annotate core/RTAudio.cpp @ 360:8e0dee85b73a prerelease

Fixed run_project.sh
author Giulio Moro <giuliomoro@yahoo.it>
date Wed, 08 Jun 2016 22:19:54 +0100
parents ff5f346a293e
children 3bed6b09223c
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@45 27 #include <native/intr.h>
andrewm@0 28 #include <rtdk.h>
andrewm@0 29
giuliomoro@301 30 #include "../include/Bela.h"
andrewm@0 31 #include "../include/PRU.h"
andrewm@0 32 #include "../include/I2c_Codec.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
andrewm@0 34
andrewm@45 35 // ARM interrupt number for PRU event EVTOUT7
andrewm@45 36 #define PRU_RTAUDIO_IRQ 21
andrewm@45 37
andrewm@0 38 using namespace std;
andrewm@0 39
andrewm@0 40 // Data structure to keep track of auxiliary tasks we
andrewm@0 41 // can schedule
andrewm@0 42 typedef struct {
andrewm@0 43 RT_TASK task;
l@256 44 void (*argfunction)(void*);
l@256 45 void (*function)(void);
andrewm@0 46 char *name;
andrewm@0 47 int priority;
giuliomoro@174 48 bool started;
l@256 49 bool hasArgs;
l@254 50 void* args;
l@258 51 bool autoSchedule;
andrewm@0 52 } InternalAuxiliaryTask;
andrewm@0 53
andrewm@0 54 // Real-time tasks and objects
andrewm@0 55 RT_TASK gRTAudioThread;
andrewm@307 56 const char gRTAudioThreadName[] = "bela-audio";
andrewm@307 57
andrewm@303 58 #ifdef BELA_USE_XENOMAI_INTERRUPTS
andrewm@45 59 RT_INTR gRTAudioInterrupt;
andrewm@307 60 const char gRTAudioInterruptName[] = "bela-pru-irq";
andrewm@50 61 #endif
andrewm@307 62
andrewm@0 63 PRU *gPRU = 0;
andrewm@0 64 I2c_Codec *gAudioCodec = 0;
andrewm@0 65
giuliomoro@176 66 vector<InternalAuxiliaryTask*> &getAuxTasks(){
giuliomoro@176 67 static vector<InternalAuxiliaryTask*> auxTasks;
giuliomoro@176 68 return auxTasks;
giuliomoro@176 69 }
andrewm@0 70
andrewm@0 71 // Flag which tells the audio task to stop
giuliomoro@233 72 int gShouldStop = false;
andrewm@0 73
andrewm@0 74 // general settings
andrewm@45 75 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
andrewm@0 76 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 77 int gAmplifierMutePin = -1;
andrewm@5 78 int gAmplifierShouldBeginMuted = 0;
andrewm@0 79
andrewm@45 80 // Context which holds all the audio/sensor data passed to the render routines
andrewm@307 81 InternalBelaContext gContext;
andrewm@45 82
andrewm@45 83 // User data passed in from main()
andrewm@45 84 void *gUserData;
andrewm@0 85
andrewm@0 86 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 87 // audio, but does not actually start the calculations.
giuliomoro@178 88 // periodSize indicates the number of audio frames per period: the analog period size
giuliomoro@178 89 // will depend on the number of analog channels, in such a way that
giuliomoro@178 90 // analogPeriodSize = 4*periodSize/numAnalogChannels
giuliomoro@178 91 // In total, the audio latency in frames will be 2*periodSize,
andrewm@0 92 // plus any latency inherent in the ADCs and DACs themselves.
giuliomoro@19 93 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
giuliomoro@19 94 // numAnalogChannels indicates how many ADC and DAC channels to use.
andrewm@56 95 // userData is an opaque pointer which will be passed through to the setup()
andrewm@0 96 // function for application-specific use
andrewm@0 97 //
andrewm@0 98 // Returns 0 on success.
