annotate core/RTAudio.cpp @ 254:173978a5ab6a aux_task_args

Allow arguments to be passed to aux task function
author Liam Donovan <l.b.donovan@qmul.ac.uk>
date Tue, 03 May 2016 11:04:56 +0100
parents 18d03901f866
children 3e93d9793da3
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@45 27 #include <native/intr.h>
andrewm@0 28 #include <rtdk.h>
andrewm@0 29
andrewm@45 30 #include "../include/BeagleRT.h"
andrewm@0 31 #include "../include/PRU.h"
andrewm@0 32 #include "../include/I2c_Codec.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
andrewm@0 34
andrewm@45 35 // ARM interrupt number for PRU event EVTOUT7
andrewm@45 36 #define PRU_RTAUDIO_IRQ 21
andrewm@45 37
andrewm@0 38 using namespace std;
andrewm@0 39
andrewm@0 40 // Data structure to keep track of auxiliary tasks we
andrewm@0 41 // can schedule
andrewm@0 42 typedef struct {
andrewm@0 43 RT_TASK task;
l@254 44 void (*function)(void*);
andrewm@0 45 char *name;
andrewm@0 46 int priority;
giuliomoro@174 47 bool started;
l@254 48 void* args;
andrewm@0 49 } InternalAuxiliaryTask;
andrewm@0 50
andrewm@0 51 const char gRTAudioThreadName[] = "beaglert-audio";
andrewm@45 52 const char gRTAudioInterruptName[] = "beaglert-pru-irq";
andrewm@0 53
andrewm@0 54 // Real-time tasks and objects
andrewm@0 55 RT_TASK gRTAudioThread;
andrewm@50 56 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 57 RT_INTR gRTAudioInterrupt;
andrewm@50 58 #endif
andrewm@0 59 PRU *gPRU = 0;
andrewm@0 60 I2c_Codec *gAudioCodec = 0;
andrewm@0 61
giuliomoro@176 62 vector<InternalAuxiliaryTask*> &getAuxTasks(){
giuliomoro@176 63 static vector<InternalAuxiliaryTask*> auxTasks;
giuliomoro@176 64 return auxTasks;
giuliomoro@176 65 }
andrewm@0 66
andrewm@0 67 // Flag which tells the audio task to stop
giuliomoro@233 68 int gShouldStop = false;
andrewm@0 69
andrewm@0 70 // general settings
andrewm@45 71 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
andrewm@0 72 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 73 int gAmplifierMutePin = -1;
andrewm@5 74 int gAmplifierShouldBeginMuted = 0;
andrewm@0 75
andrewm@45 76 // Context which holds all the audio/sensor data passed to the render routines
andrewm@45 77 BeagleRTContext gContext;
andrewm@45 78
andrewm@45 79 // User data passed in from main()
andrewm@45 80 void *gUserData;
andrewm@0 81
andrewm@0 82 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 83 // audio, but does not actually start the calculations.
giuliomoro@178 84 // periodSize indicates the number of audio frames per period: the analog period size
giuliomoro@178 85 // will depend on the number of analog channels, in such a way that
giuliomoro@178 86 // analogPeriodSize = 4*periodSize/numAnalogChannels
giuliomoro@178 87 // In total, the audio latency in frames will be 2*periodSize,
andrewm@0 88 // plus any latency inherent in the ADCs and DACs themselves.
giuliomoro@19 89 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
giuliomoro@19 90 // numAnalogChannels indicates how many ADC and DAC channels to use.
andrewm@56 91 // userData is an opaque pointer which will be passed through to the setup()
andrewm@0 92 // function for application-specific use
andrewm@0 93 //
andrewm@0 94 // Returns 0 on success.
