andrewm@0
|
1 /*
|
andrewm@0
|
2 * RTAudio.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Central control code for hard real-time audio on BeagleBone Black
|
andrewm@0
|
5 * using PRU and Xenomai Linux extensions. This code began as part
|
andrewm@0
|
6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
|
andrewm@0
|
7 * of London, 2013-14.
|
andrewm@0
|
8 *
|
andrewm@0
|
9 * (c) 2014 Victor Zappi and Andrew McPherson
|
andrewm@0
|
10 * Queen Mary University of London
|
andrewm@0
|
11 */
|
andrewm@0
|
12
|
andrewm@0
|
13
|
andrewm@0
|
14 #include <stdio.h>
|
andrewm@0
|
15 #include <stdlib.h>
|
andrewm@0
|
16 #include <string.h>
|
andrewm@0
|
17 #include <strings.h>
|
andrewm@0
|
18 #include <math.h>
|
andrewm@0
|
19 #include <iostream>
|
andrewm@0
|
20 #include <assert.h>
|
andrewm@0
|
21 #include <vector>
|
andrewm@0
|
22
|
andrewm@0
|
23 // Xenomai-specific includes
|
andrewm@0
|
24 #include <sys/mman.h>
|
andrewm@0
|
25 #include <native/task.h>
|
andrewm@0
|
26 #include <native/timer.h>
|
andrewm@45
|
27 #include <native/intr.h>
|
andrewm@0
|
28 #include <rtdk.h>
|
andrewm@0
|
29
|
giuliomoro@301
|
30 #include "../include/Bela.h"
|
andrewm@0
|
31 #include "../include/PRU.h"
|
andrewm@0
|
32 #include "../include/I2c_Codec.h"
|
andrewm@0
|
33 #include "../include/GPIOcontrol.h"
|
andrewm@0
|
34
|
andrewm@45
|
35 // ARM interrupt number for PRU event EVTOUT7
|
andrewm@45
|
36 #define PRU_RTAUDIO_IRQ 21
|
andrewm@45
|
37
|
andrewm@0
|
38 using namespace std;
|
andrewm@0
|
39
|
andrewm@0
|
40 // Data structure to keep track of auxiliary tasks we
|
andrewm@0
|
41 // can schedule
|
andrewm@0
|
42 typedef struct {
|
andrewm@0
|
43 RT_TASK task;
|
l@256
|
44 void (*argfunction)(void*);
|
l@256
|
45 void (*function)(void);
|
andrewm@0
|
46 char *name;
|
andrewm@0
|
47 int priority;
|
giuliomoro@174
|
48 bool started;
|
l@256
|
49 bool hasArgs;
|
l@254
|
50 void* args;
|
l@258
|
51 bool autoSchedule;
|
andrewm@0
|
52 } InternalAuxiliaryTask;
|
andrewm@0
|
53
|
andrewm@0
|
54 // Real-time tasks and objects
|
andrewm@0
|
55 RT_TASK gRTAudioThread;
|
andrewm@307
|
56 const char gRTAudioThreadName[] = "bela-audio";
|
andrewm@307
|
57
|
andrewm@303
|
58 #ifdef BELA_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
59 RT_INTR gRTAudioInterrupt;
|
andrewm@307
|
60 const char gRTAudioInterruptName[] = "bela-pru-irq";
|
andrewm@50
|
61 #endif
|
andrewm@307
|
62
|
andrewm@0
|
63 PRU *gPRU = 0;
|
andrewm@0
|
64 I2c_Codec *gAudioCodec = 0;
|
andrewm@0
|
65
|
giuliomoro@176
|
66 vector<InternalAuxiliaryTask*> &getAuxTasks(){
|
giuliomoro@176
|
67 static vector<InternalAuxiliaryTask*> auxTasks;
|
giuliomoro@176
|
68 return auxTasks;
|
giuliomoro@176
|
69 }
|
andrewm@0
|
70
|
andrewm@0
|
71 // Flag which tells the audio task to stop
|
giuliomoro@233
|
72 int gShouldStop = false;
|
andrewm@0
|
73
|
andrewm@0
|
74 // general settings
|
andrewm@45
|
75 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
|
andrewm@0
|
76 int gRTAudioVerbose = 0; // Verbosity level for debugging
|
andrewm@0
|
77 int gAmplifierMutePin = -1;
|
andrewm@5
|
78 int gAmplifierShouldBeginMuted = 0;
|
andrewm@0
|
79
|
andrewm@45
|
80 // Context which holds all the audio/sensor data passed to the render routines
|
andrewm@307
|
81 InternalBelaContext gContext;
|
andrewm@45
|
82
|
andrewm@45
|
83 // User data passed in from main()
|
andrewm@45
|
84 void *gUserData;
|
andrewm@0
|
85
|
andrewm@0
|
86 // initAudio() prepares the infrastructure for running PRU-based real-time
|
andrewm@0
|
87 // audio, but does not actually start the calculations.
