c@41
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@41
|
2
|
c@41
|
3 /*
|
c@67
|
4 * SimilarityPlugin.cpp
|
c@41
|
5 *
|
c@118
|
6 * Copyright 2009 Centre for Digital Music, Queen Mary, University of London.
|
c@135
|
7
|
c@135
|
8 This program is free software; you can redistribute it and/or
|
c@135
|
9 modify it under the terms of the GNU General Public License as
|
c@135
|
10 published by the Free Software Foundation; either version 2 of the
|
c@135
|
11 License, or (at your option) any later version. See the file
|
c@135
|
12 COPYING included with this distribution for more information.
|
c@41
|
13 */
|
c@41
|
14
|
c@41
|
15 #include <iostream>
|
c@44
|
16 #include <cstdio>
|
c@41
|
17
|
c@41
|
18 #include "SimilarityPlugin.h"
|
c@42
|
19 #include "base/Pitch.h"
|
c@41
|
20 #include "dsp/mfcc/MFCC.h"
|
c@42
|
21 #include "dsp/chromagram/Chromagram.h"
|
c@41
|
22 #include "dsp/rateconversion/Decimator.h"
|
c@47
|
23 #include "dsp/rhythm/BeatSpectrum.h"
|
c@47
|
24 #include "maths/KLDivergence.h"
|
c@47
|
25 #include "maths/CosineDistance.h"
|
c@49
|
26 #include "maths/MathUtilities.h"
|
c@41
|
27
|
c@41
|
28 using std::string;
|
c@41
|
29 using std::vector;
|
c@41
|
30 using std::cerr;
|
c@41
|
31 using std::endl;
|
c@41
|
32 using std::ostringstream;
|
c@41
|
33
|
c@47
|
34 const float
|
c@47
|
35 SimilarityPlugin::m_noRhythm = 0.009;
|
c@47
|
36
|
c@47
|
37 const float
|
c@47
|
38 SimilarityPlugin::m_allRhythm = 0.991;
|
c@47
|
39
|
c@41
|
40 SimilarityPlugin::SimilarityPlugin(float inputSampleRate) :
|
c@41
|
41 Plugin(inputSampleRate),
|
c@42
|
42 m_type(TypeMFCC),
|
c@41
|
43 m_mfcc(0),
|
c@47
|
44 m_rhythmfcc(0),
|
c@42
|
45 m_chromagram(0),
|
c@41
|
46 m_decimator(0),
|
c@42
|
47 m_featureColumnSize(20),
|
c@48
|
48 m_rhythmWeighting(0.5f),
|
c@47
|
49 m_rhythmClipDuration(4.f), // seconds
|
c@47
|
50 m_rhythmClipOrigin(40.f), // seconds
|
c@47
|
51 m_rhythmClipFrameSize(0),
|
c@47
|
52 m_rhythmClipFrames(0),
|
c@47
|
53 m_rhythmColumnSize(20),
|
c@41
|
54 m_blockSize(0),
|
c@47
|
55 m_channels(0),
|
c@47
|
56 m_processRate(0),
|
c@47
|
57 m_frameNo(0),
|
c@47
|
58 m_done(false)
|
c@41
|
59 {
|
c@47
|
60 int rate = lrintf(m_inputSampleRate);
|
c@47
|
61 int internalRate = 22050;
|
c@47
|
62 int decimationFactor = rate / internalRate;
|
c@47
|
63 if (decimationFactor < 1) decimationFactor = 1;
|
c@47
|
64
|
c@47
|
65 // must be a power of two
|
c@47
|
66 while (decimationFactor & (decimationFactor - 1)) ++decimationFactor;
|
c@47
|
67
|
c@47
|
68 m_processRate = rate / decimationFactor; // may be 22050, 24000 etc
|
c@41
|
69 }
|
c@41
|
70
|
c@41
|
71 SimilarityPlugin::~SimilarityPlugin()
|
c@41
|
72 {
|
c@41
|
73 delete m_mfcc;
|
c@47
|
74 delete m_rhythmfcc;
|
c@42
|
75 delete m_chromagram;
|
c@41
|
76 delete m_decimator;
|
c@41
|
77 }
|
c@41
|
78
|
c@41
|
79 string
|
c@41
|
80 SimilarityPlugin::getIdentifier() const
|
c@41
|
81 {
|
c@41
|
82 return "qm-similarity";
|
c@41
|
83 }
|
c@41
|
84
|
c@41
|
85 string
|
c@41
|
86 SimilarityPlugin::getName() const
|
c@41
|
87 {
|
c@41
|
88 return "Similarity";
|
c@41
|
89 }
|
c@41
|
90
|
c@41
|
91 string
|
c@41
|
92 SimilarityPlugin::getDescription() const
|
c@41
|
93 {
|
c@42
|
94 return "Return a distance matrix for similarity between the input audio channels";
|
c@41
|
95 }
|
c@41
|
96
|
c@41
|
97 string
|
c@41
|
98 SimilarityPlugin::getMaker() const
|
c@41
|
99 {
|
c@50
|
100 return "Queen Mary, University of London";
|
c@41
|
101 }
|
c@41
|
102
|
c@41
|
103 int
|
c@41
|
104 SimilarityPlugin::getPluginVersion() const
|
c@41
|
105 {
|
c@41
|
106 return 1;
|
c@41
|
107 }
|
c@41
|
108
|
c@41
|
109 string
|
c@41
|
110 SimilarityPlugin::getCopyright() const
|
c@41
|
111 {
|
c@118
|
112 return "Plugin by Mark Levy, Kurt Jacobson and Chris Cannam. Copyright (c) 2009 QMUL - All Rights Reserved";
|
c@41
|
113 }
|
c@41
|
114
|
c@41
|
115 size_t
|
c@41
|
116 SimilarityPlugin::getMinChannelCount() const
|
c@41
|
117 {
|
c@43
|
118 return 1;
|
c@41
|
119 }
|
c@41
|
120
|
c@41
|
121 size_t
|
c@41
|
122 SimilarityPlugin::getMaxChannelCount() const
|
c@41
|
123 {
|
c@41
|
124 return 1024;
|
c@41
|
125 }
|
c@41
|
126
|
c@41
|
127 int
|
c@41
|
128 SimilarityPlugin::getDecimationFactor() const
|
c@41
|
129 {
|
c@41
|
130 int rate = lrintf(m_inputSampleRate);
|
c@47
|
131 return rate / m_processRate;
|
c@41
|
132 }
|
c@41
|
133
|
c@41
|
134 size_t
|
c@41
|
135 SimilarityPlugin::getPreferredStepSize() const
|
c@41
|
136 {
|
c@42
|
137 if (m_blockSize == 0) calculateBlockSize();
|
c@47
|
138
|
c@47
|
139 // there is also an assumption to this effect in process()
|
c@47
|
140 // (referring to m_fftSize/2 instead of a literal post-decimation
|
c@47
|
141 // step size):
|
c@45
|
142 return m_blockSize/2;