andrewm@0 95
andrewm@45 96 int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData)
andrewm@0 97 {
andrewm@0 98 rt_print_auto_init(1);
andrewm@45 99
andrewm@45 100 BeagleRT_setVerboseLevel(settings->verbose);
andrewm@45 101 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
andrewm@45 102 gUserData = userData;
andrewm@45 103
andrewm@45 104 // Initialise context data structure
andrewm@45 105 memset(&gContext, 0, sizeof(BeagleRTContext));
andrewm@0 106
andrewm@5 107 if(gRTAudioVerbose) {
andrewm@5 108 cout << "Starting with period size " << settings->periodSize << "; ";
giuliomoro@19 109 if(settings->useAnalog)
giuliomoro@19 110 cout << "analog enabled\n";
andrewm@5 111 else
giuliomoro@19 112 cout << "analog disabled\n";
andrewm@5 113 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
andrewm@5 114 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
andrewm@5 115 if(settings->beginMuted)
andrewm@5 116 cout << "Beginning with speaker muted\n";
andrewm@5 117 }
andrewm@0 118
andrewm@0 119 // Prepare GPIO pins for amplifier mute and status LED
andrewm@5 120 if(settings->ampMutePin >= 0) {
andrewm@5 121 gAmplifierMutePin = settings->ampMutePin;
andrewm@5 122 gAmplifierShouldBeginMuted = settings->beginMuted;
andrewm@0 123
andrewm@5 124 if(gpio_export(settings->ampMutePin)) {
andrewm@0 125 if(gRTAudioVerbose)
giuliomoro@16 126 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
andrewm@0 127 }
andrewm@5 128 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
andrewm@0 129 if(gRTAudioVerbose)
andrewm@0 130 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 131 return -1;
andrewm@0 132 }
andrewm@5 133 if(gpio_set_value(settings->ampMutePin, LOW)) {
andrewm@0 134 if(gRTAudioVerbose)
andrewm@0 135 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 136 return -1;
andrewm@0 137 }
andrewm@0 138 }
andrewm@0 139
giuliomoro@19 140 // Limit the analog channels to sane values
giuliomoro@19 141 if(settings->numAnalogChannels >= 8)
giuliomoro@19 142 settings->numAnalogChannels = 8;
giuliomoro@19 143 else if(settings->numAnalogChannels >= 4)
giuliomoro@19 144 settings->numAnalogChannels = 4;
andrewm@12 145 else
giuliomoro@19 146 settings->numAnalogChannels = 2;
andrewm@12 147
andrewm@45 148 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
andrewm@45 149 gContext.audioSampleRate = 44100.0;
andrewm@45 150 gContext.audioChannels = 2;
andrewm@45 151
andrewm@45 152 if(settings->useAnalog) {
giuliomoro@178 153 gContext.audioFrames = settings->periodSize;
andrewm@45 154
giuliomoro@178 155 gContext.analogFrames = gContext.audioFrames * 4 / settings->numAnalogChannels;
andrewm@45 156 gContext.analogChannels = settings->numAnalogChannels;
andrewm@45 157 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
andrewm@45 158 }
andrewm@45 159 else {
giuliomoro@178 160 gContext.audioFrames = settings->periodSize;
andrewm@45 161
andrewm@45 162 gContext.analogFrames = 0;
andrewm@45 163 gContext.analogChannels = 0;
andrewm@45 164 gContext.analogSampleRate = 0;
andrewm@45 165 }
andrewm@45 166
giuliomoro@178 167 // Sanity check the combination of channels and period size
giuliomoro@210 168 if( gContext.analogChannels != 0 && ((gContext.analogChannels <= 4 && gContext.analogFrames < 2) ||
giuliomoro@210 169 (gContext.analogChannels <= 2 && gContext.analogFrames < 4)) )
