS;
jamie@1 219 }
jamie@1 220
jamie@43 221 int xtract_smoothness(const float *data, const int N, const void *argv, float *result){
jamie@25 222
jamie@1 223 int n = N;
jamie@1 224
jamie@43 225 float *input;
jamie@43 226
jamie@43 227 input = (float *)malloc(N * sizeof(float));
jamie@43 228 input = memcpy(input, data, N * sizeof(float));
jamie@43 229
jamie@43 230 if (input[0] <= 0) input[0] = 1;
jamie@43 231 if (input[1] <= 0) input[1] = 1;
jamie@25 232
jamie@1 233 for(n = 2; n < N; n++){
jamie@43 234 if(input[n] <= 0) input[n] = 1;
jamie@43 235 *result += abs(20 * log(input[n-1]) - (20 * log(input[n-2]) +
jamie@43 236 20 * log(input[n-1]) + 20 * log(input[n])) / 3);
jamie@25 237 }
jamie@43 238
jamie@43 239 free(input);
jamie@38 240
jamie@38 241 return SUCCESS;
jamie@1 242 }
jamie@1 243
jamie@43 244 int xtract_spread(const float *data, const int N, const void *argv, float *result){
jamie@1 245
jamie@1 246 int n = N;
jamie@1 247
jamie@37 248 float num = 0.f, den = 0.f, tmp;
jamie@1 249
jamie@1 250 while(n--){
jamie@25 251 tmp = n - *(float *)argv;
jamie@25 252 num += SQ(tmp) * data[n];
jamie@25 253 den += data[n];
jamie@1 254 }
jamie@1 255
jamie@1 256 *result = sqrt(num / den);
jamie@25 257
jamie@38 258 return SUCCESS;
jamie@1 259 }
jamie@1 260
jamie@43 261 int xtract_zcr(const float *data, const int N, const void *argv, float *result){
jamie@1 262
jamie@1 263 int n = N;
jamie@25 264
jamie@1 265 for(n = 1; n < N; n++)
jamie@25 266 if(data[n] * data[n-1] < 0) (*result)++;
jamie@25 267
jamie@1 268 *result /= N;
jamie@25 269
jamie@38 270 return SUCCESS;
jamie@1 271 }
jamie@1 272
jamie@43 273 int xtract_rolloff(const float *data, const int N, const void *argv, float *result){
jamie@1 274
jamie@1 275 int n = N;
jamie@42 276 float pivot, temp;
jamie@42 277
jamie@42 278 pivot = temp = 0.f;
jamie@25 279
jamie@1 280 while(n--) pivot += data[n];
jamie@25 281
jamie@42 282 pivot *= ((float *)argv)[0];
jamie@25 283
jamie@42 284 for(n = 0; temp < pivot; n++)
jamie@42 285 temp += data[n];
jamie@1 286
jamie@42 287 *result = (n / (float)N) * (((float *)argv)[1] * .5);
jamie@25 288
jamie@38 289 return SUCCESS;
jamie@1 290 }
jamie@1 291
jamie@43 292 int xtract_loudness(const float *data, const int N, const void *argv, float *result){
jamie@25 293
jamie@1 294 int n = BARK_BANDS;
jamie@25 295
jamie@1 296 /*if(n != N) return BAD_VECTOR_SIZE; */
jamie@1 297
jamie@1 298 while(n--)
jamie@25 299 *result += pow(data[n], 0.23);
jamie@38 300
jamie@38 301 return SUCCESS;
jamie@1 302 }
jamie@1 303
jamie@1 304
jamie@43 305 int xtract_flatness(const float *data, const int N, const void *argv, float *result){
jamie@1 306
jamie@42 307 int n;
jamie@1 308
jamie@43 309 float num, den, temp, *tmp, prescale;
jamie@43 310 int lower, upper;
jamie@25 311
jamie@43 312 tmp = (float *)argv;
jamie@43 313 lower = (int)tmp[0];
jamie@43 314 upper = (int)tmp[1];
jamie@43 315 prescale = (float)tmp[2];
jamie@43 316
jamie@43 317 upper = (upper > N ? N : upper);
jamie@43 318 lower = (lower < 0.f ? 0.f : lower);
jamie@43 319
jamie@42 320 den = temp = num = 0.f;
jamie@42 321
jamie@43 322 for(n = lower; n < upper; n++){