|
c@41
|
143 }
|
c@41
|
144
|
c@41
|
145 size_t
|
c@41
|
146 SimilarityPlugin::getPreferredBlockSize() const
|
c@41
|
147 {
|
c@42
|
148 if (m_blockSize == 0) calculateBlockSize();
|
c@42
|
149 return m_blockSize;
|
c@42
|
150 }
|
c@42
|
151
|
c@42
|
152 void
|
c@42
|
153 SimilarityPlugin::calculateBlockSize() const
|
c@42
|
154 {
|
c@42
|
155 if (m_blockSize != 0) return;
|
c@42
|
156 int decimationFactor = getDecimationFactor();
|
c@66
|
157 m_blockSize = 2048 * decimationFactor;
|
c@41
|
158 }
|
c@41
|
159
|
c@41
|
160 SimilarityPlugin::ParameterList SimilarityPlugin::getParameterDescriptors() const
|
c@41
|
161 {
|
c@41
|
162 ParameterList list;
|
c@42
|
163
|
c@42
|
164 ParameterDescriptor desc;
|
c@42
|
165 desc.identifier = "featureType";
|
c@42
|
166 desc.name = "Feature Type";
|
c@48
|
167 desc.description = "Audio feature used for similarity measure. Timbral: use the first 20 MFCCs (19 plus C0). Chromatic: use 12 bin-per-octave chroma. Rhythmic: compare beat spectra of short regions.";
|
c@42
|
168 desc.unit = "";
|
c@42
|
169 desc.minValue = 0;
|
c@48
|
170 desc.maxValue = 4;
|
c@48
|
171 desc.defaultValue = 1;
|
c@42
|
172 desc.isQuantized = true;
|
c@42
|
173 desc.quantizeStep = 1;
|
c@48
|
174 desc.valueNames.push_back("Timbre");
|
c@48
|
175 desc.valueNames.push_back("Timbre and Rhythm");
|
c@48
|
176 desc.valueNames.push_back("Chroma");
|
c@48
|
177 desc.valueNames.push_back("Chroma and Rhythm");
|
c@48
|
178 desc.valueNames.push_back("Rhythm only");
|
c@42
|
179 list.push_back(desc);
|
c@48
|
180 /*
|
c@47
|
181 desc.identifier = "rhythmWeighting";
|
c@47
|
182 desc.name = "Influence of Rhythm";
|
c@47
|
183 desc.description = "Proportion of similarity measure made up from rhythmic similarity component, from 0 (entirely timbral or chromatic) to 100 (entirely rhythmic).";
|
c@47
|
184 desc.unit = "%";
|
c@47
|
185 desc.minValue = 0;
|
c@47
|
186 desc.maxValue = 100;
|
c@47
|
187 desc.defaultValue = 0;
|
c@48
|
188 desc.isQuantized = false;
|
c@47
|
189 desc.valueNames.clear();
|
c@47
|
190 list.push_back(desc);
|
c@48
|
191 */
|
c@41
|
192 return list;
|
c@41
|
193 }
|
c@41
|
194
|
c@41
|
195 float
|
c@41
|
196 SimilarityPlugin::getParameter(std::string param) const
|
c@41
|
197 {
|
c@42
|
198 if (param == "featureType") {
|
c@48
|
199
|
c@48
|
200 if (m_rhythmWeighting > m_allRhythm) {
|
c@48
|
201 return 4;
|
c@48
|
202 }
|
c@48
|
203
|
c@48
|
204 switch (m_type) {
|
c@48
|
205
|
c@48
|
206 case TypeMFCC:
|
c@48
|
207 if (m_rhythmWeighting < m_noRhythm) return 0;
|
c@48
|
208 else return 1;
|
c@48
|
209 break;
|
c@48
|
210
|
c@48
|
211 case TypeChroma:
|
c@48
|
212 if (m_rhythmWeighting < m_noRhythm) return 2;
|
c@48
|
213 else return 3;
|
c@48
|
214 break;
|
c@48
|
215 }
|
c@48
|
216
|
c@48
|
217 return 1;
|
c@48
|
218
|
c@48
|
219 // } else if (param == "rhythmWeighting") {
|
c@48
|
220 // return nearbyint(m_rhythmWeighting * 100.0);
|
c@42
|
221 }
|
c@42
|
222
|
c@41
|
223 std::cerr << "WARNING: SimilarityPlugin::getParameter: unknown parameter \""
|
c@41
|
224 << param << "\"" << std::endl;
|
c@41
|
225 return 0.0;
|
c@41
|
226 }
|
c@41
|
227
|
c@41
|
228 void
|
c@41
|
229 SimilarityPlugin::setParameter(std::string param, float value)
|
c@41
|
230 {
|
c@42
|
231 if (param == "featureType") {
|
c@48
|
232
|
c@42
|
233 int v = int(value + 0.1);
|
c@48
|
234
|
c@48
|
235 Type newType = m_type;
|
c@48
|
236
|
c@48
|
237 switch (v) {
|
c@48
|
238 case 0: newType = TypeMFCC; m_rhythmWeighting = 0.0f; break;
|
c@48
|
239 case 1: newType = TypeMFCC; m_rhythmWeighting = 0.5f; break;
|
c@48
|
240 case 2: newType = TypeChroma; m_rhythmWeighting = 0.0f; break;
|
c@48
|
241 case 3: newType = TypeChroma; m_rhythmWeighting = 0.5f; break;
|
c@48
|
242 case 4: newType = TypeMFCC; m_rhythmWeighting = 1.f; break;
|
c@48
|
243 }
|
c@48
|
244
|
c@48
|
245 if (newType != m_type) m_blockSize = 0;
|
c@48
|
246
|
c@48
|
247 m_type = newType;
|
c@42
|
248 return;
|
c@48
|
249
|
c@48
|
250 // } else if (param == "rhythmWeighting") {
|
c@48
|
251 // m_rhythmWeighting = value / 100;
|
c@48
|
252 // return;
|
c@42
|
253 }
|
c@42
|
254
|
c@41
|
255 std::cerr << "WARNING: SimilarityPlugin::setParameter: unknown parameter \""
|
c@41
|
256 << param << "\"" << std::endl;
|
c@41
|
257 }
|
c@41
|
258
|
c@41
|
259 SimilarityPlugin::OutputList
|
c@41
|
260 SimilarityPlugin::getOutputDescriptors() const
|
c@41
|
261 {
|
c@41
|
262 OutputList list;
|
c@41
|
263
|
c@41
|
264 OutputDescriptor similarity;
|
c@43
|
265 similarity.identifier = "distancematrix";
|
c@43
|
266 similarity.name = "Distance Matrix";
|
c@43
|
267 similarity.description = "Distance matrix for similarity metric. Smaller = more similar. Should be symmetrical.";
|
c@41
|
268 similarity.unit = "";
