andrewm@0
|
1 /*
|
andrewm@0
|
2 * RTAudio.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Central control code for hard real-time audio on BeagleBone Black
|
andrewm@0
|
5 * using PRU and Xenomai Linux extensions. This code began as part
|
andrewm@0
|
6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
|
andrewm@0
|
7 * of London, 2013-14.
|
andrewm@0
|
8 *
|
andrewm@0
|
9 * (c) 2014 Victor Zappi and Andrew McPherson
|
andrewm@0
|
10 * Queen Mary University of London
|
andrewm@0
|
11 */
|
andrewm@0
|
12
|
andrewm@0
|
13
|
andrewm@0
|
14 #include <stdio.h>
|
andrewm@0
|
15 #include <stdlib.h>
|
andrewm@0
|
16 #include <string.h>
|
andrewm@0
|
17 #include <strings.h>
|
andrewm@0
|
18 #include <math.h>
|
andrewm@0
|
19 #include <iostream>
|
andrewm@0
|
20 #include <assert.h>
|
andrewm@0
|
21 #include <vector>
|
andrewm@0
|
22
|
andrewm@0
|
23 // Xenomai-specific includes
|
andrewm@0
|
24 #include <sys/mman.h>
|
andrewm@0
|
25 #include <native/task.h>
|
andrewm@0
|
26 #include <native/timer.h>
|
andrewm@45
|
27 #include <native/intr.h>
|
andrewm@0
|
28 #include <rtdk.h>
|
andrewm@0
|
29
|
andrewm@45
|
30 #include "../include/BeagleRT.h"
|
andrewm@0
|
31 #include "../include/PRU.h"
|
andrewm@0
|
32 #include "../include/I2c_Codec.h"
|
andrewm@0
|
33 #include "../include/GPIOcontrol.h"
|
andrewm@0
|
34
|
andrewm@45
|
35 // ARM interrupt number for PRU event EVTOUT7
|
andrewm@45
|
36 #define PRU_RTAUDIO_IRQ 21
|
andrewm@45
|
37
|
andrewm@0
|
38 using namespace std;
|
andrewm@0
|
39
|
andrewm@0
|
40 // Data structure to keep track of auxiliary tasks we
|
andrewm@0
|
41 // can schedule
|
andrewm@0
|
42 typedef struct {
|
andrewm@0
|
43 RT_TASK task;
|
l@256
|
44 void (*argfunction)(void*);
|
l@256
|
45 void (*function)(void);
|
andrewm@0
|
46 char *name;
|
andrewm@0
|
47 int priority;
|
giuliomoro@174
|
48 bool started;
|
l@256
|
49 bool hasArgs;
|
l@254
|
50 void* args;
|
andrewm@0
|
51 } InternalAuxiliaryTask;
|
andrewm@0
|
52
|
andrewm@0
|
53 const char gRTAudioThreadName[] = "beaglert-audio";
|
andrewm@45
|
54 const char gRTAudioInterruptName[] = "beaglert-pru-irq";
|
andrewm@0
|
55
|
andrewm@0
|
56 // Real-time tasks and objects
|
andrewm@0
|
57 RT_TASK gRTAudioThread;
|
andrewm@50
|
58 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
59 RT_INTR gRTAudioInterrupt;
|
andrewm@50
|
60 #endif
|
andrewm@0
|
61 PRU *gPRU = 0;
|
andrewm@0
|
62 I2c_Codec *gAudioCodec = 0;
|
andrewm@0
|
63
|
giuliomoro@176
|
64 vector<InternalAuxiliaryTask*> &getAuxTasks(){
|
giuliomoro@176
|
65 static vector<InternalAuxiliaryTask*> auxTasks;
|
giuliomoro@176
|
66 return auxTasks;
|
giuliomoro@176
|
67 }
|
andrewm@0
|
68
|
andrewm@0
|
69 // Flag which tells the audio task to stop
|
giuliomoro@233
|
70 int gShouldStop = false;
|
andrewm@0
|
71
|
andrewm@0
|
72 // general settings
|
andrewm@45
|
73 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
|
andrewm@0
|
74 int gRTAudioVerbose = 0; // Verbosity level for debugging
|
andrewm@0
|
75 int gAmplifierMutePin = -1;
|
andrewm@5
|
76 int gAmplifierShouldBeginMuted = 0;
|
andrewm@0
|
77
|
andrewm@45
|
78 // Context which holds all the audio/sensor data passed to the render routines
|
andrewm@45
|
79 BeagleRTContext gContext;
|
andrewm@45
|
80
|
andrewm@45
|
81 // User data passed in from main()
|
andrewm@45
|
82 void *gUserData;
|
andrewm@0
|
83
|
andrewm@0
|
84 // initAudio() prepares the infrastructure for running PRU-based real-time
|
andrewm@0
|
85 // audio, but does not actually start the calculations.