giuliomoro@178 170 {
giuliomoro@178 171 cout << "Error: " << gContext.analogChannels << " channels and period size of " << gContext.analogFrames << " not supported.\n";
giuliomoro@178 172 return 1;
giuliomoro@178 173 }
giuliomoro@178 174
andrewm@45 175 // For now, digital frame rate is equal to audio frame rate
andrewm@45 176 if(settings->useDigital) {
andrewm@45 177 gContext.digitalFrames = gContext.audioFrames;
andrewm@45 178 gContext.digitalSampleRate = gContext.audioSampleRate;
andrewm@45 179 gContext.digitalChannels = settings->numDigitalChannels;
andrewm@45 180 }
andrewm@45 181 else {
andrewm@45 182 gContext.digitalFrames = 0;
andrewm@45 183 gContext.digitalSampleRate = 0;
andrewm@45 184 gContext.digitalChannels = 0;
andrewm@45 185 }
andrewm@45 186
andrewm@45 187 // Set flags based on init settings
andrewm@45 188 if(settings->interleave)
andrewm@45 189 gContext.flags |= BEAGLERT_FLAG_INTERLEAVED;
andrewm@45 190 if(settings->analogOutputsPersist)
andrewm@45 191 gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST;
andrewm@45 192
andrewm@0 193 // Use PRU for audio
andrewm@45 194 gPRU = new PRU(&gContext);
andrewm@0 195 gAudioCodec = new I2c_Codec();
andrewm@0 196
andrewm@45 197 // Initialise the GPIO pins, including possibly the digital pins in the render routines
andrewm@45 198 if(gPRU->prepareGPIO(1, 1)) {
andrewm@0 199 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 200 return 1;
andrewm@0 201 }
andrewm@45 202
andrewm@45 203 // Get the PRU memory buffers ready to go
giuliomoro@178 204 if(gPRU->initialise(0, gContext.analogFrames, gContext.analogChannels, true)) {
andrewm@0 205 cout << "Error: unable to initialise PRU\n";
andrewm@0 206 return 1;
andrewm@0 207 }
andrewm@45 208
andrewm@45 209 // Prepare the audio codec, which clocks the whole system
andrewm@5 210 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
andrewm@0 211 cout << "Unable to open codec I2C\n";
andrewm@0 212 return 1;
andrewm@0 213 }
andrewm@0 214 if(gAudioCodec->initCodec()) {
andrewm@0 215 cout << "Error: unable to initialise audio codec\n";
andrewm@0 216 return 1;
andrewm@0 217 }
giuliomoro@172 218
andrewm@5 219 // Set default volume levels
andrewm@5 220 BeagleRT_setDACLevel(settings->dacLevel);
andrewm@5 221 BeagleRT_setADCLevel(settings->adcLevel);
giuliomoro@174 222 // TODO: add more argument checks
giuliomoro@171 223 for(int n = 0; n < 2; n++){
giuliomoro@172 224 if(settings->pgaGain[n] > 59.5){
giuliomoro@172 225 std::cerr << "PGA gain out of range [0,59.5]\n";
giuliomoro@172 226 exit(1);
giuliomoro@172 227 }
giuliomoro@171 228 BeagleRT_setPgaGain(settings->pgaGain[n], n);
giuliomoro@171 229 }
andrewm@5 230 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
andrewm@5 231
andrewm@45 232 // Call the user-defined initialisation function
andrewm@56 233 if(!setup(&gContext, userData)) {
andrewm@0 234 cout << "Couldn't initialise audio rendering\n";
andrewm@0 235 return 1;
andrewm@0 236 }
andrewm@0 237
andrewm@0 238 return 0;
andrewm@0 239 }
andrewm@0 240
andrewm@0 241 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 242 // and then transfers control to the PRU object. The PRU object in
andrewm@0 243 // turn will call the audio render() callback function every time
andrewm@0 244 // there is new data to process.