|
c@41
|
269 similarity.hasFixedBinCount = true;
|
c@41
|
270 similarity.binCount = m_channels;
|
c@41
|
271 similarity.hasKnownExtents = false;
|
c@41
|
272 similarity.isQuantized = false;
|
c@41
|
273 similarity.sampleType = OutputDescriptor::FixedSampleRate;
|
c@41
|
274 similarity.sampleRate = 1;
|
c@41
|
275
|
c@43
|
276 m_distanceMatrixOutput = list.size();
|
c@41
|
277 list.push_back(similarity);
|
c@41
|
278
|
c@43
|
279 OutputDescriptor simvec;
|
c@43
|
280 simvec.identifier = "distancevector";
|
c@43
|
281 simvec.name = "Distance from First Channel";
|
c@43
|
282 simvec.description = "Distance vector for similarity of each channel to the first channel. Smaller = more similar.";
|
c@43
|
283 simvec.unit = "";
|
c@43
|
284 simvec.hasFixedBinCount = true;
|
c@43
|
285 simvec.binCount = m_channels;
|
c@43
|
286 simvec.hasKnownExtents = false;
|
c@43
|
287 simvec.isQuantized = false;
|
c@43
|
288 simvec.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
289 simvec.sampleRate = 1;
|
c@43
|
290
|
c@43
|
291 m_distanceVectorOutput = list.size();
|
c@43
|
292 list.push_back(simvec);
|
c@43
|
293
|
c@44
|
294 OutputDescriptor sortvec;
|
c@44
|
295 sortvec.identifier = "sorteddistancevector";
|
c@44
|
296 sortvec.name = "Ordered Distances from First Channel";
|
c@44
|
297 sortvec.description = "Vector of the order of other channels in similarity to the first, followed by distance vector for similarity of each to the first. Smaller = more similar.";
|
c@44
|
298 sortvec.unit = "";
|
c@44
|
299 sortvec.hasFixedBinCount = true;
|
c@44
|
300 sortvec.binCount = m_channels;
|
c@44
|
301 sortvec.hasKnownExtents = false;
|
c@44
|
302 sortvec.isQuantized = false;
|
c@44
|
303 sortvec.sampleType = OutputDescriptor::FixedSampleRate;
|
c@44
|
304 sortvec.sampleRate = 1;
|
c@44
|
305
|
c@44
|
306 m_sortedVectorOutput = list.size();
|
c@44
|
307 list.push_back(sortvec);
|
c@44
|
308
|
c@41
|
309 OutputDescriptor means;
|
c@41
|
310 means.identifier = "means";
|
c@42
|
311 means.name = "Feature Means";
|
c@43
|
312 means.description = "Means of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
|
c@41
|
313 means.unit = "";
|
c@41
|
314 means.hasFixedBinCount = true;
|
c@43
|
315 means.binCount = m_featureColumnSize;
|
c@41
|
316 means.hasKnownExtents = false;
|
c@41
|
317 means.isQuantized = false;
|
c@43
|
318 means.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
319 means.sampleRate = 1;
|
c@41
|
320
|
c@43
|
321 m_meansOutput = list.size();
|
c@41
|
322 list.push_back(means);
|
c@41
|
323
|
c@41
|
324 OutputDescriptor variances;
|
c@41
|
325 variances.identifier = "variances";
|
c@42
|
326 variances.name = "Feature Variances";
|
c@43
|
327 variances.description = "Variances of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
|
c@41
|
328 variances.unit = "";
|
c@41
|
329 variances.hasFixedBinCount = true;
|
c@43
|
330 variances.binCount = m_featureColumnSize;
|
c@41
|
331 variances.hasKnownExtents = false;
|
c@41
|
332 variances.isQuantized = false;
|
c@43
|
333 variances.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
334 variances.sampleRate = 1;
|
c@41
|
335
|
c@43
|
336 m_variancesOutput = list.size();
|
c@41
|
337 list.push_back(variances);
|
c@41
|
338
|
c@47
|
339 OutputDescriptor beatspectrum;
|
c@47
|
340 beatspectrum.identifier = "beatspectrum";
|
c@47
|
341 beatspectrum.name = "Beat Spectra";
|
c@47
|
342 beatspectrum.description = "Rhythmic self-similarity vectors (beat spectra) for the input channels. Feature time (sec) corresponds to input channel. Not returned if rhythm weighting is zero.";
|
c@47
|
343 beatspectrum.unit = "";
|
c@47
|
344 if (m_rhythmClipFrames > 0) {
|
c@47
|
345 beatspectrum.hasFixedBinCount = true;
|
c@47
|
346 beatspectrum.binCount = m_rhythmClipFrames / 2;
|
c@47
|
347 } else {
|
c@47
|
348 beatspectrum.hasFixedBinCount = false;
|
c@47
|
349 }
|
c@47
|
350 beatspectrum.hasKnownExtents = false;
|
c@47
|
351 beatspectrum.isQuantized = false;
|
c@47
|
352 beatspectrum.sampleType = OutputDescriptor::FixedSampleRate;
|
c@47
|
353 beatspectrum.sampleRate = 1;
|
c@47
|
354
|
c@47
|
355 m_beatSpectraOutput = list.size();
|
c@47
|
356 list.push_back(beatspectrum);
|
c@47
|
357
|
c@41
|
358 return list;
|
c@41
|
359 }
|
c@41
|
360
|
c@68
|
361 bool
|
c@68
|
362 SimilarityPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@68
|
363 {
|
c@68
|
364 if (channels < getMinChannelCount()) return false;
|
c@68
|
365
|
c@68
|
366 // Using more than getMaxChannelCount is not actually a problem
|
c@68
|
367 // for us. Using "incorrect" step and block sizes would be fine
|
c@68
|
368 // for timbral or chroma similarity, but will break rhythmic
|
c@68
|
369 // similarity, so we'd better enforce these.