|
giuliomoro@178
|
86 // periodSize indicates the number of audio frames per period: the analog period size
|
giuliomoro@178
|
87 // will depend on the number of analog channels, in such a way that
|
giuliomoro@178
|
88 // analogPeriodSize = 4*periodSize/numAnalogChannels
|
giuliomoro@178
|
89 // In total, the audio latency in frames will be 2*periodSize,
|
andrewm@0
|
90 // plus any latency inherent in the ADCs and DACs themselves.
|
giuliomoro@19
|
91 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
|
giuliomoro@19
|
92 // numAnalogChannels indicates how many ADC and DAC channels to use.
|
andrewm@56
|
93 // userData is an opaque pointer which will be passed through to the setup()
|
andrewm@0
|
94 // function for application-specific use
|
andrewm@0
|
95 //
|
andrewm@0
|
96 // Returns 0 on success.
|
andrewm@0
|
97
|
andrewm@45
|
98 int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData)
|
andrewm@0
|
99 {
|
andrewm@0
|
100 rt_print_auto_init(1);
|
andrewm@45
|
101
|
andrewm@45
|
102 BeagleRT_setVerboseLevel(settings->verbose);
|
andrewm@45
|
103 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
|
andrewm@45
|
104 gUserData = userData;
|
andrewm@45
|
105
|
andrewm@45
|
106 // Initialise context data structure
|
andrewm@45
|
107 memset(&gContext, 0, sizeof(BeagleRTContext));
|
andrewm@0
|
108
|
andrewm@5
|
109 if(gRTAudioVerbose) {
|
andrewm@5
|
110 cout << "Starting with period size " << settings->periodSize << "; ";
|
giuliomoro@19
|
111 if(settings->useAnalog)
|
giuliomoro@19
|
112 cout << "analog enabled\n";
|
andrewm@5
|
113 else
|
giuliomoro@19
|
114 cout << "analog disabled\n";
|
andrewm@5
|
115 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
|
andrewm@5
|
116 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
|
andrewm@5
|
117 if(settings->beginMuted)
|
andrewm@5
|
118 cout << "Beginning with speaker muted\n";
|
andrewm@5
|
119 }
|
andrewm@0
|
120
|
andrewm@0
|
121 // Prepare GPIO pins for amplifier mute and status LED
|
andrewm@5
|
122 if(settings->ampMutePin >= 0) {
|
andrewm@5
|
123 gAmplifierMutePin = settings->ampMutePin;
|
andrewm@5
|
124 gAmplifierShouldBeginMuted = settings->beginMuted;
|
andrewm@0
|
125
|
andrewm@5
|
126 if(gpio_export(settings->ampMutePin)) {
|
andrewm@0
|
127 if(gRTAudioVerbose)
|
giuliomoro@16
|
128 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
|
andrewm@0
|
129 }
|
andrewm@5
|
130 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
|
andrewm@0
|
131 if(gRTAudioVerbose)
|
andrewm@0
|
132 cout << "Couldn't set direction on amplifier mute pin\n";
|
andrewm@0
|
133 return -1;
|
andrewm@0
|
134 }
|
andrewm@5
|
135 if(gpio_set_value(settings->ampMutePin, LOW)) {
|
andrewm@0