|
giuliomoro@178
|
88 // periodSize indicates the number of audio frames per period: the analog period size
|
giuliomoro@178
|
89 // will depend on the number of analog channels, in such a way that
|
giuliomoro@178
|
90 // analogPeriodSize = 4*periodSize/numAnalogChannels
|
giuliomoro@178
|
91 // In total, the audio latency in frames will be 2*periodSize,
|
andrewm@0
|
92 // plus any latency inherent in the ADCs and DACs themselves.
|
giuliomoro@19
|
93 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
|
giuliomoro@19
|
94 // numAnalogChannels indicates how many ADC and DAC channels to use.
|
andrewm@56
|
95 // userData is an opaque pointer which will be passed through to the setup()
|
andrewm@0
|
96 // function for application-specific use
|
andrewm@0
|
97 //
|
andrewm@0
|
98 // Returns 0 on success.
|
andrewm@0
|
99
|
giuliomoro@301
|
100 int Bela_initAudio(BelaInitSettings *settings, void *userData)
|
andrewm@0
|
101 {
|
andrewm@381
|
102 // First check if there's a Bela program already running on the board.
|
andrewm@381
|
103 // We can't have more than one instance at a time, but we can tell via
|
andrewm@381
|
104 // the Xenomai task info. We expect the rt_task_bind call to fail so if it
|
andrewm@381
|
105 // doesn't then it means something else is running.
|
andrewm@381
|
106 RT_TASK otherBelaTask;
|
andrewm@381
|
107 int returnVal = rt_task_bind(&otherBelaTask, gRTAudioThreadName, TM_NONBLOCK);
|
andrewm@381
|
108 if(returnVal == 0) {
|
andrewm@381
|
109 cout << "Error: Bela is already running in another process. Cannot start.\n";
|
andrewm@381
|
110 rt_task_unbind(&otherBelaTask);
|
andrewm@381
|
111 return -1;
|
andrewm@381
|
112 }
|
andrewm@381
|
113 else if(returnVal != -EWOULDBLOCK && returnVal != -ETIMEDOUT) {
|
andrewm@381
|
114 cout << "Error " << returnVal << " occurred determining if another Bela task is running.\n";
|
andrewm@381
|
115 return -1;
|
andrewm@381
|
116 }
|
andrewm@381
|
117
|
andrewm@280
|
118 // Sanity checks
|
andrewm@280
|
119 if(settings->pruNumber < 0 || settings->pruNumber > 1) {
|
andrewm@280
|
120 cout << "Invalid PRU number " << settings->pruNumber << endl;
|
andrewm@280
|
121 return -1;
|
andrewm@280
|
122 }
|
andrewm@280
|
123 if(settings->pruNumber != 1 && settings->numMuxChannels != 0) {
|
andrewm@280
|
124 cout << "Incompatible settings: multiplexer can only be run using PRU 1\n";
|
andrewm@280
|
125 return -1;
|
andrewm@280
|
126 }
|
andrewm@280
|
127
|
andrewm@0
|
128 rt_print_auto_init(1);
|
andrewm@45
|
129
|
giuliomoro@301
|
130 Bela_setVerboseLevel(settings->verbose);
|
andrewm@45
|
131 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
|
andrewm@45
|
132 gUserData = userData;
|
andrewm@45
|
133
|
andrewm@45
|
134 // Initialise context data structure
|
giuliomoro@301
|
135 memset(&gContext, 0, sizeof(BelaContext));
|
andrewm@0
|
136
|
andrewm@5
|
137 if(gRTAudioVerbose) {
|
andrewm@5
|
138 cout << "Starting with period size " << settings->periodSize << "; ";
|
giuliomoro@19
|
139 if(settings->useAnalog)
|
giuliomoro@19
|
140 cout << "analog enabled\n";
|
andrewm@5
|
141 else
|
giuliomoro@19
|
142 cout << "analog disabled\n";
|
andrewm@5
|
143 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
|
andrewm@5
|