|
c@68
|
370
|
c@68
|
371 if (stepSize != getPreferredStepSize()) {
|
c@68
|
372 std::cerr << "SimilarityPlugin::initialise: supplied step size "
|
c@68
|
373 << stepSize << " differs from required step size "
|
c@68
|
374 << getPreferredStepSize() << std::endl;
|
c@68
|
375 return false;
|
c@68
|
376 }
|
c@68
|
377
|
c@68
|
378 if (blockSize != getPreferredBlockSize()) {
|
c@68
|
379 std::cerr << "SimilarityPlugin::initialise: supplied block size "
|
c@68
|
380 << blockSize << " differs from required block size "
|
c@68
|
381 << getPreferredBlockSize() << std::endl;
|
c@68
|
382 return false;
|
c@68
|
383 }
|
c@68
|
384
|
c@68
|
385 m_blockSize = blockSize;
|
c@68
|
386 m_channels = channels;
|
c@68
|
387
|
c@68
|
388 m_lastNonEmptyFrame = std::vector<int>(m_channels);
|
c@68
|
389 for (int i = 0; i < m_channels; ++i) m_lastNonEmptyFrame[i] = -1;
|
c@68
|
390
|
c@68
|
391 m_emptyFrameCount = std::vector<int>(m_channels);
|
c@68
|
392 for (int i = 0; i < m_channels; ++i) m_emptyFrameCount[i] = 0;
|
c@68
|
393
|
c@68
|
394 m_frameNo = 0;
|
c@68
|
395
|
c@68
|
396 int decimationFactor = getDecimationFactor();
|
c@68
|
397 if (decimationFactor > 1) {
|
c@68
|
398 m_decimator = new Decimator(m_blockSize, decimationFactor);
|
c@68
|
399 }
|
c@68
|
400
|
c@68
|
401 if (m_type == TypeMFCC) {
|
c@68
|
402
|
c@68
|
403 m_featureColumnSize = 20;
|
c@68
|
404
|
c@68
|
405 MFCCConfig config(m_processRate);
|
c@68
|
406 config.fftsize = 2048;
|
c@68
|
407 config.nceps = m_featureColumnSize - 1;
|
c@68
|
408 config.want_c0 = true;
|
c@68
|
409 config.logpower = 1;
|
c@68
|
410 m_mfcc = new MFCC(config);
|
c@68
|
411 m_fftSize = m_mfcc->getfftlength();
|
c@68
|
412 m_rhythmClipFrameSize = m_fftSize / 4;
|
c@68
|
413
|
c@68
|
414 // std::cerr << "MFCC FS = " << config.FS << ", FFT size = " << m_fftSize<< std::endl;
|
c@68
|
415
|
c@68
|
416 } else if (m_type == TypeChroma) {
|
c@68
|
417
|
c@68
|
418 m_featureColumnSize = 12;
|
c@68
|
419
|
c@68
|
420 // For simplicity, aim to have the chroma fft size equal to
|
c@68
|
421 // 2048, the same as the mfcc fft size (so the input block
|
c@68
|
422 // size does not depend on the feature type and we can use the
|
c@68
|
423 // same processing parameters for rhythm etc). This is also
|
c@68
|
424 // why getPreferredBlockSize can confidently return 2048 * the
|
c@68
|
425 // decimation factor.
|
c@68
|
426
|
c@68
|
427 // The fft size for a chromagram is the filterbank Q value
|
c@68
|
428 // times the sample rate, divided by the minimum frequency,
|
c@68
|
429 // rounded up to the nearest power of two.
|
c@68
|
430
|
c@68
|
431 double q = 1.0 / (pow(2.0, (1.0 / 12.0)) - 1.0);
|
c@68
|
432 double fmin = (q * m_processRate) / 2048.0;
|
c@68
|
433
|
c@68
|
434 // Round fmin up to the nearest MIDI pitch multiple of 12.
|
c@68
|
435 // So long as fmin is greater than 12 to start with, this
|
c@68
|
436 // should not change the resulting fft size.