|
136 if(gRTAudioVerbose)
|
andrewm@0
|
137 cout << "Couldn't set value on amplifier mute pin\n";
|
andrewm@0
|
138 return -1;
|
andrewm@0
|
139 }
|
andrewm@0
|
140 }
|
andrewm@0
|
141
|
giuliomoro@19
|
142 // Limit the analog channels to sane values
|
giuliomoro@19
|
143 if(settings->numAnalogChannels >= 8)
|
giuliomoro@19
|
144 settings->numAnalogChannels = 8;
|
giuliomoro@19
|
145 else if(settings->numAnalogChannels >= 4)
|
giuliomoro@19
|
146 settings->numAnalogChannels = 4;
|
andrewm@12
|
147 else
|
giuliomoro@19
|
148 settings->numAnalogChannels = 2;
|
andrewm@12
|
149
|
andrewm@45
|
150 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
|
andrewm@45
|
151 gContext.audioSampleRate = 44100.0;
|
andrewm@45
|
152 gContext.audioChannels = 2;
|
andrewm@45
|
153
|
andrewm@45
|
154 if(settings->useAnalog) {
|
giuliomoro@178
|
155 gContext.audioFrames = settings->periodSize;
|
andrewm@45
|
156
|
giuliomoro@178
|
157 gContext.analogFrames = gContext.audioFrames * 4 / settings->numAnalogChannels;
|
andrewm@45
|
158 gContext.analogChannels = settings->numAnalogChannels;
|
andrewm@45
|
159 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
|
andrewm@45
|
160 }
|
andrewm@45
|
161 else {
|
giuliomoro@178
|
162 gContext.audioFrames = settings->periodSize;
|
andrewm@45
|
163
|
andrewm@45
|
164 gContext.analogFrames = 0;
|
andrewm@45
|
165 gContext.analogChannels = 0;
|
andrewm@45
|
166 gContext.analogSampleRate = 0;
|
andrewm@45
|
167 }
|
andrewm@45
|
168
|
giuliomoro@178
|
169 // Sanity check the combination of channels and period size
|
giuliomoro@210
|
170 if( gContext.analogChannels != 0 && ((gContext.analogChannels <= 4 && gContext.analogFrames < 2) ||
|
giuliomoro@210
|
171 (gContext.analogChannels <= 2 && gContext.analogFrames < 4)) )
|
giuliomoro@178
|
172 {
|
giuliomoro@178
|
173 cout << "Error: " << gContext.analogChannels << " channels and period size of " << gContext.analogFrames << " not supported.\n";
|
giuliomoro@178
|
174 return 1;
|
giuliomoro@178
|
175 }
|
giuliomoro@178
|
176
|
andrewm@45
|
177 // For now, digital frame rate is equal to audio frame rate
|
andrewm@45
|
178 if(settings->useDigital) {
|
andrewm@45
|
179 gContext.digitalFrames = gContext.audioFrames;
|
andrewm@45
|
180 gContext.digitalSampleRate = gContext.audioSampleRate;
|
andrewm@45
|
181 gContext.digitalChannels = settings->numDigitalChannels;
|
andrewm@45
|
182 }
|
andrewm@45
|
183 else {
|
andrewm@45
|
184 gContext.digitalFrames = 0;
|
andrewm@45
|
185 gContext.digitalSampleRate = 0;
|
andrewm@45
|
186 gContext.digitalChannels = 0;
|
andrewm@45
|
187 }
|
andrewm@45
|
188
|
andrewm@45
|
189 // Set flags based on init settings
|
andrewm@45
|