144 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
|
andrewm@5
|
145 if(settings->beginMuted)
|
andrewm@5
|
146 cout << "Beginning with speaker muted\n";
|
andrewm@5
|
147 }
|
andrewm@0
|
148
|
andrewm@0
|
149 // Prepare GPIO pins for amplifier mute and status LED
|
andrewm@5
|
150 if(settings->ampMutePin >= 0) {
|
andrewm@5
|
151 gAmplifierMutePin = settings->ampMutePin;
|
andrewm@5
|
152 gAmplifierShouldBeginMuted = settings->beginMuted;
|
andrewm@0
|
153
|
andrewm@5
|
154 if(gpio_export(settings->ampMutePin)) {
|
andrewm@0
|
155 if(gRTAudioVerbose)
|
giuliomoro@16
|
156 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
|
andrewm@0
|
157 }
|
andrewm@5
|
158 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
|
andrewm@0
|
159 if(gRTAudioVerbose)
|
andrewm@0
|
160 cout << "Couldn't set direction on amplifier mute pin\n";
|
andrewm@0
|
161 return -1;
|
andrewm@0
|
162 }
|
andrewm@5
|
163 if(gpio_set_value(settings->ampMutePin, LOW)) {
|
andrewm@0
|
164 if(gRTAudioVerbose)
|
andrewm@0
|
165 cout << "Couldn't set value on amplifier mute pin\n";
|
andrewm@0
|
166 return -1;
|
andrewm@0
|
167 }
|
andrewm@0
|
168 }
|
andrewm@0
|
169
|
giuliomoro@19
|
170 // Limit the analog channels to sane values
|
andrewm@373
|
171 if(settings->numAnalogChannels != 2
|
andrewm@373
|
172 && settings->numAnalogChannels != 4
|
andrewm@373
|
173 && settings->numAnalogChannels != 8) {
|
andrewm@373
|
174 cout << "Invalid number of analog channels: " << settings->numAnalogChannels << ". Valid values are 2, 4, 8.\n";
|
andrewm@373
|
175 return -1;
|
andrewm@373
|
176 }
|
andrewm@12
|
177
|
andrewm@45
|
178 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
|
andrewm@45
|
179 gContext.audioSampleRate = 44100.0;
|
andrewm@45
|
180 gContext.audioChannels = 2;
|
andrewm@45
|
181
|
andrewm@45
|
182 if(settings->useAnalog) {
|
giuliomoro@178
|
183 gContext.audioFrames = settings->periodSize;
|
andrewm@45
|
184
|
giuliomoro@178
|
185 gContext.analogFrames = gContext.audioFrames * 4 / settings->numAnalogChannels;
|
andrewm@45
|
186 gContext.analogChannels = settings->numAnalogChannels;
|
andrewm@45
|
187 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
|
andrewm@45
|
188 }
|
andrewm@45
|
189 else {
|
giuliomoro@178
|
190 gContext.audioFrames = settings->periodSize;
|
andrewm@45
|
191
|
andrewm@45
|
192 gContext.analogFrames = 0;
|
andrewm@45
|
193 gContext.analogChannels = 0;
|
andrewm@45
|
194 gContext.analogSampleRate = 0;
|
andrewm@45
|
195 }
|
andrewm@45
|
196
|
giuliomoro@178
|
197 // Sanity check the combination of channels and period size
|
giuliomoro@210
|
198 if( gContext.analogChannels != 0 && ((gContext.analogChannels <= 4 && gContext.analogFrames < 2) ||
|
giuliomoro@210
|
199 (gContext.analogChannels <= 2 && gContext.analogFrames < 4)) )
|
giuliomoro@178
|
200 {
|
giuliomoro@178
|
201 cout << "Error: " << gContext.analogChannels << " channels and period size of " << gContext.analogFrames << " not supported.\n";
|
giuliomoro@178
|
202 return 1;
|
giuliomoro@178
|
203 }
|
giuliomoro@178
|
204
|
andrewm@45
|
205 // For now, digital frame rate is equal to audio frame rate
|
andrewm@45
|
206 if(settings->useDigital) {
|
andrewm@45
|
207 gContext.digitalFrames = gContext.audioFrames;