andrewm@0 99
giuliomoro@301 100 int Bela_initAudio(BelaInitSettings *settings, void *userData)
andrewm@0 101 {
andrewm@280 102 // Sanity checks
andrewm@280 103 if(settings->pruNumber < 0 || settings->pruNumber > 1) {
andrewm@280 104 cout << "Invalid PRU number " << settings->pruNumber << endl;
andrewm@280 105 return -1;
andrewm@280 106 }
andrewm@280 107 if(settings->pruNumber != 1 && settings->numMuxChannels != 0) {
andrewm@280 108 cout << "Incompatible settings: multiplexer can only be run using PRU 1\n";
andrewm@280 109 return -1;
andrewm@280 110 }
andrewm@280 111
andrewm@0 112 rt_print_auto_init(1);
andrewm@45 113
giuliomoro@301 114 Bela_setVerboseLevel(settings->verbose);
andrewm@45 115 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
andrewm@45 116 gUserData = userData;
andrewm@45 117
andrewm@45 118 // Initialise context data structure
giuliomoro@301 119 memset(&gContext, 0, sizeof(BelaContext));
andrewm@0 120
andrewm@5 121 if(gRTAudioVerbose) {
andrewm@5 122 cout << "Starting with period size " << settings->periodSize << "; ";
giuliomoro@19 123 if(settings->useAnalog)
giuliomoro@19 124 cout << "analog enabled\n";
andrewm@5 125 else
giuliomoro@19 126 cout << "analog disabled\n";
andrewm@5 127 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
andrewm@5 128 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
andrewm@5 129 if(settings->beginMuted)
andrewm@5 130 cout << "Beginning with speaker muted\n";
andrewm@5 131 }
andrewm@0 132
andrewm@0 133 // Prepare GPIO pins for amplifier mute and status LED
andrewm@5 134 if(settings->ampMutePin >= 0) {
andrewm@5 135 gAmplifierMutePin = settings->ampMutePin;
andrewm@5 136 gAmplifierShouldBeginMuted = settings->beginMuted;
andrewm@0 137
andrewm@5 138 if(gpio_export(settings->ampMutePin)) {
andrewm@0 139 if(gRTAudioVerbose)
giuliomoro@16 140 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
andrewm@0 141 }
andrewm@5 142 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
andrewm@0 143 if(gRTAudioVerbose)
andrewm@0 144 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 145 return -1;
andrewm@0 146 }
andrewm@5 147 if(gpio_set_value(settings->ampMutePin, LOW)) {
andrewm@0 148 if(gRTAudioVerbose)
andrewm@0 149 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 150 return -1;
andrewm@0 151 }
andrewm@0 152 }
andrewm@0 153
giuliomoro@19 154 // Limit the analog channels to sane values
giuliomoro@19 155 if(settings->numAnalogChannels >= 8)
giuliomoro@19 156 settings->numAnalogChannels = 8;
giuliomoro@19 157 else if(settings->numAnalogChannels >= 4)
giuliomoro@19 158 settings->numAnalogChannels = 4;
andrewm@12 159 else
giuliomoro@19 160 settings->numAnalogChannels = 2;
andrewm@12 161
andrewm@45 162 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
andrewm@45 163 gContext.audioSampleRate = 44100.0;
andrewm@45 164 gContext.audioChannels = 2;
andrewm@45 165
andrewm@45 166 if(settings->useAnalog) {
giuliomoro@178 167 gContext.audioFrames = settings->periodSize;
andrewm@45 168
giuliomoro@178 169 gContext.analogFrames = gContext.audioFrames * 4 / settings->numAnalogChannels;
andrewm@45 170 gContext.analogChannels = settings->numAnalogChannels;
andrewm@45 171 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
andrewm@45 172 }
andrewm@45 173 else {
giuliomoro@178 174 gContext.audioFrames = settings->periodSize;
andrewm@45 175
andrewm@45 176 gContext.analogFrames = 0;
andrewm@45 177 gContext.analogChannels = 0;
andrewm@45 178 gContext.analogSampleRate = 0;
andrewm@45 179 }
andrewm@45 180
giuliomoro@178 181 // Sanity check the combination of channels and period size