|
c@68
|
437
|
c@68
|
438 int pmin = Pitch::getPitchForFrequency(float(fmin));
|
c@68
|
439 pmin = ((pmin / 12) + 1) * 12;
|
c@68
|
440 fmin = Pitch::getFrequencyForPitch(pmin);
|
c@68
|
441
|
c@68
|
442 float fmax = Pitch::getFrequencyForPitch(pmin + 36);
|
c@68
|
443
|
c@68
|
444 ChromaConfig config;
|
c@68
|
445 config.FS = m_processRate;
|
c@68
|
446 config.min = fmin;
|
c@68
|
447 config.max = fmax;
|
c@68
|
448 config.BPO = 12;
|
c@68
|
449 config.CQThresh = 0.0054;
|
c@68
|
450 // We don't normalise the chromagram's columns individually;
|
c@68
|
451 // we normalise the mean at the end instead
|
c@68
|
452 config.normalise = MathUtilities::NormaliseNone;
|
c@68
|
453 m_chromagram = new Chromagram(config);
|
c@68
|
454 m_fftSize = m_chromagram->getFrameSize();
|
c@68
|
455
|
c@68
|
456 if (m_fftSize != 2048) {
|
c@68
|
457 std::cerr << "WARNING: SimilarityPlugin::initialise: Internal processing FFT size " << m_fftSize << " != expected size 2048 in chroma mode" << std::endl;
|
c@68
|
458 }
|
c@68
|
459
|
c@68
|
460 // std::cerr << "fftsize = " << m_fftSize << std::endl;
|
c@68
|
461
|
c@68
|
462 m_rhythmClipFrameSize = m_fftSize / 4;
|
c@68
|
463
|
c@68
|
464 // std::cerr << "m_rhythmClipFrameSize = " << m_rhythmClipFrameSize << std::endl;
|
c@68
|
465 // std::cerr << "min = "<< config.min << ", max = " << config.max << std::endl;
|
c@68
|
466
|
c@68
|
467 } else {
|
c@68
|
468
|
c@68
|
469 std::cerr << "SimilarityPlugin::initialise: internal error: unknown type " << m_type << std::endl;
|
c@68
|
470 return false;
|
c@68
|
471 }
|
c@68
|
472
|
c@68
|
473 if (needRhythm()) {
|
c@68
|
474 m_rhythmClipFrames =
|
c@68
|
475 int(ceil((m_rhythmClipDuration * m_processRate)
|
c@68
|
476 / m_rhythmClipFrameSize));
|
c@68
|
477 // std::cerr << "SimilarityPlugin::initialise: rhythm clip requires "
|
c@68
|
478 // << m_rhythmClipFrames << " frames of size "
|
c@68
|
479 // << m_rhythmClipFrameSize << " at process rate "
|
c@68
|
480 // << m_processRate << " ( = "
|
c@68
|
481 // << (float(m_rhythmClipFrames * m_rhythmClipFrameSize) / m_processRate) << " sec )"
|
c@68
|
482 // << std::endl;
|
c@68
|
483
|
c@68
|
484 MFCCConfig config(m_processRate);
|
c@68
|
485 config.fftsize = m_rhythmClipFrameSize;
|
c@68
|
486 config.nceps = m_rhythmColumnSize - 1;
|
c@68
|
487 config.want_c0 = true;
|
c@68
|
488 config.logpower = 1;
|
c@68
|
489 config.window = RectangularWindow; // because no overlap
|
c@68
|
490 m_rhythmfcc = new MFCC(config);
|
c@68
|
491 }
|
c@68
|
492
|
c@68
|
493 for (int i = 0; i < m_channels; ++i) {
|
c@68
|
494
|
c@68
|
495 m_values.push_back(FeatureMatrix());
|
c@68
|
496
|
c@68
|
497 if (needRhythm()) {
|
c@68
|
498 m_rhythmValues.push_back(FeatureColumnQueue());
|
c@68
|
499 }
|
c@68
|
500 }
|
c@68
|
501
|
c@68
|
502 m_done = false;
|
c@68
|
503
|
c@68
|
504 return true;
|
c@68
|
505 }
|
c@68
|
506
|
c@68
|
507 void
|
c@68
|
508 SimilarityPlugin::reset()
|
c@68
|
509 {
|
c@178
|
510 for (int i = 0; i < int(m_values.size()); ++i) {
|
c@68
|
511 m_values[i].clear();
|
c@68
|
512 }
|
c@68
|
513
|
c@178
|
514 for (int i = 0; i < int(m_rhythmValues.size()); ++i) {
|
c@68
|
515 m_rhythmValues[i].clear();
|
c@68
|
516 }
|
c@68
|
517
|
c@178
|
518 for (int i = 0; i < int(m_lastNonEmptyFrame.size()); ++i) {
|
c@68
|
519 m_lastNonEmptyFrame[i] = -1;
|
c@68
|
520 }
|
c@68
|
521
|
c@178
|
522 for (int i = 0; i < int(m_emptyFrameCount.size()); ++i) {
|
c@68
|
523 m_emptyFrameCount[i] = 0;
|
c@68
|
524 }
|
c@68
|
525
|
c@68
|
526 m_done = false;
|
c@68
|
527 }
|
c@68
|
528
|
c@41
|
529 SimilarityPlugin::FeatureSet
|
c@41
|
530 SimilarityPlugin::process(const float *const *inputBuffers, Vamp::RealTime /* timestamp */)
|
c@41
|
531 {
|
c@47
|
532 if (m_done) {
|
c@47
|
533 return FeatureSet();
|
c@47
|
534 }
|
c@47
|
535
|
c@41
|
536 double *dblbuf = new double[m_blockSize];
|
c@41
|
537 double *decbuf = dblbuf;
|
c@42
|
538 if (m_decimator) decbuf = new double[m_fftSize];
|
c@42
|
539
|
c@47
|
540 double *raw = new double[std::max(m_featureColumnSize,
|
c@47
|
541 m_rhythmColumnSize)];
|
c@41
|
542
|
c@43
|
543 float threshold = 1e-10;
|
c@43
|
544
|
c@47
|
545 bool someRhythmFrameNeeded = false;
|
c@47
|
546
|
c@178
|
547 for (int c = 0; c < m_channels; ++c) {
|
c@41
|
548
|
c@43
|
549 bool empty = true;
|
c@43
|
550
|
c@41
|
551 for (int i = 0; i < m_blockSize; ++i) {
|
c@43
|
552 float val = inputBuffers[c][i];
|
c@43
|
553 if (fabs(val) > threshold) empty = false;
|
c@43
|
554 dblbuf[i] = val;
|
c@41
|
555 }
|
c@41
|
556
|
c@47
|
557 if (empty) {
|
c@47
|