|
andrewm@45
|
208 gContext.digitalSampleRate = gContext.audioSampleRate;
|
andrewm@45
|
209 gContext.digitalChannels = settings->numDigitalChannels;
|
andrewm@45
|
210 }
|
andrewm@45
|
211 else {
|
andrewm@45
|
212 gContext.digitalFrames = 0;
|
andrewm@45
|
213 gContext.digitalSampleRate = 0;
|
andrewm@45
|
214 gContext.digitalChannels = 0;
|
andrewm@45
|
215 }
|
andrewm@45
|
216
|
andrewm@45
|
217 // Set flags based on init settings
|
andrewm@45
|
218 if(settings->interleave)
|
andrewm@303
|
219 gContext.flags |= BELA_FLAG_INTERLEAVED;
|
andrewm@45
|
220 if(settings->analogOutputsPersist)
|
andrewm@303
|
221 gContext.flags |= BELA_FLAG_ANALOG_OUTPUTS_PERSIST;
|
andrewm@45
|
222
|
andrewm@0
|
223 // Use PRU for audio
|
andrewm@45
|
224 gPRU = new PRU(&gContext);
|
andrewm@0
|
225 gAudioCodec = new I2c_Codec();
|
andrewm@0
|
226
|
andrewm@45
|
227 // Initialise the GPIO pins, including possibly the digital pins in the render routines
|
andrewm@45
|
228 if(gPRU->prepareGPIO(1, 1)) {
|
andrewm@0
|
229 cout << "Error: unable to prepare GPIO for PRU audio\n";
|
andrewm@0
|
230 return 1;
|
andrewm@0
|
231 }
|
andrewm@280
|
232
|
andrewm@45
|
233 // Get the PRU memory buffers ready to go
|
andrewm@280
|
234 if(gPRU->initialise(settings->pruNumber, gContext.analogFrames, gContext.analogChannels,
|
andrewm@280
|
235 settings->numMuxChannels, true)) {
|
andrewm@0
|
236 cout << "Error: unable to initialise PRU\n";
|
andrewm@0
|
237 return 1;
|
andrewm@0
|
238 }
|
andrewm@45
|
239
|
andrewm@45
|
240 // Prepare the audio codec, which clocks the whole system
|
andrewm@5
|
241 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
|
andrewm@0
|
242 cout << "Unable to open codec I2C\n";
|
andrewm@0
|
243 return 1;
|
andrewm@0
|
244 }
|
andrewm@0
|
245 if(gAudioCodec->initCodec()) {
|
andrewm@0
|
246 cout << "Error: unable to initialise audio codec\n";
|
andrewm@0
|
247 return 1;
|
andrewm@0
|
248 }
|
giuliomoro@172
|
249
|
andrewm@5
|
250 // Set default volume levels
|
giuliomoro@301
|
251 Bela_setDACLevel(settings->dacLevel);
|
giuliomoro@301
|
252 Bela_setADCLevel(settings->adcLevel);
|
giuliomoro@174
|
253 // TODO: add more argument checks
|
giuliomoro@171
|
254 for(int n = 0; n < 2; n++){
|
giuliomoro@172
|
255 if(settings->pgaGain[n] > 59.5){
|
giuliomoro@172
|
256 std::cerr << "PGA gain out of range [0,59.5]\n";
|
giuliomoro@172
|
257 exit(1);
|
giuliomoro@172
|
258 }
|
giuliomoro@301
|
259 Bela_setPgaGain(settings->pgaGain[n], n);
|
giuliomoro@171
|
260 }
|
giuliomoro@301
|
261 Bela_setHeadphoneLevel(settings->headphoneLevel);
|
andrewm@5
|
262
|
andrewm@45
|
263 // Call the user-defined initialisation function
|
andrewm@307
|
264 if(!setup((BelaContext *)&gContext, userData)) {
|
andrewm@0
|
265 cout << "Couldn't initialise audio rendering\n";
|
andrewm@0
|
266 return 1;
|
andrewm@0
|
267 }
|
andrewm@0
|
268
|
andrewm@0
|
269 return 0;
|
andrewm@0
|
270 }
|
andrewm@0
|
271
|
andrewm@0
|
272 // audioLoop() is the main function which starts the PRU audio code
|
andrewm@0
|
273 // and then transfers control to the PRU object. The PRU object in
|
andrewm@0
|
274 // turn will call the audio render() callback function every time
|
andrewm@0
|
275 // there is new data to process.