giuliomoro@210 182 if( gContext.analogChannels != 0 && ((gContext.analogChannels <= 4 && gContext.analogFrames < 2) ||
giuliomoro@210 183 (gContext.analogChannels <= 2 && gContext.analogFrames < 4)) )
giuliomoro@178 184 {
giuliomoro@178 185 cout << "Error: " << gContext.analogChannels << " channels and period size of " << gContext.analogFrames << " not supported.\n";
giuliomoro@178 186 return 1;
giuliomoro@178 187 }
giuliomoro@178 188
andrewm@45 189 // For now, digital frame rate is equal to audio frame rate
andrewm@45 190 if(settings->useDigital) {
andrewm@45 191 gContext.digitalFrames = gContext.audioFrames;
andrewm@45 192 gContext.digitalSampleRate = gContext.audioSampleRate;
andrewm@45 193 gContext.digitalChannels = settings->numDigitalChannels;
andrewm@45 194 }
andrewm@45 195 else {
andrewm@45 196 gContext.digitalFrames = 0;
andrewm@45 197 gContext.digitalSampleRate = 0;
andrewm@45 198 gContext.digitalChannels = 0;
andrewm@45 199 }
andrewm@45 200
andrewm@45 201 // Set flags based on init settings
andrewm@45 202 if(settings->interleave)
andrewm@303 203 gContext.flags |= BELA_FLAG_INTERLEAVED;
andrewm@45 204 if(settings->analogOutputsPersist)
andrewm@303 205 gContext.flags |= BELA_FLAG_ANALOG_OUTPUTS_PERSIST;
andrewm@45 206
andrewm@0 207 // Use PRU for audio
andrewm@45 208 gPRU = new PRU(&gContext);
andrewm@0 209 gAudioCodec = new I2c_Codec();
andrewm@0 210
andrewm@45 211 // Initialise the GPIO pins, including possibly the digital pins in the render routines
andrewm@45 212 if(gPRU->prepareGPIO(1, 1)) {
andrewm@0 213 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 214 return 1;
andrewm@0 215 }
andrewm@280 216
andrewm@45 217 // Get the PRU memory buffers ready to go
andrewm@280 218 if(gPRU->initialise(settings->pruNumber, gContext.analogFrames, gContext.analogChannels,
andrewm@280 219 settings->numMuxChannels, true)) {
andrewm@0 220 cout << "Error: unable to initialise PRU\n";
andrewm@0 221 return 1;
andrewm@0 222 }
andrewm@45 223
andrewm@45 224 // Prepare the audio codec, which clocks the whole system
andrewm@5 225 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
andrewm@0 226 cout << "Unable to open codec I2C\n";
andrewm@0 227 return 1;
andrewm@0 228 }
andrewm@0 229 if(gAudioCodec->initCodec()) {
andrewm@0 230 cout << "Error: unable to initialise audio codec\n";
andrewm@0 231 return 1;
andrewm@0 232 }
giuliomoro@172 233
andrewm@5 234 // Set default volume levels
giuliomoro@301 235 Bela_setDACLevel(settings->dacLevel);
giuliomoro@301 236 Bela_setADCLevel(settings->adcLevel);
giuliomoro@174 237 // TODO: add more argument checks
giuliomoro@171 238 for(int n = 0; n < 2; n++){
giuliomoro@172 239 if(settings->pgaGain[n] > 59.5){
giuliomoro@172 240 std::cerr << "PGA gain out of range [0,59.5]\n";
giuliomoro@172 241 exit(1);
giuliomoro@172 242 }
giuliomoro@301 243 Bela_setPgaGain(settings->pgaGain[n], n);
giuliomoro@171 244 }
giuliomoro@301 245 Bela_setHeadphoneLevel(settings->headphoneLevel);
andrewm@5 246
andrewm@45 247 // Call the user-defined initialisation function
andrewm@307 248 if(!setup((BelaContext *)&gContext, userData)) {
andrewm@0 249 cout << "Couldn't initialise audio rendering\n";
andrewm@0 250 return 1;
andrewm@0 251 }
andrewm@0 252
andrewm@0 253 return 0;
andrewm@0 254 }
andrewm@0 255
andrewm@0 256 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 257 // and then transfers control to the PRU object. The PRU object in
andrewm@0 258 // turn will call the audio render() callback function every time
andrewm@0 259 // there is new data to process.