190 if(settings->interleave)
|
andrewm@45
|
191 gContext.flags |= BEAGLERT_FLAG_INTERLEAVED;
|
andrewm@45
|
192 if(settings->analogOutputsPersist)
|
andrewm@45
|
193 gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST;
|
andrewm@45
|
194
|
andrewm@0
|
195 // Use PRU for audio
|
andrewm@45
|
196 gPRU = new PRU(&gContext);
|
andrewm@0
|
197 gAudioCodec = new I2c_Codec();
|
andrewm@0
|
198
|
andrewm@45
|
199 // Initialise the GPIO pins, including possibly the digital pins in the render routines
|
andrewm@45
|
200 if(gPRU->prepareGPIO(1, 1)) {
|
andrewm@0
|
201 cout << "Error: unable to prepare GPIO for PRU audio\n";
|
andrewm@0
|
202 return 1;
|
andrewm@0
|
203 }
|
andrewm@45
|
204
|
andrewm@45
|
205 // Get the PRU memory buffers ready to go
|
giuliomoro@178
|
206 if(gPRU->initialise(0, gContext.analogFrames, gContext.analogChannels, true)) {
|
andrewm@0
|
207 cout << "Error: unable to initialise PRU\n";
|
andrewm@0
|
208 return 1;
|
andrewm@0
|
209 }
|
andrewm@45
|
210
|
andrewm@45
|
211 // Prepare the audio codec, which clocks the whole system
|
andrewm@5
|
212 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
|
andrewm@0
|
213 cout << "Unable to open codec I2C\n";
|
andrewm@0
|
214 return 1;
|
andrewm@0
|
215 }
|
andrewm@0
|
216 if(gAudioCodec->initCodec()) {
|
andrewm@0
|
217 cout << "Error: unable to initialise audio codec\n";
|
andrewm@0
|
218 return 1;
|
andrewm@0
|
219 }
|
giuliomoro@172
|
220
|
andrewm@5
|
221 // Set default volume levels
|
andrewm@5
|
222 BeagleRT_setDACLevel(settings->dacLevel);
|
andrewm@5
|
223 BeagleRT_setADCLevel(settings->adcLevel);
|
giuliomoro@174
|
224 // TODO: add more argument checks
|
giuliomoro@171
|
225 for(int n = 0; n < 2; n++){
|
giuliomoro@172
|
226 if(settings->pgaGain[n] > 59.5){
|
giuliomoro@172
|
227 std::cerr << "PGA gain out of range [0,59.5]\n";
|
giuliomoro@172
|
228 exit(1);
|
giuliomoro@172
|
229 }
|
giuliomoro@171
|
230 BeagleRT_setPgaGain(settings->pgaGain[n], n);
|
giuliomoro@171
|
231 }
|
andrewm@5
|
232 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
|
andrewm@5
|
233
|
andrewm@45
|
234 // Call the user-defined initialisation function
|
andrewm@56
|
235 if(!setup(&gContext, userData)) {
|
andrewm@0
|
236 cout << "Couldn't initialise audio rendering\n";
|
andrewm@0
|
237 return 1;
|
andrewm@0
|
238 }
|
andrewm@0
|
239
|
andrewm@0
|
240 return 0;
|
andrewm@0
|
241 }
|
andrewm@0
|
242
|
andrewm@0
|
243 // audioLoop() is the main function which starts the PRU audio code
|
andrewm@0
|
244 // and then transfers control to the PRU object. The PRU object in
|
andrewm@0
|
245 // turn will call the audio render() callback function every time
|
andrewm@0
|
246 // there is new data to process.