jamie@43 323 if((temp = data[n] * prescale)){
jamie@42 324 if(!num)
jamie@42 325 num = den = temp;
jamie@42 326 else{
jamie@42 327 num *= temp;
jamie@42 328 den += temp;
jamie@42 329 }
jamie@25 330 }
jamie@1 331 }
jamie@42 332
jamie@42 333 num = powf(num, 1.0f / N);
jamie@1 334 den /= N;
jamie@25 335
jamie@42 336 *result = num / den;
jamie@25 337
jamie@38 338 return SUCCESS;
jamie@1 339 }
jamie@1 340
jamie@43 341 int xtract_tonality(const float *data, const int N, const void *argv, float *result){
jamie@25 342
jamie@1 343 float sfmdb, sfm;
jamie@25 344
jamie@1 345 sfm = *(float *)argv;
jamie@1 346
jamie@1 347 sfmdb = (sfm > 0 ? (10 * log10(sfm)) / -60 : 0);
jamie@25 348
jamie@1 349 *result = MIN(sfmdb, 1);
jamie@25 350
jamie@38 351 return SUCCESS;
jamie@1 352 }
jamie@1 353
jamie@43 354 int xtract_crest(const float *data, const int N, const void *argv, float *result){
jamie@25 355
jamie@38 356 return FEATURE_NOT_IMPLEMENTED;
jamie@25 357
jamie@1 358 }
jamie@1 359
jamie@43 360 int xtract_noisiness(const float *data, const int N, const void *argv, float *result){
jamie@25 361
jamie@38 362 return FEATURE_NOT_IMPLEMENTED;
jamie@25 363
jamie@1 364 }
jamie@2 365
jamie@43 366 int xtract_rms_amplitude(const float *data, const int N, const void *argv, float *result){
jamie@1 367
jamie@1 368 int n = N;
jamie@1 369
jamie@1 370 while(n--) *result += SQ(data[n]);
jamie@1 371
jamie@1 372 *result = sqrt(*result / N);
jamie@25 373
jamie@38 374 return SUCCESS;
jamie@1 375 }
jamie@1 376
jamie@43 377 int xtract_inharmonicity(const float *data, const int N, const void *argv, float *result){
jamie@1 378
jamie@41 379 int n = N >> 1;
jamie@43 380 float num = 0.f, den = 0.f, fund;
jamie@43 381 const float *freqs, *amps;
jamie@1 382
jamie@41 383 fund = *(float *)argv;
jamie@41 384 freqs = data;
jamie@41 385 amps = data + n;
jamie@25 386
jamie@1 387 while(n--){
jamie@41 388 num += abs(freqs[n] - n * fund) * SQ(amps[n]);
jamie@41 389 den += SQ(amps[n]);
jamie@1 390 }
jamie@1 391
jamie@41 392 *result = (2 * num) / (fund * den);
jamie@25 393
jamie@38 394 return SUCCESS;
jamie@1 395 }
jamie@1 396
jamie@1 397
jamie@43 398 int xtract_power(const float *data, const int N, const void *argv, float *result){
jamie@1 399
jamie@38 400 return FEATURE_NOT_IMPLEMENTED;
jamie@25 401
jamie@1 402 }
jamie@1 403
jamie@43 404 int xtract_odd_even_ratio(const float *data, const int N, const void *argv, float *result){
jamie@1 405
jamie@43 406 int M = (N >> 1), n;
jamie@1 407
jamie@43 408 float num = 0.f, den = 0.f, temp, f0;
jamie@1 409
jamie@43 410 f0 = *(float *)argv;
jamie@43 411
jamie@43 412 for(n = 0; n < M; n++){
jamie@43 413 if((temp = data[n])){
jamie@43 414 if(((int)(rintf(temp / f0)) % 2) != 0){
jamie@43 415 num += data[M + n];
jamie@43 416 }
jamie@43 417 else{
jamie@43 418 den += data[M + n];
jamie@43 419 }
jamie@43 420 }
jamie@1 421 }
jamie@1 422
jamie@1 423 *result = num / den;
jamie@25 424
jamie@38 425 return SUCCESS;
jamie@1 426 }
jamie@1 427
jamie@43 428 int xtract_sharpness(const float *data, const int N, const void *argv, float *result){
jamie@1 429
jamie@38 430 return FEATURE_NOT_IMPLEMENTED;