andrewm@0 260
andrewm@0 261 void audioLoop(void *)
andrewm@0 262 {
andrewm@0 263 if(gRTAudioVerbose==1)
andrewm@0 264 rt_printf("_________________Audio Thread!\n");
andrewm@0 265
andrewm@0 266 // PRU audio
andrewm@0 267 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 268
andrewm@0 269 if(gAudioCodec->startAudio(0)) {
andrewm@0 270 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 271 gShouldStop = 1;
andrewm@0 272 }
andrewm@0 273 else {
giuliomoro@16 274 if(gPRU->start(gPRUFilename)) {
giuliomoro@16 275 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 276 gShouldStop = 1;
andrewm@0 277 }
andrewm@0 278 else {
andrewm@0 279 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@5 280
andrewm@5 281 if(!gAmplifierShouldBeginMuted) {
andrewm@5 282 // First unmute the amplifier
giuliomoro@301 283 if(Bela_muteSpeakers(0)) {
andrewm@5 284 if(gRTAudioVerbose)
andrewm@5 285 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@5 286 }
andrewm@0 287 }
andrewm@0 288
andrewm@303 289 #ifdef BELA_USE_XENOMAI_INTERRUPTS
andrewm@45 290 gPRU->loop(&gRTAudioInterrupt, gUserData);
andrewm@50 291 #else
andrewm@50 292 gPRU->loop(0, gUserData);
andrewm@50 293 #endif
andrewm@0 294 // Now clean up
andrewm@0 295 // gPRU->waitForFinish();
andrewm@0 296 gPRU->disable();
andrewm@0 297 gAudioCodec->stopAudio();
andrewm@0 298 gPRU->cleanupGPIO();
andrewm@0 299 }
andrewm@0 300 }
andrewm@0 301
andrewm@0 302 if(gRTAudioVerbose == 1)
andrewm@0 303 rt_printf("audio thread ended\n");
andrewm@0 304 }
andrewm@0 305
andrewm@0 306 // Create a calculation loop which can run independently of the audio, at a different
andrewm@303 307 // (equal or lower) priority. Audio priority is defined in BELA_AUDIO_PRIORITY;
andrewm@45 308 // priority should be generally be less than this.
andrewm@0 309 // Returns an (opaque) pointer to the created task on success; 0 on failure
giuliomoro@301 310 AuxiliaryTask Bela_createAuxiliaryTask(void (*functionToCall)(void* args), int priority, const char *name, void* args, bool autoSchedule)
andrewm@0 311 {
andrewm@0 312 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 313
andrewm@0 314 // Attempt to create the task
andrewm@0 315 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 316 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 317 free(newTask);
andrewm@0 318 return 0;
andrewm@0 319 }
andrewm@0 320
andrewm@0 321 // Populate the rest of the data structure and store it in the vector
l@256 322 newTask->argfunction = functionToCall;
andrewm@0 323 newTask->name = strdup(name);
andrewm@0 324 newTask->priority = priority;
giuliomoro@174 325 newTask->started = false;
l@254 326 newTask->args = args;
l@256 327 newTask->hasArgs = true;
l@258 328 newTask->autoSchedule = autoSchedule;
l@258 329
giuliomoro@176 330 getAuxTasks().push_back(newTask);
andrewm@0 331
andrewm@0 332 return (AuxiliaryTask)newTask;
andrewm@0 333 }
giuliomoro@301 334 AuxiliaryTask Bela_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name, bool autoSchedule)
l@256 335 {
l@256 336 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
l@258 337
l@256 338 // Attempt to create the task
l@256 339 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
l@256 340 cout << "Error: unable to create auxiliary task " << name << endl;
l@256 341 free(newTask);
l@256 342 return 0;
l@256 343 }
l@258 344
l@256 345 // Populate the rest of the data structure and store it in the vector
l@256 346 newTask->function = functionToCall;
l@256 347 newTask->name = strdup(name);
l@256 348 newTask->priority = priority;
l@256 349 newTask->started = false;
l@256 350 newTask->hasArgs = false;
l@258 351 newTask->autoSchedule = autoSchedule;
l@258 352
l@256 353 getAuxTasks().push_back(newTask);
l@258 354
l@256 355 return (AuxiliaryTask)newTask;
l@256 356 }
andrewm@0 357
giuliomoro@174 358 // Schedule a previously created (and started) auxiliary task. It will run when the priority rules next
andrewm@0 359 // allow it to be scheduled.
giuliomoro@301 360 void Bela_scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 361 {
andrewm@0 362 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
giuliomoro@174 363 if(taskToSchedule->started == false){ // Note: this is not the safest method to check if a task
giuliomoro@301 364 Bela_startAuxiliaryTask(task); // is started (or ready to be resumed), but it probably is the fastest.