andrewm@0 245
andrewm@0 246 void audioLoop(void *)
andrewm@0 247 {
andrewm@0 248 if(gRTAudioVerbose==1)
andrewm@0 249 rt_printf("_________________Audio Thread!\n");
andrewm@0 250
andrewm@0 251 // PRU audio
andrewm@0 252 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 253
andrewm@0 254 if(gAudioCodec->startAudio(0)) {
andrewm@0 255 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 256 gShouldStop = 1;
andrewm@0 257 }
andrewm@0 258 else {
giuliomoro@16 259 if(gPRU->start(gPRUFilename)) {
giuliomoro@16 260 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 261 gShouldStop = 1;
andrewm@0 262 }
andrewm@0 263 else {
andrewm@0 264 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@5 265
andrewm@5 266 if(!gAmplifierShouldBeginMuted) {
andrewm@5 267 // First unmute the amplifier
andrewm@5 268 if(BeagleRT_muteSpeakers(0)) {
andrewm@5 269 if(gRTAudioVerbose)
andrewm@5 270 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@5 271 }
andrewm@0 272 }
andrewm@0 273
andrewm@50 274 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 275 gPRU->loop(&gRTAudioInterrupt, gUserData);
andrewm@50 276 #else
andrewm@50 277 gPRU->loop(0, gUserData);
andrewm@50 278 #endif
andrewm@0 279 // Now clean up
andrewm@0 280 // gPRU->waitForFinish();
andrewm@0 281 gPRU->disable();
andrewm@0 282 gAudioCodec->stopAudio();
andrewm@0 283 gPRU->cleanupGPIO();
andrewm@0 284 }
andrewm@0 285 }
andrewm@0 286
andrewm@0 287 if(gRTAudioVerbose == 1)
andrewm@0 288 rt_printf("audio thread ended\n");
andrewm@0 289 }
andrewm@0 290
andrewm@0 291 // Create a calculation loop which can run independently of the audio, at a different
andrewm@45 292 // (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY;
andrewm@45 293 // priority should be generally be less than this.
andrewm@0 294 // Returns an (opaque) pointer to the created task on success; 0 on failure
l@254 295 AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void*), int priority, const char *name, void* args)
andrewm@0 296 {
andrewm@0 297 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 298
andrewm@0 299 // Attempt to create the task
andrewm@0 300 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 301 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 302 free(newTask);
andrewm@0 303 return 0;
andrewm@0 304 }
andrewm@0 305
andrewm@0 306 // Populate the rest of the data structure and store it in the vector
andrewm@0 307 newTask->function = functionToCall;
andrewm@0 308 newTask->name = strdup(name);
andrewm@0 309 newTask->priority = priority;
giuliomoro@174 310 newTask->started = false;
l@254 311 newTask->args = args;
andrewm@0 312
giuliomoro@176 313 getAuxTasks().push_back(newTask);
andrewm@0 314
andrewm@0 315 return (AuxiliaryTask)newTask;
andrewm@0 316 }
andrewm@0 317
giuliomoro@174 318 // Schedule a previously created (and started) auxiliary task. It will run when the priority rules next
andrewm@0 319 // allow it to be scheduled.
andrewm@47 320 void BeagleRT_scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 321 {
andrewm@0 322 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
giuliomoro@174 323 if(taskToSchedule->started == false){ // Note: this is not the safest method to check if a task
giuliomoro@174 324 BeagleRT_startAuxiliaryTask(task); // is started (or ready to be resumed), but it probably is the fastest.