558 if (needRhythm() && ((m_frameNo % 2) == 0)) {
|
c@47
|
559 for (int i = 0; i < m_fftSize / m_rhythmClipFrameSize; ++i) {
|
c@178
|
560 if (int(m_rhythmValues[c].size()) < m_rhythmClipFrames) {
|
c@47
|
561 FeatureColumn mf(m_rhythmColumnSize);
|
c@47
|
562 for (int i = 0; i < m_rhythmColumnSize; ++i) {
|
c@47
|
563 mf[i] = 0.0;
|
c@47
|
564 }
|
c@47
|
565 m_rhythmValues[c].push_back(mf);
|
c@47
|
566 }
|
c@47
|
567 }
|
c@47
|
568 }
|
c@60
|
569 m_emptyFrameCount[c]++;
|
c@47
|
570 continue;
|
c@47
|
571 }
|
c@47
|
572
|
c@44
|
573 m_lastNonEmptyFrame[c] = m_frameNo;
|
c@43
|
574
|
c@41
|
575 if (m_decimator) {
|
c@41
|
576 m_decimator->process(dblbuf, decbuf);
|
c@41
|
577 }
|
c@42
|
578
|
c@47
|
579 if (needTimbre()) {
|
c@47
|
580
|
c@66
|
581 FeatureColumn mf(m_featureColumnSize);
|
c@66
|
582
|
c@47
|
583 if (m_type == TypeMFCC) {
|
c@47
|
584 m_mfcc->process(decbuf, raw);
|
c@66
|
585 for (int i = 0; i < m_featureColumnSize; ++i) {
|
c@66
|
586 mf[i] = raw[i];
|
c@66
|
587 }
|
c@47
|
588 } else if (m_type == TypeChroma) {
|
c@66
|
589 double *chroma = m_chromagram->process(decbuf);
|
c@66
|
590 for (int i = 0; i < m_featureColumnSize; ++i) {
|
c@66
|
591 mf[i] = chroma[i];
|
c@66
|
592 }
|
c@47
|
593 }
|
c@41
|
594
|
c@47
|
595 m_values[c].push_back(mf);
|
c@44
|
596 }
|
c@41
|
597
|
c@47
|
598 // std::cerr << "needRhythm = " << needRhythm() << ", frame = " << m_frameNo << std::endl;
|
c@47
|
599
|
c@47
|
600 if (needRhythm() && ((m_frameNo % 2) == 0)) {
|
c@47
|
601
|
c@47
|
602 // The incoming frames are overlapping; we only use every
|
c@47
|
603 // other one, because we don't want the overlap (it would
|
c@47
|
604 // screw up the rhythm)
|
c@47
|
605
|
c@47
|
606 int frameOffset = 0;
|
c@47
|
607
|
c@47
|
608 while (frameOffset + m_rhythmClipFrameSize <= m_fftSize) {
|
c@47
|
609
|
c@47
|
610 bool needRhythmFrame = true;
|
c@47
|
611
|
c@178
|
612 if (int(m_rhythmValues[c].size()) >= m_rhythmClipFrames) {
|
c@47
|
613
|
c@47
|
614 needRhythmFrame = false;
|
c@47
|
615
|
c@47
|
616 // assumes hopsize = framesize/2
|
c@47
|
617 float current = m_frameNo * (m_fftSize/2) + frameOffset;
|
c@47
|
618 current = current / m_processRate;
|
c@47
|
619 if (current - m_rhythmClipDuration < m_rhythmClipOrigin) {
|
c@47
|
620 needRhythmFrame = true;
|
c@47
|
621 m_rhythmValues[c].pop_front();
|
c@47
|
622 }
|
c@47
|
623
|
c@53
|
624 // if (needRhythmFrame) {
|
c@53
|
625 // std::cerr << "at current = " <<current << " (frame = " << m_frameNo << "), have " << m_rhythmValues[c].size() << ", need rhythm = " << needRhythmFrame << std::endl;
|
c@53
|
626 // }
|
c@47
|
627
|
c@47
|
628 }
|
c@47
|
629
|
c@47
|
630 if (needRhythmFrame) {
|
c@47
|
631
|
c@47
|
632 someRhythmFrameNeeded = true;
|
c@47
|
633
|
c@47
|
634 m_rhythmfcc->process(decbuf + frameOffset, raw);
|
c@47
|
635
|
c@47
|
636 FeatureColumn mf(m_rhythmColumnSize);
|
c@47
|
637 for (int i = 0; i < m_rhythmColumnSize; ++i) {
|
c@47
|
638 mf[i] = raw[i];
|
c@47
|
639 }
|
c@47
|
640
|
c@47
|
641 m_rhythmValues[c].push_back(mf);
|
c@47
|
642 }
|
c@47
|
643
|
c@47
|
644 frameOffset += m_rhythmClipFrameSize;
|
c@47
|
645 }
|
c@47
|
646 }
|
c@47
|
647 }
|
c@47
|
648
|
c@47
|
649 if (!needTimbre() && !someRhythmFrameNeeded && ((m_frameNo % 2) == 0)) {
|
c@53
|
650 // std::cerr << "done!" << std::endl;
|
c@47
|
651 m_done = true;
|
c@41
|
652 }
|
c@41
|
653
|
c@41
|
654 if (m_decimator) delete[] decbuf;
|
c@41
|
655 delete[] dblbuf;
|
c@47
|
656 delete[] raw;
|
c@41
|
657
|
c@44
|
658 ++m_frameNo;
|
c@44
|
659
|
c@41
|
660 return FeatureSet();
|
c@41
|
661 }
|
c@41
|
662
|
c@47
|
663 SimilarityPlugin::FeatureMatrix
|
c@47
|
664 SimilarityPlugin::calculateTimbral(FeatureSet &returnFeatures)
|
c@41
|
665 {
|
c@47
|
666 FeatureMatrix m(m_channels); // means
|
c@47
|
667 FeatureMatrix v(m_channels); // variances
|
c@41
|
668
|
c@41
|
669 for (int i = 0; i < m_channels; ++i) {
|
c@41
|
670
|
c@42
|
671 FeatureColumn mean(m_featureColumnSize), variance(m_featureColumnSize);
|
c@41
|
672
|
c@42
|
673 for (int j = 0; j < m_featureColumnSize; ++j) {
|
c@41
|
674
|
c@43
|
675 mean[j] = 0.0;
|
c@43
|
676 variance[j] = 0.0;
|
c@41
|
677 int count;
|
c@41
|
678
|
c@44
|
679 // We want to take values up to, but not including, the
|
c@44
|
680 // last non-empty frame (which may be partial)
|
c@43
|
681
|
c@60
|
682 int sz = m_lastNonEmptyFrame[i] - m_emptyFrameCount[i];
|
c@44
|
683 if (sz < 0) sz = 0;
|
c@178
|
684 if (sz >= int(m_values[i].size())) {
|
c@178
|
685 sz = int(m_values[i].size())-1;
|
c@178
|
686 }
|
c@43
|