giuliomoro@174 365 // A safer approach would use rt_task_inquire()
giuliomoro@174 366 }
andrewm@0 367 rt_task_resume(&taskToSchedule->task);
andrewm@0 368 }
giuliomoro@301 369 void Bela_autoScheduleAuxiliaryTasks(){
l@258 370 vector<InternalAuxiliaryTask*>::iterator it;
l@258 371 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
l@258 372 if ((InternalAuxiliaryTask *)(*it)->autoSchedule){
giuliomoro@301 373 Bela_scheduleAuxiliaryTask(*it);
l@258 374 }
l@258 375 }
l@258 376 }
andrewm@0 377
andrewm@0 378 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 379 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 380 // Treat the argument as containing the task structure
andrewm@0 381 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 382 {
l@256 383 InternalAuxiliaryTask *task = ((InternalAuxiliaryTask *)taskStruct);
l@256 384
andrewm@0 385 // Get function to call from the argument
l@256 386 void (*auxiliary_argfunction)(void* args) = task->argfunction;
l@256 387 void (*auxiliary_function)(void) = task->function;
l@256 388
l@258 389 // get the task's name
l@256 390 const char *name = task->name;
andrewm@0 391
andrewm@0 392 // Wait for a notification
andrewm@0 393 rt_task_suspend(NULL);
andrewm@0 394
andrewm@0 395 while(!gShouldStop) {
andrewm@0 396 // Then run the calculations
l@256 397 if (task->hasArgs)
l@256 398 auxiliary_argfunction(task->args);
l@256 399 else
l@256 400 auxiliary_function();
andrewm@0 401
andrewm@0 402 // Wait for a notification
andrewm@0 403 rt_task_suspend(NULL);
andrewm@0 404 }
andrewm@0 405
andrewm@0 406 if(gRTAudioVerbose == 1)
andrewm@0 407 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 408 }
andrewm@0 409
giuliomoro@174 410
giuliomoro@301 411 int Bela_startAuxiliaryTask(AuxiliaryTask task){
giuliomoro@174 412 InternalAuxiliaryTask *taskStruct;
giuliomoro@174 413 taskStruct = (InternalAuxiliaryTask *)task;
giuliomoro@174 414 if(taskStruct->started == true)
giuliomoro@174 415 return 0;
giuliomoro@174 416 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
giuliomoro@174 417 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
giuliomoro@174 418 return -1;
giuliomoro@174 419 }
giuliomoro@174 420 taskStruct->started = true;
giuliomoro@174 421 return 0;
giuliomoro@174 422 }
giuliomoro@174 423
andrewm@0 424 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 425 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 426 // on success.
andrewm@0 427
giuliomoro@301 428 int Bela_startAudio()
andrewm@0 429 {
andrewm@45 430 // Create audio thread with high Xenomai priority
andrewm@303 431 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BELA_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
andrewm@0 432 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 433 return -1;
andrewm@0 434 }
andrewm@0 435
andrewm@303 436 #ifdef BELA_USE_XENOMAI_INTERRUPTS
andrewm@45 437 // Create an interrupt which the audio thread receives from the PRU
andrewm@45 438 int result = 0;
andrewm@45 439 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
andrewm@45 440 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
andrewm@45 441 return -1;
andrewm@45 442 }
andrewm@50 443 #endif
andrewm@45 444
andrewm@0 445 // Start all RT threads
andrewm@0 446 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 447 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 448 return -1;
andrewm@0 449 }
andrewm@0 450
andrewm@0 451 // The user may have created other tasks. Start those also.
andrewm@0 452 vector<InternalAuxiliaryTask*>::iterator it;
giuliomoro@176 453 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
giuliomoro@301 454 int ret = Bela_startAuxiliaryTask(*it);
giuliomoro@177 455 if(ret != 0)
giuliomoro@177 456 return -2;
andrewm@0 457 }
andrewm@0 458 return 0;
andrewm@0 459 }
andrewm@0 460
andrewm@0 461 // Stop the PRU-based audio from running and wait
andrewm@0 462 // for the tasks to complete before returning.
andrewm@0 463
giuliomoro@301 464 void Bela_stopAudio()
andrewm@0 465 {
andrewm@0 466 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 467 gShouldStop = true;
andrewm@0 468
andrewm@5 469 if(gRTAudioVerbose)
andrewm@5 470 cout << "Stopping audio...\n";
andrewm@5 471
andrewm@0 472 // Now wait for threads to respond and actually stop...