|
andrewm@0
|
276
|
andrewm@0
|
277 void audioLoop(void *)
|
andrewm@0
|
278 {
|
andrewm@0
|
279 if(gRTAudioVerbose==1)
|
andrewm@0
|
280 rt_printf("_________________Audio Thread!\n");
|
andrewm@0
|
281
|
andrewm@0
|
282 // PRU audio
|
andrewm@0
|
283 assert(gAudioCodec != 0 && gPRU != 0);
|
andrewm@0
|
284
|
andrewm@0
|
285 if(gAudioCodec->startAudio(0)) {
|
andrewm@0
|
286 rt_printf("Error: unable to start I2C audio codec\n");
|
andrewm@0
|
287 gShouldStop = 1;
|
andrewm@0
|
288 }
|
andrewm@0
|
289 else {
|
giuliomoro@16
|
290 if(gPRU->start(gPRUFilename)) {
|
giuliomoro@16
|
291 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
|
andrewm@0
|
292 gShouldStop = 1;
|
andrewm@0
|
293 }
|
andrewm@0
|
294 else {
|
andrewm@0
|
295 // All systems go. Run the loop; it will end when gShouldStop is set to 1
|
andrewm@5
|
296
|
andrewm@5
|
297 if(!gAmplifierShouldBeginMuted) {
|
andrewm@5
|
298 // First unmute the amplifier
|
giuliomoro@301
|
299 if(Bela_muteSpeakers(0)) {
|
andrewm@5
|
300 if(gRTAudioVerbose)
|
andrewm@5
|
301 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
|
andrewm@5
|
302 }
|
andrewm@0
|
303 }
|
andrewm@0
|
304
|
andrewm@303
|
305 #ifdef BELA_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
306 gPRU->loop(&gRTAudioInterrupt, gUserData);
|
andrewm@50
|
307 #else
|
andrewm@50
|
308 gPRU->loop(0, gUserData);
|
andrewm@50
|
309 #endif
|
andrewm@0
|
310 // Now clean up
|
andrewm@0
|
311 // gPRU->waitForFinish();
|
andrewm@0
|
312 gPRU->disable();
|
andrewm@0
|
313 gAudioCodec->stopAudio();
|
andrewm@0
|
314 gPRU->cleanupGPIO();
|
andrewm@0
|
315 }
|
andrewm@0
|
316 }
|
andrewm@0
|
317
|
andrewm@0
|
318 if(gRTAudioVerbose == 1)
|
andrewm@0
|
319 rt_printf("audio thread ended\n");
|
andrewm@0
|
320 }
|
andrewm@0
|
321
|
andrewm@0
|
322 // Create a calculation loop which can run independently of the audio, at a different
|
andrewm@303
|
323 // (equal or lower) priority. Audio priority is defined in BELA_AUDIO_PRIORITY;
|
andrewm@45
|
324 // priority should be generally be less than this.
|
andrewm@0
|
325 // Returns an (opaque) pointer to the created task on success; 0 on failure
|
giuliomoro@301
|
326 AuxiliaryTask Bela_createAuxiliaryTask(void (*functionToCall)(void* args), int priority, const char *name, void* args, bool autoSchedule)
|
andrewm@0
|
327 {
|
andrewm@0
|
328 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
andrewm@0
|
329
|
andrewm@0
|
330 // Attempt to create the task
|
andrewm@0
|
331 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
332 cout << "Error: unable to create auxiliary task " << name << endl;
|
andrewm@0
|
333 free(newTask);
|
andrewm@0
|
334 return 0;
|
andrewm@0
|
335 }
|
andrewm@0
|
336
|
andrewm@0
|
337 // Populate the rest of the data structure and store it in the vector
|
l@256
|
338 newTask->argfunction = functionToCall;
|
andrewm@0
|
339 newTask->name = strdup(name);
|
andrewm@0
|
340 newTask->priority = priority;
|
giuliomoro@174
|
341 newTask->started = false;
|
l@254
|
342 newTask->args = args;
|
l@256
|
343 newTask->hasArgs = true;
|
l@258
|
344 newTask->autoSchedule = autoSchedule;
|
l@258
|
345
|
giuliomoro@176
|
346 getAuxTasks().push_back(newTask);
|
andrewm@0
|
347
|
andrewm@0
|
348 return (AuxiliaryTask)newTask;
|
andrewm@0
|
349 }
|
giuliomoro@301
|
350 AuxiliaryTask Bela_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name, bool autoSchedule)
|
l@256
|
351 {
|
l@256
|
352 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
l@258
|
353
|
l@256
|
354 // Attempt to create the task
|
l@256
|
355 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
l@256
|
356 cout << "Error: unable to create auxiliary task " << name << endl;
|
l@256
|
357 free(newTask);
|
l@256
|
358 return 0;
|
l@256
|
359 }
|
l@258
|
360
|
l@256
|
361 // Populate the rest of the data structure and store it in the vector
|
l@256
|
362 newTask->function = functionToCall;
|
l@256
|
363 newTask->name = strdup(name);
|
l@256
|
364 newTask->priority = priority;
|
l@256
|
365 newTask->started = false;
|
l@256
|
366 newTask->hasArgs = false;
|
l@258
|
367 newTask->autoSchedule = autoSchedule;
|
l@258
|
368
|
l@256
|
369 getAuxTasks().push_back(newTask);
|
l@258
|
370
|
l@256
|
371 return (AuxiliaryTask)newTask;
|
l@256
|
372 }
|
andrewm@0
|
373
|
giuliomoro@174
|
374 // Schedule a previously created (and started) auxiliary task. It will run when the priority rules next
|
andrewm@0
|
375 // allow it to be scheduled.