687
|
c@41
|
688 count = 0;
|
c@43
|
689 for (int k = 0; k < sz; ++k) {
|
c@42
|
690 double val = m_values[i][k][j];
|
c@130
|
691 if (ISNAN(val) || ISINF(val)) continue;
|
c@41
|
692 mean[j] += val;
|
c@41
|
693 ++count;
|
c@41
|
694 }
|
c@41
|
695 if (count > 0) mean[j] /= count;
|
c@41
|
696
|
c@41
|
697 count = 0;
|
c@43
|
698 for (int k = 0; k < sz; ++k) {
|
c@42
|
699 double val = ((m_values[i][k][j] - mean[j]) *
|
c@42
|
700 (m_values[i][k][j] - mean[j]));
|
c@130
|
701 if (ISNAN(val) || ISINF(val)) continue;
|
c@41
|
702 variance[j] += val;
|
c@41
|
703 ++count;
|
c@41
|
704 }
|
c@41
|
705 if (count > 0) variance[j] /= count;
|
c@41
|
706 }
|
c@41
|
707
|
c@41
|
708 m[i] = mean;
|
c@41
|
709 v[i] = variance;
|
c@41
|
710 }
|
c@41
|
711
|
c@47
|
712 FeatureMatrix distances(m_channels);
|
c@42
|
713
|
c@48
|
714 if (m_type == TypeMFCC) {
|
c@48
|
715
|
c@48
|
716 // "Despite the fact that MFCCs extracted from music are
|
c@48
|
717 // clearly not Gaussian, [14] showed, somewhat surprisingly,
|
c@48
|
718 // that a similarity function comparing single Gaussians
|
c@48
|
719 // modelling MFCCs for each track can perform as well as
|
c@48
|
720 // mixture models. A great advantage of using single
|
c@48
|
721 // Gaussians is that a simple closed form exists for the KL
|
c@48
|
722 // divergence." -- Mark Levy, "Lightweight measures for
|
c@48
|
723 // timbral similarity of musical audio"
|
c@48
|
724 // (http://www.elec.qmul.ac.uk/easaier/papers/mlevytimbralsimilarity.pdf)
|
c@48
|
725
|
c@48
|
726 KLDivergence kld;
|
c@48
|
727
|
c@48
|
728 for (int i = 0; i < m_channels; ++i) {
|
c@48
|
729 for (int j = 0; j < m_channels; ++j) {
|
c@48
|
730 double d = kld.distanceGaussian(m[i], v[i], m[j], v[j]);
|
c@48
|
731 distances[i].push_back(d);
|
c@48
|
732 }
|
c@48
|
733 }
|
c@48
|
734
|
c@48
|
735 } else {
|
c@48
|
736
|
c@49
|
737 // We use the KL divergence for distributions of discrete
|
c@49
|
738 // variables, as chroma are histograms already. Or at least,
|
c@49
|
739 // they will be when we've normalised them like this:
|
c@49
|
740 for (int i = 0; i < m_channels; ++i) {
|
c@49
|
741 MathUtilities::normalise(m[i], MathUtilities::NormaliseUnitSum);
|
c@49
|
742 }
|
c@48
|
743
|
c@48
|
744 KLDivergence kld;
|
c@48
|
745
|
c@48
|
746 for (int i = 0; i < m_channels; ++i) {
|
c@48
|
747 for (int j = 0; j < m_channels; ++j) {
|
c@48
|
748 double d = kld.distanceDistribution(m[i], m[j], true);
|
c@48
|
749 distances[i].push_back(d);
|
c@48
|
750 }
|
c@41
|
751 }
|
c@41
|
752 }
|
c@47
|
753
|
c@44
|
754 Feature feature;
|
c@44
|
755 feature.hasTimestamp = true;
|
c@44
|
756
|
c@44
|
757 char labelBuffer[100];
|
c@43
|
758
|
c@41
|
759 for (int i = 0; i < m_channels; ++i) {
|
c@41
|
760
|
c@41
|
761 feature.timestamp = Vamp::RealTime(i, 0);
|
c@41
|
762
|
c@44
|
763 sprintf(labelBuffer, "Means for channel %d", i+1);
|
c@44
|
764 feature.label = labelBuffer;
|
c@44
|
765
|
c@41
|
766 feature.values.clear();
|
c@42
|
767 for (int k = 0; k < m_featureColumnSize; ++k) {
|
c@41
|
768 feature.values.push_back(m[i][k]);
|
c@41
|
769 }
|
c@41
|
770
|
c@43
|
771 returnFeatures[m_meansOutput].push_back(feature);
|
c@41
|
772
|
c@44
|
773 sprintf(labelBuffer, "Variances for channel %d", i+1);
|
c@44
|
774 feature.label = labelBuffer;
|
c@44
|
775
|
c@41
|
776 feature.values.clear();
|
c@42
|
777 for (int k = 0; k < m_featureColumnSize; ++k) {
|
c@41
|
778 feature.values.push_back(v[i][k]);
|
c@41
|
779 }
|
c@41
|
780
|
c@43
|
781 returnFeatures[m_variancesOutput].push_back(feature);
|
c@47
|
782 }
|
c@47
|
783
|
c@47
|
784 return distances;
|
c@47
|
785 }
|
c@47
|
786
|
c@47
|
787 SimilarityPlugin::FeatureMatrix
|
c@47
|
788 SimilarityPlugin::calculateRhythmic(FeatureSet &returnFeatures)
|
c@47
|
789 {
|
c@47
|
790 if (!needRhythm()) return FeatureMatrix();
|
c@47
|
791
|
c@60
|
792 // std::cerr << "SimilarityPlugin::initialise: rhythm clip for channel 0 contains "
|
c@60
|
793 // << m_rhythmValues[0].size() << " frames of size "
|
c@60
|
794 // << m_rhythmClipFrameSize << " at process rate "
|
c@60
|
795 // << m_processRate << " ( = "
|
c@60
|
796 // << (float(m_rhythmValues[0].size() * m_rhythmClipFrameSize) / m_processRate) << " sec )"
|
c@60
|
797 // << std::endl;
|
c@60
|
798
|
c@47
|
799 BeatSpectrum bscalc;
|
c@47
|
800 CosineDistance cd;
|
c@47
|
801
|
c@47
|
802 // Our rhythm feature matrix is a deque of vectors for practical
|
c@47
|
803 // reasons, but BeatSpectrum::process wants a vector of vectors
|
c@47
|
804 // (which is what FeatureMatrix happens to be).