|
andrewm@0
|
247
|
andrewm@0
|
248 void audioLoop(void *)
|
andrewm@0
|
249 {
|
andrewm@0
|
250 if(gRTAudioVerbose==1)
|
andrewm@0
|
251 rt_printf("_________________Audio Thread!\n");
|
andrewm@0
|
252
|
andrewm@0
|
253 // PRU audio
|
andrewm@0
|
254 assert(gAudioCodec != 0 && gPRU != 0);
|
andrewm@0
|
255
|
andrewm@0
|
256 if(gAudioCodec->startAudio(0)) {
|
andrewm@0
|
257 rt_printf("Error: unable to start I2C audio codec\n");
|
andrewm@0
|
258 gShouldStop = 1;
|
andrewm@0
|
259 }
|
andrewm@0
|
260 else {
|
giuliomoro@16
|
261 if(gPRU->start(gPRUFilename)) {
|
giuliomoro@16
|
262 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
|
andrewm@0
|
263 gShouldStop = 1;
|
andrewm@0
|
264 }
|
andrewm@0
|
265 else {
|
andrewm@0
|
266 // All systems go. Run the loop; it will end when gShouldStop is set to 1
|
andrewm@5
|
267
|
andrewm@5
|
268 if(!gAmplifierShouldBeginMuted) {
|
andrewm@5
|
269 // First unmute the amplifier
|
andrewm@5
|
270 if(BeagleRT_muteSpeakers(0)) {
|
andrewm@5
|
271 if(gRTAudioVerbose)
|
andrewm@5
|
272 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
|
andrewm@5
|
273 }
|
andrewm@0
|
274 }
|
andrewm@0
|
275
|
andrewm@50
|
276 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
277 gPRU->loop(&gRTAudioInterrupt, gUserData);
|
andrewm@50
|
278 #else
|
andrewm@50
|
279 gPRU->loop(0, gUserData);
|
andrewm@50
|
280 #endif
|
andrewm@0
|
281 // Now clean up
|
andrewm@0
|
282 // gPRU->waitForFinish();
|
andrewm@0
|
283 gPRU->disable();
|
andrewm@0
|
284 gAudioCodec->stopAudio();
|
andrewm@0
|
285 gPRU->cleanupGPIO();
|
andrewm@0
|
286 }
|
andrewm@0
|
287 }
|
andrewm@0
|
288
|
andrewm@0
|
289 if(gRTAudioVerbose == 1)
|
andrewm@0
|
290 rt_printf("audio thread ended\n");
|
andrewm@0
|
291 }
|
andrewm@0
|
292
|
andrewm@0
|
293 // Create a calculation loop which can run independently of the audio, at a different
|
andrewm@45
|
294 // (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY;
|
andrewm@45
|
295 // priority should be generally be less than this.
|
andrewm@0
|
296 // Returns an (opaque) pointer to the created task on success; 0 on failure
|
l@256
|
297 AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void* args), int priority, const char *name, void* args)
|
andrewm@0
|
298 {
|
andrewm@0
|
299 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
andrewm@0
|
300
|
andrewm@0
|
301 // Attempt to create the task
|
andrewm@0
|
302 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
303 cout << "Error: unable to create auxiliary task " << name << endl;
|
andrewm@0
|
304 free(newTask);
|
andrewm@0
|
305 return 0;
|
andrewm@0
|
306 }
|
andrewm@0
|
307
|
andrewm@0
|
308 // Populate the rest of the data structure and store it in the vector
|
l@256
|
309 newTask->argfunction = functionToCall;
|
andrewm@0
|
310 newTask->name = strdup(name);
|
andrewm@0
|
311 newTask->priority = priority;
|
giuliomoro@174
|
312 newTask->started = false;
|
l@254
|
313 newTask->args = args;
|
l@256
|
314 newTask->hasArgs = true;
|
andrewm@0
|
315
|
giuliomoro@176
|
316 getAuxTasks().push_back(newTask);
|
andrewm@0
|
317
|
andrewm@0
|
318 return (AuxiliaryTask)newTask;
|
andrewm@0
|
319 }
|
l@256
|
320 AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name)
|
l@256
|
321 {
|
l@256
|
322 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
l@256
|
323 // Attempt to create the task
|
l@256
|
324 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
l@256
|
325 cout << "Error: unable to create auxiliary task " << name << endl;
|
l@256
|
326 free(newTask);
|
l@256
|
327 return 0;
|
l@256
|
328 }
|
l@256
|
329 // Populate the rest of the data structure and store it in the vector
|
l@256
|
330 newTask->function = functionToCall;
|
l@256
|
331 newTask->name = strdup(name);
|
l@256
|
332 newTask->priority = priority;
|
l@256
|
333 newTask->started = false;
|
l@256
|
334 newTask->hasArgs = false;
|
l@256
|
335 getAuxTasks().push_back(newTask);
|
l@256
|
336 return (AuxiliaryTask)newTask;
|
l@256
|
337 }
|
andrewm@0
|
338
|
giuliomoro@174
|
339 // Schedule a previously created (and started) auxiliary task. It will run when the priority rules next
|
andrewm@0
|
340 // allow it to be scheduled.