giuliomoro@174 325 // A safer approach would use rt_task_inquire()
giuliomoro@174 326 }
andrewm@0 327 rt_task_resume(&taskToSchedule->task);
andrewm@0 328 }
andrewm@0 329
andrewm@0 330 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 331 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 332 // Treat the argument as containing the task structure
andrewm@0 333 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 334 {
andrewm@0 335 // Get function to call from the argument
l@254 336 void (*auxiliary_function)(void*) = ((InternalAuxiliaryTask *)taskStruct)->function;
andrewm@0 337 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
andrewm@0 338
andrewm@0 339 // Wait for a notification
andrewm@0 340 rt_task_suspend(NULL);
andrewm@0 341
andrewm@0 342 while(!gShouldStop) {
andrewm@0 343 // Then run the calculations
l@254 344 auxiliary_function(((InternalAuxiliaryTask *)taskStruct)->args);
andrewm@0 345
andrewm@0 346 // Wait for a notification
andrewm@0 347 rt_task_suspend(NULL);
andrewm@0 348 }
andrewm@0 349
andrewm@0 350 if(gRTAudioVerbose == 1)
andrewm@0 351 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 352 }
andrewm@0 353
giuliomoro@174 354
giuliomoro@174 355 int BeagleRT_startAuxiliaryTask(AuxiliaryTask task){
giuliomoro@174 356 InternalAuxiliaryTask *taskStruct;
giuliomoro@174 357 taskStruct = (InternalAuxiliaryTask *)task;
giuliomoro@174 358 if(taskStruct->started == true)
giuliomoro@174 359 return 0;
giuliomoro@174 360 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
giuliomoro@174 361 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
giuliomoro@174 362 return -1;
giuliomoro@174 363 }
giuliomoro@174 364 taskStruct->started = true;
giuliomoro@174 365 return 0;
giuliomoro@174 366 }
giuliomoro@174 367
andrewm@0 368 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 369 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 370 // on success.
andrewm@0 371
andrewm@5 372 int BeagleRT_startAudio()
andrewm@0 373 {
andrewm@45 374 // Create audio thread with high Xenomai priority
andrewm@45 375 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
andrewm@0 376 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 377 return -1;
andrewm@0 378 }
andrewm@0 379
andrewm@50 380 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 381 // Create an interrupt which the audio thread receives from the PRU
andrewm@45 382 int result = 0;
andrewm@45 383 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
andrewm@45 384 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
andrewm@45 385 return -1;
andrewm@45 386 }
andrewm@50 387 #endif
andrewm@45 388
andrewm@0 389 // Start all RT threads
andrewm@0 390 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 391 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 392 return -1;
andrewm@0 393 }
andrewm@0 394
andrewm@0 395 // The user may have created other tasks. Start those also.
andrewm@0 396 vector<InternalAuxiliaryTask*>::iterator it;
giuliomoro@176 397 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
giuliomoro@177 398 int ret = BeagleRT_startAuxiliaryTask(*it);
giuliomoro@177 399 if(ret != 0)
giuliomoro@177 400 return -2;
andrewm@0 401 }
andrewm@0 402 return 0;
andrewm@0 403 }
andrewm@0 404
andrewm@0 405 // Stop the PRU-based audio from running and wait
andrewm@0 406 // for the tasks to complete before returning.
andrewm@0 407
andrewm@5 408 void BeagleRT_stopAudio()
andrewm@0 409 {
andrewm@0 410 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 411 gShouldStop = true;
andrewm@0 412
andrewm@5 413 if(gRTAudioVerbose)
andrewm@5 414 cout << "Stopping audio...\n";
andrewm@5 415
andrewm@0 416 // Now wait for threads to respond and actually stop...