andrewm@0 473 rt_task_join(&gRTAudioThread);
andrewm@0 474
andrewm@0 475 // Stop all the auxiliary threads too
andrewm@0 476 vector<InternalAuxiliaryTask*>::iterator it;
giuliomoro@176 477 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
andrewm@0 478 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 479
andrewm@0 480 // Wake up each thread and join it
andrewm@0 481 rt_task_resume(&(taskStruct->task));
andrewm@0 482 rt_task_join(&(taskStruct->task));
andrewm@0 483 }
andrewm@0 484 }
andrewm@0 485
andrewm@0 486 // Free any resources associated with PRU real-time audio
giuliomoro@301 487 void Bela_cleanupAudio()
andrewm@0 488 {
andrewm@307 489 cleanup((BelaContext *)&gContext, gUserData);
andrewm@0 490
andrewm@0 491 // Clean up the auxiliary tasks
andrewm@0 492 vector<InternalAuxiliaryTask*>::iterator it;
giuliomoro@176 493 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
andrewm@0 494 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 495
andrewm@45 496 // Delete the task
andrewm@45 497 rt_task_delete(&taskStruct->task);
andrewm@45 498
andrewm@0 499 // Free the name string and the struct itself
andrewm@0 500 free(taskStruct->name);
andrewm@0 501 free(taskStruct);
andrewm@0 502 }
giuliomoro@176 503 getAuxTasks().clear();
andrewm@0 504
andrewm@45 505 // Delete the audio task and its interrupt
andrewm@303 506 #ifdef BELA_USE_XENOMAI_INTERRUPTS
andrewm@45 507 rt_intr_delete(&gRTAudioInterrupt);
andrewm@50 508 #endif
andrewm@45 509 rt_task_delete(&gRTAudioThread);
andrewm@45 510
andrewm@0 511 if(gPRU != 0)
andrewm@0 512 delete gPRU;
andrewm@0 513 if(gAudioCodec != 0)
andrewm@0 514 delete gAudioCodec;
andrewm@0 515
andrewm@0 516 if(gAmplifierMutePin >= 0)
andrewm@0 517 gpio_unexport(gAmplifierMutePin);
andrewm@0 518 gAmplifierMutePin = -1;
andrewm@0 519 }
andrewm@0 520
andrewm@5 521 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
andrewm@5 522 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
giuliomoro@301 523 int Bela_setDACLevel(float decibels)
andrewm@5 524 {
andrewm@5 525 if(gAudioCodec == 0)
andrewm@5 526 return -1;
andrewm@5 527 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 528 }
andrewm@5 529
andrewm@5 530 // Set the level of the ADC
andrewm@5 531 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
giuliomoro@301 532 int Bela_setADCLevel(float decibels)
andrewm@5 533 {
andrewm@5 534 if(gAudioCodec == 0)
andrewm@5 535 return -1;
andrewm@5 536 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 537 }
andrewm@5 538
giuliomoro@171 539 // Set the level of the Programmable Gain Amplifier
giuliomoro@171 540 // 59.5dB is maximum, 0dB is minimum; 0.5dB steps
giuliomoro@301 541 int Bela_setPgaGain(float decibels, int channel){
giuliomoro@171 542 if(gAudioCodec == 0)
giuliomoro@171 543 return -1;
giuliomoro@171 544 return gAudioCodec->setPga(decibels, channel);
giuliomoro@171 545 }
giuliomoro@171 546
andrewm@5 547 // Set the level of the onboard headphone amplifier; affects headphone
andrewm@5 548 // output only (not line out or speaker)
andrewm@5 549 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
giuliomoro@301 550 int Bela_setHeadphoneLevel(float decibels)
andrewm@5 551 {
andrewm@5 552 if(gAudioCodec == 0)
andrewm@5 553 return -1;
andrewm@5 554 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 555 }
andrewm@5 556
andrewm@5 557 // Mute or unmute the onboard speaker amplifiers
andrewm@5 558 // mute == 0 means unmute; otherwise mute
andrewm@5 559 // Returns 0 on success
giuliomoro@301 560 int Bela_muteSpeakers(int mute)
andrewm@5 561 {
andrewm@5 562 int pinValue = mute ? LOW : HIGH;
andrewm@5 563
andrewm@5 564 // Check that we have an enabled pin for controlling the mute
andrewm@5 565 if(gAmplifierMutePin < 0)
andrewm@5 566 return -1;
andrewm@5 567
andrewm@5 568 return gpio_set_value(gAmplifierMutePin, pinValue);
andrewm@5 569 }
andrewm@5 570
andrewm@0 571 // Set the verbosity level
giuliomoro@301 572 void Bela_setVerboseLevel(int level)
andrewm@0 573 {
andrewm@0 574 gRTAudioVerbose = level;
andrewm@0 575 }