|
andrewm@47
|
341 void BeagleRT_scheduleAuxiliaryTask(AuxiliaryTask task)
|
andrewm@0
|
342 {
|
andrewm@0
|
343 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
|
giuliomoro@174
|
344 if(taskToSchedule->started == false){ // Note: this is not the safest method to check if a task
|
giuliomoro@174
|
345 BeagleRT_startAuxiliaryTask(task); // is started (or ready to be resumed), but it probably is the fastest.
|
giuliomoro@174
|
346 // A safer approach would use rt_task_inquire()
|
giuliomoro@174
|
347 }
|
andrewm@0
|
348 rt_task_resume(&taskToSchedule->task);
|
andrewm@0
|
349 }
|
andrewm@0
|
350
|
andrewm@0
|
351 // Calculation loop that can be used for other tasks running at a lower
|
andrewm@0
|
352 // priority than the audio thread. Simple wrapper for Xenomai calls.
|
andrewm@0
|
353 // Treat the argument as containing the task structure
|
andrewm@0
|
354 void auxiliaryTaskLoop(void *taskStruct)
|
andrewm@0
|
355 {
|
l@256
|
356 InternalAuxiliaryTask *task = ((InternalAuxiliaryTask *)taskStruct);
|
l@256
|
357
|
andrewm@0
|
358 // Get function to call from the argument
|
l@256
|
359 void (*auxiliary_argfunction)(void* args) = task->argfunction;
|
l@256
|
360 void (*auxiliary_function)(void) = task->function;
|
l@256
|
361
|
l@256
|
362 // get the name
|
l@256
|
363 const char *name = task->name;
|
andrewm@0
|
364
|
andrewm@0
|
365 // Wait for a notification
|
andrewm@0
|
366 rt_task_suspend(NULL);
|
andrewm@0
|
367
|
andrewm@0
|
368 while(!gShouldStop) {
|
andrewm@0
|
369 // Then run the calculations
|
l@256
|
370 if (task->hasArgs)
|
l@256
|
371 auxiliary_argfunction(task->args);
|
l@256
|
372 else
|
l@256
|
373 auxiliary_function();
|
andrewm@0
|
374
|
andrewm@0
|
375 // Wait for a notification
|
andrewm@0
|
376 rt_task_suspend(NULL);
|
andrewm@0
|
377 }
|
andrewm@0
|
378
|
andrewm@0
|
379 if(gRTAudioVerbose == 1)
|
andrewm@0
|
380 rt_printf("auxiliary task %s ended\n", name);
|
andrewm@0
|
381 }
|
andrewm@0
|
382
|
giuliomoro@174
|
383
|
giuliomoro@174
|
384 int BeagleRT_startAuxiliaryTask(AuxiliaryTask task){
|
giuliomoro@174
|
385 InternalAuxiliaryTask *taskStruct;
|
giuliomoro@174
|
386 taskStruct = (InternalAuxiliaryTask *)task;
|
giuliomoro@174
|
387 if(taskStruct->started == true)
|
giuliomoro@174
|
388 return 0;
|
giuliomoro@174
|
389 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
|
giuliomoro@174
|
390 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
|
giuliomoro@174
|
391 return -1;
|
giuliomoro@174
|
392 }
|
giuliomoro@174
|
393 taskStruct->started = true;
|
giuliomoro@174
|
394 return 0;
|
giuliomoro@174
|
395 }
|
giuliomoro@174
|
396
|
andrewm@0
|
397 // startAudio() should be called only after initAudio() successfully completes.