|
giuliomoro@301
|
376 void Bela_scheduleAuxiliaryTask(AuxiliaryTask task)
|
andrewm@0
|
377 {
|
andrewm@0
|
378 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
|
giuliomoro@174
|
379 if(taskToSchedule->started == false){ // Note: this is not the safest method to check if a task
|
giuliomoro@301
|
380 Bela_startAuxiliaryTask(task); // is started (or ready to be resumed), but it probably is the fastest.
|
giuliomoro@174
|
381 // A safer approach would use rt_task_inquire()
|
giuliomoro@174
|
382 }
|
andrewm@0
|
383 rt_task_resume(&taskToSchedule->task);
|
andrewm@0
|
384 }
|
giuliomoro@301
|
385 void Bela_autoScheduleAuxiliaryTasks(){
|
l@258
|
386 vector<InternalAuxiliaryTask*>::iterator it;
|
l@258
|
387 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
l@258
|
388 if ((InternalAuxiliaryTask *)(*it)->autoSchedule){
|
giuliomoro@301
|
389 Bela_scheduleAuxiliaryTask(*it);
|
l@258
|
390 }
|
l@258
|
391 }
|
l@258
|
392 }
|
andrewm@0
|
393
|
andrewm@0
|
394 // Calculation loop that can be used for other tasks running at a lower
|
andrewm@0
|
395 // priority than the audio thread. Simple wrapper for Xenomai calls.
|
andrewm@0
|
396 // Treat the argument as containing the task structure
|
andrewm@0
|
397 void auxiliaryTaskLoop(void *taskStruct)
|
andrewm@0
|
398 {
|
l@256
|
399 InternalAuxiliaryTask *task = ((InternalAuxiliaryTask *)taskStruct);
|
l@256
|
400
|
andrewm@0
|
401 // Get function to call from the argument
|
l@256
|
402 void (*auxiliary_argfunction)(void* args) = task->argfunction;
|
l@256
|
403 void (*auxiliary_function)(void) = task->function;
|
l@256
|
404
|
l@258
|
405 // get the task's name
|
l@256
|
406 const char *name = task->name;
|
andrewm@0
|
407
|
andrewm@0
|
408 // Wait for a notification
|
andrewm@0
|
409 rt_task_suspend(NULL);
|
andrewm@0
|
410
|
andrewm@0
|
411 while(!gShouldStop) {
|
andrewm@0
|
412 // Then run the calculations
|
l@256
|
413 if (task->hasArgs)
|
l@256
|
414 auxiliary_argfunction(task->args);
|
l@256
|
415 else
|
l@256
|
416 auxiliary_function();
|
andrewm@0
|
417
|
andrewm@0
|
418 // Wait for a notification
|
andrewm@0
|
419 rt_task_suspend(NULL);
|
andrewm@0
|
420 }
|
andrewm@0
|
421
|
andrewm@0
|
422 if(gRTAudioVerbose == 1)
|
andrewm@0
|
423 rt_printf("auxiliary task %s ended\n", name);
|
andrewm@0
|
424 }
|
andrewm@0
|
425
|
giuliomoro@174
|
426
|
giuliomoro@301
|
427 int Bela_startAuxiliaryTask(AuxiliaryTask task){
|
giuliomoro@174
|
428 InternalAuxiliaryTask *taskStruct;
|
giuliomoro@174
|
429 taskStruct = (InternalAuxiliaryTask *)task;
|
giuliomoro@174
|
430 if(taskStruct->started == true)
|
giuliomoro@174
|
431 return 0;
|
giuliomoro@174
|
432 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
|
giuliomoro@174
|
433 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
|
giuliomoro@174
|
434 return -1;
|
giuliomoro@174
|
435 }
|
giuliomoro@174
|
436 taskStruct->started = true;
|
giuliomoro@174
|
437 return 0;
|
giuliomoro@174
|
438 }
|
giuliomoro@174
|
439
|
andrewm@0
|
440 // startAudio() should be called only after initAudio() successfully completes.