jamie@25 431
jamie@1 432 }
jamie@1 433
jamie@43 434 int xtract_slope(const float *data, const int N, const void *argv, float *result){
jamie@1 435
jamie@38 436 return FEATURE_NOT_IMPLEMENTED;
jamie@25 437
jamie@1 438 }
jamie@1 439
jamie@43 440 int xtract_lowest(const float *data, const int N, const void *argv, float *result){
jamie@25 441
jamie@43 442 float lower, upper, lowest;
jamie@1 443 int n = N;
jamie@1 444
jamie@43 445 lower = *(float *)argv;
jamie@43 446 upper = *((float *)argv+1);
jamie@43 447
jamie@43 448 lowest = upper;
jamie@43 449
jamie@1 450 while(n--) {
jamie@43 451 if(data[n] > lower)
jamie@43 452 *result = MIN(lowest, data[n]);
jamie@1 453 }
jamie@1 454
jamie@43 455 *result = (*result == upper ? -0 : *result);
jamie@43 456
jamie@38 457 return SUCCESS;
jamie@1 458 }
jamie@1 459
jamie@43 460 int xtract_hps(const float *data, const int N, const void *argv, float *result){
jamie@1 461
jamie@1 462 int n = N, M, m, l, peak_index, position1_lwr;
jamie@1 463 float *coeffs2, *coeffs3, *product, L,
jamie@25 464 largest1_lwr, peak, ratio1, sr;
jamie@1 465
jamie@25 466 sr = *(float*)argv;
jamie@25 467
jamie@1 468 coeffs2 = (float *)malloc(N * sizeof(float));
jamie@1 469 coeffs3 = (float *)malloc(N * sizeof(float));
jamie@1 470 product = (float *)malloc(N * sizeof(float));
jamie@25 471
jamie@1 472 while(n--) coeffs2[n] = coeffs3[n] = 1;
jamie@1 473
jamie@1 474 M = N >> 1;
jamie@1 475 L = N / 3;
jamie@1 476
jamie@1 477 while(M--){
jamie@25 478 m = M << 1;
jamie@25 479 coeffs2[M] = (data[m] + data[m+1]) * 0.5f;
jamie@1 480
jamie@25 481 if(M < L){
jamie@25 482 l = M * 3;
jamie@25 483 coeffs3[M] = (data[l] + data[l+1] + data[l+2]) / 3;
jamie@25 484 }
jamie@1 485 }
jamie@25 486
jamie@1 487 peak_index = peak = 0;
jamie@25 488
jamie@1 489 for(n = 1; n < N; n++){
jamie@25 490 product[n] = data[n] * coeffs2[n] * coeffs3[n];
jamie@25 491 if(product[n] > peak){
jamie@25 492 peak_index = n;
jamie@25 493 peak = product[n];
jamie@25 494 }
jamie@1 495 }
jamie@1 496
jamie@1 497 largest1_lwr = position1_lwr = 0;
jamie@1 498
jamie@1 499 for(n = 0; n < N; n++){
jamie@25 500 if(data[n] > largest1_lwr && n != peak_index){
jamie@25 501 largest1_lwr = data[n];
jamie@25 502 position1_lwr = n;
jamie@25 503 }
jamie@1 504 }
jamie@1 505
jamie@1 506 ratio1 = data[position1_lwr] / data[peak_index];
jamie@1 507
jamie@1 508 if(position1_lwr > peak_index * 0.4 && position1_lwr <
jamie@25 509 peak_index * 0.6 && ratio1 > 0.1)
jamie@25 510 peak_index = position1_lwr;
jamie@1 511
jamie@22 512 *result = sr / (float)peak_index;
jamie@25 513
jamie@1 514 free(coeffs2);
jamie@1 515 free(coeffs3);
jamie@1 516 free(product);
jamie@25 517
jamie@38 518 return SUCCESS;
jamie@1 519 }
jamie@5 520
jamie@5 521
jamie@43 522 int xtract_f0(const float *data, const int N, const void *argv, float *result){
jamie@5 523
jamie@25 524 int M, sr, tau, n;
jamie@43 525 size_t bytes;
jamie@43 526 float f0, err_tau_1, err_tau_x, array_max,
jamie@43 527 threshold_peak, threshold_centre,
jamie@43 528 *input;
jamie@22 529
jamie@25 530 sr = *(float *)argv;
jamie@43 531
jamie@43 532 input = (float *)malloc(bytes = N * sizeof(float));