|
andrewm@0
|
398 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
|
andrewm@0
|
399 // on success.
|
andrewm@0
|
400
|
andrewm@5
|
401 int BeagleRT_startAudio()
|
andrewm@0
|
402 {
|
andrewm@45
|
403 // Create audio thread with high Xenomai priority
|
andrewm@45
|
404 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
405 cout << "Error: unable to create Xenomai audio thread" << endl;
|
andrewm@0
|
406 return -1;
|
andrewm@0
|
407 }
|
andrewm@0
|
408
|
andrewm@50
|
409 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
410 // Create an interrupt which the audio thread receives from the PRU
|
andrewm@45
|
411 int result = 0;
|
andrewm@45
|
412 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
|
andrewm@45
|
413 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
|
andrewm@45
|
414 return -1;
|
andrewm@45
|
415 }
|
andrewm@50
|
416 #endif
|
andrewm@45
|
417
|
andrewm@0
|
418 // Start all RT threads
|
andrewm@0
|
419 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
|
andrewm@0
|
420 cout << "Error: unable to start Xenomai audio thread" << endl;
|
andrewm@0
|
421 return -1;
|
andrewm@0
|
422 }
|
andrewm@0
|
423
|
andrewm@0
|
424 // The user may have created other tasks. Start those also.
|
andrewm@0
|
425 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
426 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
giuliomoro@177
|
427 int ret = BeagleRT_startAuxiliaryTask(*it);
|
giuliomoro@177
|
428 if(ret != 0)
|
giuliomoro@177
|
429 return -2;
|
andrewm@0
|
430 }
|
andrewm@0
|
431 return 0;
|
andrewm@0
|
432 }
|
andrewm@0
|
433
|
andrewm@0
|
434 // Stop the PRU-based audio from running and wait
|
andrewm@0
|
435 // for the tasks to complete before returning.
|
andrewm@0
|
436
|
andrewm@5
|
437 void BeagleRT_stopAudio()
|
andrewm@0
|
438 {
|
andrewm@0
|
439 // Tell audio thread to stop (if this hasn't been done already)
|
andrewm@0
|
440 gShouldStop = true;
|
andrewm@0
|
441
|
andrewm@5
|
442 if(gRTAudioVerbose)
|
andrewm@5
|
443 cout << "Stopping audio...\n";
|
andrewm@5
|
444
|
andrewm@0
|
445 // Now wait for threads to respond and actually stop...
|
andrewm@0
|
446 rt_task_join(&gRTAudioThread);
|
andrewm@0
|
447
|
andrewm@0
|
448 // Stop all the auxiliary threads too
|
andrewm@0
|
449 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
450 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
andrewm@0
|
451 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
452
|
andrewm@0
|
453 // Wake up each thread and join it
|
andrewm@0
|
454 rt_task_resume(&(taskStruct->task));
|
andrewm@0
|
455 rt_task_join(&(taskStruct->task));
|
andrewm@0
|
456 }
|
andrewm@0
|
457 }
|
andrewm@0
|
458
|
andrewm@0
|
459 // Free any resources associated with PRU real-time audio
|
andrewm@5
|
460 void BeagleRT_cleanupAudio()
|
andrewm@0
|
461 {
|
andrewm@56
|
462 cleanup(&gContext, gUserData);
|
andrewm@0
|
463
|
andrewm@0
|
464 // Clean up the auxiliary tasks
|
andrewm@0
|
465 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
466 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
andrewm@0
|
467 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
468
|
andrewm@45
|
469 // Delete the task
|
andrewm@45
|
470 rt_task_delete(&taskStruct->task);
|
andrewm@45
|