|
andrewm@0
|
441 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
|
andrewm@0
|
442 // on success.
|
andrewm@0
|
443
|
giuliomoro@301
|
444 int Bela_startAudio()
|
andrewm@0
|
445 {
|
andrewm@45
|
446 // Create audio thread with high Xenomai priority
|
andrewm@303
|
447 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BELA_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
448 cout << "Error: unable to create Xenomai audio thread" << endl;
|
andrewm@0
|
449 return -1;
|
andrewm@0
|
450 }
|
andrewm@0
|
451
|
andrewm@303
|
452 #ifdef BELA_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
453 // Create an interrupt which the audio thread receives from the PRU
|
andrewm@45
|
454 int result = 0;
|
andrewm@45
|
455 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
|
andrewm@45
|
456 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
|
andrewm@45
|
457 return -1;
|
andrewm@45
|
458 }
|
andrewm@50
|
459 #endif
|
andrewm@45
|
460
|
andrewm@0
|
461 // Start all RT threads
|
andrewm@0
|
462 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
|
andrewm@0
|
463 cout << "Error: unable to start Xenomai audio thread" << endl;
|
andrewm@0
|
464 return -1;
|
andrewm@0
|
465 }
|
andrewm@0
|
466
|
andrewm@0
|
467 // The user may have created other tasks. Start those also.
|
andrewm@0
|
468 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
469 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
giuliomoro@301
|
470 int ret = Bela_startAuxiliaryTask(*it);
|
giuliomoro@177
|
471 if(ret != 0)
|
giuliomoro@177
|
472 return -2;
|
andrewm@0
|
473 }
|
andrewm@0
|
474 return 0;
|
andrewm@0
|
475 }
|
andrewm@0
|
476
|
andrewm@0
|
477 // Stop the PRU-based audio from running and wait
|
andrewm@0
|
478 // for the tasks to complete before returning.
|
andrewm@0
|
479
|
giuliomoro@301
|
480 void Bela_stopAudio()
|
andrewm@0
|
481 {
|
andrewm@0
|
482 // Tell audio thread to stop (if this hasn't been done already)
|
andrewm@0
|
483 gShouldStop = true;
|
andrewm@0
|
484
|
andrewm@5
|
485 if(gRTAudioVerbose)
|
andrewm@5
|
486 cout << "Stopping audio...\n";
|
andrewm@5
|
487
|
andrewm@0
|
488 // Now wait for threads to respond and actually stop...