jamie@43 533 input = memcpy(input, data, bytes);
jamie@25 534 /* threshold_peak = *((float *)argv+1);
jamie@25 535 threshold_centre = *((float *)argv+2);
jamie@25 536 printf("peak: %.2f\tcentre: %.2f\n", threshold_peak, threshold_centre);*/
jamie@25 537 /* add temporary dynamic control over thresholds to test clipping effects */
jamie@22 538
jamie@25 539 /* FIX: tweak and make into macros */
jamie@25 540 threshold_peak = .8;
jamie@25 541 threshold_centre = .3;
jamie@25 542 M = N >> 1;
jamie@25 543 err_tau_1 = 0;
jamie@25 544 array_max = 0;
jamie@25 545
jamie@25 546 /* Find the array max */
jamie@25 547 for(n = 0; n < N; n++){
jamie@43 548 if (input[n] > array_max)
jamie@43 549 array_max = input[n];
jamie@12 550 }
jamie@25 551
jamie@25 552 threshold_peak *= array_max;
jamie@25 553
jamie@25 554 /* peak clip */
jamie@25 555 for(n = 0; n < N; n++){
jamie@43 556 if(input[n] > threshold_peak)
jamie@43 557 input[n] = threshold_peak;
jamie@43 558 else if(input[n] < -threshold_peak)
jamie@43 559 input[n] = -threshold_peak;
jamie@25 560 }
jamie@25 561
jamie@25 562 threshold_centre *= array_max;
jamie@25 563
jamie@25 564 /* Centre clip */
jamie@25 565 for(n = 0; n < N; n++){
jamie@43 566 if (input[n] < threshold_centre)
jamie@43 567 input[n] = 0;
jamie@25 568 else
jamie@43 569 input[n] -= threshold_centre;
jamie@25 570 }
jamie@25 571
jamie@25 572 /* Estimate fundamental freq */
jamie@25 573 for (n = 1; n < M; n++)
jamie@43 574 err_tau_1 = err_tau_1 + fabs(input[n] - input[n+1]);
jamie@25 575 /* FIX: this doesn't pose too much load if it returns 'early', but if it can't find f0, load can be significant for larger block sizes M^2 iterations! */
jamie@25 576 for (tau = 2; tau < M; tau++){
jamie@25 577 err_tau_x = 0;
jamie@25 578 for (n = 1; n < M; n++){
jamie@43 579 err_tau_x = err_tau_x + fabs(input[n] - input[n+tau]);
jamie@25 580 }
jamie@25 581 if (err_tau_x < err_tau_1) {
jamie@25 582 f0 = sr / (tau + (err_tau_x / err_tau_1));
jamie@25 583 *result = f0;
jamie@43 584 free(input);
jamie@25 585 return SUCCESS;
jamie@25 586 }
jamie@25 587 }
jamie@43 588 *result = -0;
jamie@43 589 free(input);
jamie@25 590 return NO_RESULT;
jamie@5 591 }
jamie@43 592
jamie@43 593 int xtract_failsafe_f0(const float *data, const int N, const void *argv, float *result){
jamie@43 594
jamie@43 595 float *magnitudes = NULL, argf[2], *peaks = NULL, return_code;
jamie@43 596
jamie@43 597 return_code = xtract_f0(data, N, argv, result);
jamie@43 598
jamie@43 599 if(return_code == NO_RESULT){
jamie@43 600
jamie@43 601 magnitudes = (float *)malloc(N * sizeof(float));
jamie@43 602 peaks = (float *)malloc(N * sizeof(float));
jamie@43 603 xtract_magnitude_spectrum(data, N, NULL, magnitudes);
jamie@43 604 argf[0] = 10.f;
jamie@43 605 argf[1] = *(float *)argv;
jamie@43 606 xtract_peaks(magnitudes, N, argf, peaks);
jamie@43 607 argf[0] = 0.f;
jamie@43 608 argf[1] = N >> 1;
jamie@43 609 xtract_lowest(peaks, argf[1], argf, result);
jamie@43 610
jamie@43 611 free(magnitudes);
jamie@43 612 free(peaks);
jamie@43 613 }
jamie@43 614
jamie@43 615 return SUCCESS;
jamie@43 616
jamie@43 617 }
jamie@43 618