471
|
andrewm@0
|
472 // Free the name string and the struct itself
|
andrewm@0
|
473 free(taskStruct->name);
|
andrewm@0
|
474 free(taskStruct);
|
andrewm@0
|
475 }
|
giuliomoro@176
|
476 getAuxTasks().clear();
|
andrewm@0
|
477
|
andrewm@45
|
478 // Delete the audio task and its interrupt
|
andrewm@50
|
479 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
480 rt_intr_delete(&gRTAudioInterrupt);
|
andrewm@50
|
481 #endif
|
andrewm@45
|
482 rt_task_delete(&gRTAudioThread);
|
andrewm@45
|
483
|
andrewm@0
|
484 if(gPRU != 0)
|
andrewm@0
|
485 delete gPRU;
|
andrewm@0
|
486 if(gAudioCodec != 0)
|
andrewm@0
|
487 delete gAudioCodec;
|
andrewm@0
|
488
|
andrewm@0
|
489 if(gAmplifierMutePin >= 0)
|
andrewm@0
|
490 gpio_unexport(gAmplifierMutePin);
|
andrewm@0
|
491 gAmplifierMutePin = -1;
|
andrewm@0
|
492 }
|
andrewm@0
|
493
|
andrewm@5
|
494 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
|
andrewm@5
|
495 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
496 int BeagleRT_setDACLevel(float decibels)
|
andrewm@5
|
497 {
|
andrewm@5
|
498 if(gAudioCodec == 0)
|
andrewm@5
|
499 return -1;
|
andrewm@5
|
500 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
501 }
|
andrewm@5
|
502
|
andrewm@5
|
503 // Set the level of the ADC
|
andrewm@5
|
504 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
|
andrewm@5
|
505 int BeagleRT_setADCLevel(float decibels)
|
andrewm@5
|
506 {
|
andrewm@5
|
507 if(gAudioCodec == 0)
|
andrewm@5
|
508 return -1;
|
andrewm@5
|
509 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
510 }
|
andrewm@5
|
511
|
giuliomoro@171
|
512 // Set the level of the Programmable Gain Amplifier
|
giuliomoro@171
|
513 // 59.5dB is maximum, 0dB is minimum; 0.5dB steps
|
giuliomoro@171
|
514 int BeagleRT_setPgaGain(float decibels, int channel){
|
giuliomoro@171
|
515 if(gAudioCodec == 0)
|
giuliomoro@171
|
516 return -1;
|
giuliomoro@171
|
517 return gAudioCodec->setPga(decibels, channel);
|
giuliomoro@171
|
518 }
|
giuliomoro@171
|
519
|
andrewm@5
|
520 // Set the level of the onboard headphone amplifier; affects headphone
|
andrewm@5
|
521 // output only (not line out or speaker)
|
andrewm@5
|
522 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
523 int BeagleRT_setHeadphoneLevel(float decibels)
|
andrewm@5
|
524 {
|
andrewm@5
|
525 if(gAudioCodec == 0)
|
andrewm@5
|
526 return -1;
|
andrewm@5
|
527 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
528 }
|
andrewm@5
|
529
|
andrewm@5
|
530 // Mute or unmute the onboard speaker amplifiers
|
andrewm@5
|
531 // mute == 0 means unmute; otherwise mute
|
andrewm@5
|
532 // Returns 0 on success
|
andrewm@5
|
533 int BeagleRT_muteSpeakers(int mute)
|
andrewm@5
|
534 {
|
andrewm@5
|
535 int pinValue = mute ? LOW : HIGH;
|
andrewm@5
|
536
|
andrewm@5
|
537 // Check that we have an enabled pin for controlling the mute
|
andrewm@5
|
538 if(gAmplifierMutePin < 0)
|
andrewm@5
|
539 return -1;
|
andrewm@5
|
540
|
andrewm@5
|
541 return gpio_set_value(gAmplifierMutePin, pinValue);
|
andrewm@5
|
542 }
|
andrewm@5
|
543
|
andrewm@0
|
544 // Set the verbosity level
|
andrewm@45
|
545 void BeagleRT_setVerboseLevel(int level)
|
andrewm@0
|
546 {
|
andrewm@0
|
547 gRTAudioVerbose = level;
|
andrewm@0
|
548 }
|