|
c@47
|
805
|
c@47
|
806 FeatureMatrixSet bsinput(m_channels);
|
c@47
|
807 for (int i = 0; i < m_channels; ++i) {
|
c@178
|
808 for (int j = 0; j < int(m_rhythmValues[i].size()); ++j) {
|
c@47
|
809 bsinput[i].push_back(m_rhythmValues[i][j]);
|
c@47
|
810 }
|
c@47
|
811 }
|
c@47
|
812
|
c@47
|
813 FeatureMatrix bs(m_channels);
|
c@47
|
814 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
815 bs[i] = bscalc.process(bsinput[i]);
|
c@47
|
816 }
|
c@47
|
817
|
c@47
|
818 FeatureMatrix distances(m_channels);
|
c@47
|
819 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
820 for (int j = 0; j < m_channels; ++j) {
|
c@47
|
821 double d = cd.distance(bs[i], bs[j]);
|
c@47
|
822 distances[i].push_back(d);
|
c@47
|
823 }
|
c@47
|
824 }
|
c@47
|
825
|
c@47
|
826 Feature feature;
|
c@47
|
827 feature.hasTimestamp = true;
|
c@47
|
828
|
c@47
|
829 char labelBuffer[100];
|
c@47
|
830
|
c@47
|
831 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
832
|
c@47
|
833 feature.timestamp = Vamp::RealTime(i, 0);
|
c@47
|
834
|
c@47
|
835 sprintf(labelBuffer, "Beat spectrum for channel %d", i+1);
|
c@47
|
836 feature.label = labelBuffer;
|
c@47
|
837
|
c@47
|
838 feature.values.clear();
|
c@178
|
839 for (int j = 0; j < int(bs[i].size()); ++j) {
|
c@47
|
840 feature.values.push_back(bs[i][j]);
|
c@47
|
841 }
|
c@47
|
842
|
c@47
|
843 returnFeatures[m_beatSpectraOutput].push_back(feature);
|
c@47
|
844 }
|
c@47
|
845
|
c@47
|
846 return distances;
|
c@47
|
847 }
|
c@47
|
848
|
c@47
|
849 double
|
c@47
|
850 SimilarityPlugin::getDistance(const FeatureMatrix &timbral,
|
c@47
|
851 const FeatureMatrix &rhythmic,
|
c@47
|
852 int i, int j)
|
c@47
|
853 {
|
c@47
|
854 double distance = 1.0;
|
c@47
|
855 if (needTimbre()) distance *= timbral[i][j];
|
c@47
|
856 if (needRhythm()) distance *= rhythmic[i][j];
|
c@47
|
857 return distance;
|
c@47
|
858 }
|
c@47
|
859
|
c@47
|
860 SimilarityPlugin::FeatureSet
|
c@47
|
861 SimilarityPlugin::getRemainingFeatures()
|
c@47
|
862 {
|
c@47
|
863 FeatureSet returnFeatures;
|
c@47
|
864
|
c@47
|
865 // We want to return a matrix of the distances between channels,
|
c@47
|
866 // but Vamp doesn't have a matrix return type so we will actually
|
c@47
|
867 // return a series of vectors
|
c@47
|
868
|
c@47
|
869 FeatureMatrix timbralDistances, rhythmicDistances;
|
c@47
|
870
|
c@47
|
871 if (needTimbre()) {
|
c@47
|
872 timbralDistances = calculateTimbral(returnFeatures);
|
c@47
|
873 }
|
c@47
|
874
|
c@47
|
875 if (needRhythm()) {
|
c@47
|
876 rhythmicDistances = calculateRhythmic(returnFeatures);
|
c@47
|
877 }
|
c@47
|
878
|
c@47
|
879 // We give all features a timestamp, otherwise hosts will tend to
|
c@47
|
880 // stamp them at the end of the file, which is annoying
|
c@47
|
881
|
c@47
|
882 Feature feature;
|
c@47
|
883 feature.hasTimestamp = true;
|
c@47
|
884
|
c@47
|
885 Feature distanceVectorFeature;
|
c@47
|
886 distanceVectorFeature.label = "Distance from first channel";
|
c@47
|
887 distanceVectorFeature.hasTimestamp = true;
|
c@47
|
888 distanceVectorFeature.timestamp = Vamp::RealTime::zeroTime;
|
c@47
|
889
|
c@47
|
890 std::map<double, int> sorted;
|
c@47
|
891
|
c@47
|
892 char labelBuffer[100];
|
c@47
|
893
|
c@47
|
894 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
895
|
c@47
|
896 feature.timestamp = Vamp::RealTime(i, 0);
|
c@41
|
897
|
c@41
|
898 feature.values.clear();
|
c@41
|
899 for (int j = 0; j < m_channels; ++j) {
|
c@47
|
900 double dist = getDistance(timbralDistances, rhythmicDistances, i, j);
|
c@47
|
901 feature.values.push_back(dist);
|
c@41
|
902 }
|
c@43
|
903
|
c@44
|
904 sprintf(labelBuffer, "Distances from channel %d", i+1);
|
c@44
|
905 feature.label = labelBuffer;
|
c@41
|
906
|
c@43
|
907 returnFeatures[m_distanceMatrixOutput].push_back(feature);
|
c@43
|
908
|
c@47
|
909 double fromFirst =
|
c@47
|
910 getDistance(timbralDistances, rhythmicDistances, 0, i);
|
c@44
|
911
|
c@47
|
912 distanceVectorFeature.values.push_back(fromFirst);
|
c@47
|
913 sorted[fromFirst] = i;
|
c@41
|
914 }
|
c@41
|
915
|
c@43
|
916 returnFeatures[m_distanceVectorOutput].push_back(distanceVectorFeature);
|
c@43
|
917
|
c@44
|
918 feature.label = "Order of channels by similarity to first channel";
|
c@44
|
919 feature.values.clear();
|
c@44
|
920 feature.timestamp = Vamp::RealTime(0, 0);
|
c@44
|
921
|
c@44
|
922 for (std::map<double, int>::iterator i = sorted.begin();
|
c@44
|
923 i != sorted.end(); ++i) {
|
c@45
|
924 feature.values.push_back(i->second + 1);
|
c@44
|
925 }
|
c@44
|
926
|
c@44
|
927 returnFeatures[m_sortedVectorOutput].push_back(feature);
|
c@44
|
928
|
c@44
|
929 feature.label = "Ordered distances of channels from first channel";
|
c@44
|
930 feature.values.clear();
|
c@44
|
931 feature.timestamp = Vamp::RealTime(1, 0);
|
c@44
|
932
|
c@44
|
933 for (std::map<double, int>::iterator i = sorted.begin();
|
c@44
|
934 i != sorted.end(); ++i) {
|
c@44
|
935 feature.values.push_back(i->first);
|
c@44
|
936 }
|
c@44
|
937
|
c@44
|
938 returnFeatures[m_sortedVectorOutput].push_back(feature);
|
c@44
|
939
|
c@41
|
940 return returnFeatures;
|
c@41
|
941 }
|