|
andrewm@0
|
489 rt_task_join(&gRTAudioThread);
|
andrewm@0
|
490
|
andrewm@0
|
491 // Stop all the auxiliary threads too
|
andrewm@0
|
492 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
493 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
andrewm@0
|
494 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
495
|
andrewm@0
|
496 // Wake up each thread and join it
|
andrewm@0
|
497 rt_task_resume(&(taskStruct->task));
|
andrewm@0
|
498 rt_task_join(&(taskStruct->task));
|
andrewm@0
|
499 }
|
andrewm@0
|
500 }
|
andrewm@0
|
501
|
andrewm@0
|
502 // Free any resources associated with PRU real-time audio
|
giuliomoro@301
|
503 void Bela_cleanupAudio()
|
andrewm@0
|
504 {
|
andrewm@307
|
505 cleanup((BelaContext *)&gContext, gUserData);
|
andrewm@0
|
506
|
andrewm@0
|
507 // Clean up the auxiliary tasks
|
andrewm@0
|
508 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
509 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
andrewm@0
|
510 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
511
|
andrewm@45
|
512 // Delete the task
|
andrewm@45
|
513 rt_task_delete(&taskStruct->task);
|
andrewm@45
|
514
|
andrewm@0
|
515 // Free the name string and the struct itself
|
andrewm@0
|
516 free(taskStruct->name);
|
andrewm@0
|
517 free(taskStruct);
|
andrewm@0
|
518 }
|
giuliomoro@176
|
519 getAuxTasks().clear();
|
andrewm@0
|
520
|
andrewm@45
|
521 // Delete the audio task and its interrupt
|
andrewm@303
|
522 #ifdef BELA_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
523 rt_intr_delete(&gRTAudioInterrupt);
|
andrewm@50
|
524 #endif
|
andrewm@45
|
525 rt_task_delete(&gRTAudioThread);
|
andrewm@45
|
526
|
andrewm@0
|
527 if(gPRU != 0)
|
andrewm@0
|
528 delete gPRU;
|
andrewm@0
|
529 if(gAudioCodec != 0)
|
andrewm@0
|
530 delete gAudioCodec;
|
andrewm@0
|
531
|
andrewm@0
|
532 if(gAmplifierMutePin >= 0)
|
andrewm@0
|
533 gpio_unexport(gAmplifierMutePin);
|
andrewm@0
|
534 gAmplifierMutePin = -1;
|
andrewm@0
|
535 }
|
andrewm@0
|
536
|
andrewm@5
|
537 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
|
andrewm@5
|
538 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
giuliomoro@301
|
539 int Bela_setDACLevel(float decibels)
|
andrewm@5
|
540 {
|
andrewm@5
|
541 if(gAudioCodec == 0)
|
andrewm@5
|
542 return -1;
|
andrewm@5
|
543 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
544 }
|
andrewm@5
|
545
|
andrewm@5
|
546 // Set the level of the ADC
|
andrewm@5
|
547 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
|
giuliomoro@301
|
548 int Bela_setADCLevel(float decibels)
|
andrewm@5
|
549 {
|
andrewm@5
|
550 if(gAudioCodec == 0)
|
andrewm@5
|
551 return -1;
|
andrewm@5
|
552 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
553 }
|
andrewm@5
|
554
|
giuliomoro@171
|
555 // Set the level of the Programmable Gain Amplifier
|
giuliomoro@171
|
556 // 59.5dB is maximum, 0dB is minimum; 0.5dB steps
|
giuliomoro@301
|
557 int Bela_setPgaGain(float decibels, int channel){
|
giuliomoro@171
|
558 if(gAudioCodec == 0)
|
giuliomoro@171
|
559 return -1;
|
giuliomoro@171
|
560 return gAudioCodec->setPga(decibels, channel);
|
giuliomoro@171
|
561 }
|
giuliomoro@171
|
562
|
andrewm@5
|
563 // Set the level of the onboard headphone amplifier; affects headphone
|
andrewm@5
|
564 // output only (not line out or speaker)
|
andrewm@5
|
565 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
giuliomoro@301
|
566 int Bela_setHeadphoneLevel(float decibels)
|
andrewm@5
|
567 {
|
andrewm@5
|
568 if(gAudioCodec == 0)
|
andrewm@5
|
569 return -1;
|
andrewm@5
|
570 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
571 }
|
andrewm@5
|
572
|
andrewm@5
|
573 // Mute or unmute the onboard speaker amplifiers
|
andrewm@5
|
574 // mute == 0 means unmute; otherwise mute
|
andrewm@5
|
575 // Returns 0 on success
|
giuliomoro@301
|
576 int Bela_muteSpeakers(int mute)
|
andrewm@5
|
577 {
|
andrewm@5
|
578 int pinValue = mute ? LOW : HIGH;
|
andrewm@5
|
579
|
andrewm@5
|
580 // Check that we have an enabled pin for controlling the mute
|
andrewm@5
|
581 if(gAmplifierMutePin < 0)
|
andrewm@5
|
582 return -1;
|
andrewm@5
|
583
|
andrewm@5
|
584 return gpio_set_value(gAmplifierMutePin, pinValue);
|
andrewm@5
|
585 }
|
andrewm@5
|
586
|
andrewm@0
|
587 // Set the verbosity level
|
giuliomoro@301
|
588 void Bela_setVerboseLevel(int level)
|
andrewm@0
|
589 {
|
andrewm@0
|
590 gRTAudioVerbose = level;
|
andrewm@0
|
591 }
|