andrewm@0 417 rt_task_join(&gRTAudioThread);
andrewm@0 418
andrewm@0 419 // Stop all the auxiliary threads too
andrewm@0 420 vector<InternalAuxiliaryTask*>::iterator it;
giuliomoro@176 421 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
andrewm@0 422 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 423
andrewm@0 424 // Wake up each thread and join it
andrewm@0 425 rt_task_resume(&(taskStruct->task));
andrewm@0 426 rt_task_join(&(taskStruct->task));
andrewm@0 427 }
andrewm@0 428 }
andrewm@0 429
andrewm@0 430 // Free any resources associated with PRU real-time audio
andrewm@5 431 void BeagleRT_cleanupAudio()
andrewm@0 432 {
andrewm@56 433 cleanup(&gContext, gUserData);
andrewm@0 434
andrewm@0 435 // Clean up the auxiliary tasks
andrewm@0 436 vector<InternalAuxiliaryTask*>::iterator it;
giuliomoro@176 437 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
andrewm@0 438 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 439
andrewm@45 440 // Delete the task
andrewm@45 441 rt_task_delete(&taskStruct->task);
andrewm@45 442
andrewm@0 443 // Free the name string and the struct itself
andrewm@0 444 free(taskStruct->name);
andrewm@0 445 free(taskStruct);
andrewm@0 446 }
giuliomoro@176 447 getAuxTasks().clear();
andrewm@0 448
andrewm@45 449 // Delete the audio task and its interrupt
andrewm@50 450 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 451 rt_intr_delete(&gRTAudioInterrupt);
andrewm@50 452 #endif
andrewm@45 453 rt_task_delete(&gRTAudioThread);
andrewm@45 454
andrewm@0 455 if(gPRU != 0)
andrewm@0 456 delete gPRU;
andrewm@0 457 if(gAudioCodec != 0)
andrewm@0 458 delete gAudioCodec;
andrewm@0 459
andrewm@0 460 if(gAmplifierMutePin >= 0)
andrewm@0 461 gpio_unexport(gAmplifierMutePin);
andrewm@0 462 gAmplifierMutePin = -1;
andrewm@0 463 }
andrewm@0 464
andrewm@5 465 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
andrewm@5 466 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 467 int BeagleRT_setDACLevel(float decibels)
andrewm@5 468 {
andrewm@5 469 if(gAudioCodec == 0)
andrewm@5 470 return -1;
andrewm@5 471 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 472 }
andrewm@5 473
andrewm@5 474 // Set the level of the ADC
andrewm@5 475 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
andrewm@5 476 int BeagleRT_setADCLevel(float decibels)
andrewm@5 477 {
andrewm@5 478 if(gAudioCodec == 0)
andrewm@5 479 return -1;
andrewm@5 480 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 481 }
andrewm@5 482
giuliomoro@171 483 // Set the level of the Programmable Gain Amplifier
giuliomoro@171 484 // 59.5dB is maximum, 0dB is minimum; 0.5dB steps
giuliomoro@171 485 int BeagleRT_setPgaGain(float decibels, int channel){
giuliomoro@171 486 if(gAudioCodec == 0)
giuliomoro@171 487 return -1;
giuliomoro@171 488 return gAudioCodec->setPga(decibels, channel);
giuliomoro@171 489 }
giuliomoro@171 490
andrewm@5 491 // Set the level of the onboard headphone amplifier; affects headphone
andrewm@5 492 // output only (not line out or speaker)
andrewm@5 493 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 494 int BeagleRT_setHeadphoneLevel(float decibels)
andrewm@5 495 {
andrewm@5 496 if(gAudioCodec == 0)
andrewm@5 497 return -1;
andrewm@5 498 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 499 }
andrewm@5 500
andrewm@5 501 // Mute or unmute the onboard speaker amplifiers
andrewm@5 502 // mute == 0 means unmute; otherwise mute
andrewm@5 503 // Returns 0 on success
andrewm@5 504 int BeagleRT_muteSpeakers(int mute)
andrewm@5 505 {
andrewm@5 506 int pinValue = mute ? LOW : HIGH;
andrewm@5 507
andrewm@5 508 // Check that we have an enabled pin for controlling the mute
andrewm@5 509 if(gAmplifierMutePin < 0)
andrewm@5 510 return -1;
andrewm@5 511
andrewm@5 512 return gpio_set_value(gAmplifierMutePin, pinValue);
andrewm@5 513 }
andrewm@5 514
andrewm@0 515 // Set the verbosity level
andrewm@45 516 void BeagleRT_setVerboseLevel(int level)
andrewm@0 517 {
andrewm@0 518 gRTAudioVerbose = level;
andrewm@0 519 }