c@41
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@41
|
2
|
c@41
|
3 /*
|
c@67
|
4 * SimilarityPlugin.cpp
|
c@41
|
5 *
|
c@41
|
6 * Copyright 2008 Centre for Digital Music, Queen Mary, University of London.
|
c@41
|
7 * All rights reserved.
|
c@41
|
8 */
|
c@41
|
9
|
c@41
|
10 #include <iostream>
|
c@44
|
11 #include <cstdio>
|
c@41
|
12
|
c@41
|
13 #include "SimilarityPlugin.h"
|
c@42
|
14 #include "base/Pitch.h"
|
c@41
|
15 #include "dsp/mfcc/MFCC.h"
|
c@42
|
16 #include "dsp/chromagram/Chromagram.h"
|
c@41
|
17 #include "dsp/rateconversion/Decimator.h"
|
c@47
|
18 #include "dsp/rhythm/BeatSpectrum.h"
|
c@47
|
19 #include "maths/KLDivergence.h"
|
c@47
|
20 #include "maths/CosineDistance.h"
|
c@49
|
21 #include "maths/MathUtilities.h"
|
c@41
|
22
|
c@41
|
23 using std::string;
|
c@41
|
24 using std::vector;
|
c@41
|
25 using std::cerr;
|
c@41
|
26 using std::endl;
|
c@41
|
27 using std::ostringstream;
|
c@41
|
28
|
c@47
|
29 const float
|
c@47
|
30 SimilarityPlugin::m_noRhythm = 0.009;
|
c@47
|
31
|
c@47
|
32 const float
|
c@47
|
33 SimilarityPlugin::m_allRhythm = 0.991;
|
c@47
|
34
|
c@41
|
35 SimilarityPlugin::SimilarityPlugin(float inputSampleRate) :
|
c@41
|
36 Plugin(inputSampleRate),
|
c@42
|
37 m_type(TypeMFCC),
|
c@41
|
38 m_mfcc(0),
|
c@47
|
39 m_rhythmfcc(0),
|
c@42
|
40 m_chromagram(0),
|
c@41
|
41 m_decimator(0),
|
c@42
|
42 m_featureColumnSize(20),
|
c@48
|
43 m_rhythmWeighting(0.5f),
|
c@47
|
44 m_rhythmClipDuration(4.f), // seconds
|
c@47
|
45 m_rhythmClipOrigin(40.f), // seconds
|
c@47
|
46 m_rhythmClipFrameSize(0),
|
c@47
|
47 m_rhythmClipFrames(0),
|
c@47
|
48 m_rhythmColumnSize(20),
|
c@41
|
49 m_blockSize(0),
|
c@47
|
50 m_channels(0),
|
c@47
|
51 m_processRate(0),
|
c@47
|
52 m_frameNo(0),
|
c@47
|
53 m_done(false)
|
c@41
|
54 {
|
c@47
|
55 int rate = lrintf(m_inputSampleRate);
|
c@47
|
56 int internalRate = 22050;
|
c@47
|
57 int decimationFactor = rate / internalRate;
|
c@47
|
58 if (decimationFactor < 1) decimationFactor = 1;
|
c@47
|
59
|
c@47
|
60 // must be a power of two
|
c@47
|
61 while (decimationFactor & (decimationFactor - 1)) ++decimationFactor;
|
c@47
|
62
|
c@47
|
63 m_processRate = rate / decimationFactor; // may be 22050, 24000 etc
|
c@41
|
64 }
|
c@41
|
65
|
c@41
|
66 SimilarityPlugin::~SimilarityPlugin()
|
c@41
|
67 {
|
c@41
|
68 delete m_mfcc;
|
c@47
|
69 delete m_rhythmfcc;
|
c@42
|
70 delete m_chromagram;
|
c@41
|
71 delete m_decimator;
|
c@41
|
72 }
|
c@41
|
73
|
c@41
|
74 string
|
c@41
|
75 SimilarityPlugin::getIdentifier() const
|
c@41
|
76 {
|
c@41
|
77 return "qm-similarity";
|
c@41
|
78 }
|
c@41
|
79
|
c@41
|
80 string
|
c@41
|
81 SimilarityPlugin::getName() const
|
c@41
|
82 {
|
c@41
|
83 return "Similarity";
|
c@41
|
84 }
|
c@41
|
85
|
c@41
|
86 string
|
c@41
|
87 SimilarityPlugin::getDescription() const
|
c@41
|
88 {
|
c@42
|
89 return "Return a distance matrix for similarity between the input audio channels";
|
c@41
|
90 }
|
c@41
|
91
|
c@41
|
92 string
|
c@41
|
93 SimilarityPlugin::getMaker() const
|
c@41
|
94 {
|
c@50
|
95 return "Queen Mary, University of London";
|
c@41
|
96 }
|
c@41
|
97
|
c@41
|
98 int
|
c@41
|
99 SimilarityPlugin::getPluginVersion() const
|
c@41
|
100 {
|
c@41
|
101 return 1;
|
c@41
|
102 }
|
c@41
|
103
|
c@41
|
104 string
|
c@41
|
105 SimilarityPlugin::getCopyright() const
|
c@41
|
106 {
|
c@50
|
107 return "Plugin by Mark Levy, Kurt Jacobson and Chris Cannam. Copyright (c) 2008 QMUL - All Rights Reserved";
|
c@41
|
108 }
|
c@41
|
109
|
c@41
|
110 size_t
|
c@41
|
111 SimilarityPlugin::getMinChannelCount() const
|
c@41
|
112 {
|
c@43
|
113 return 1;
|
c@41
|
114 }
|
c@41
|
115
|
c@41
|
116 size_t
|
c@41
|
117 SimilarityPlugin::getMaxChannelCount() const
|
c@41
|
118 {
|
c@41
|
119 return 1024;
|
c@41
|
120 }
|
c@41
|
121
|
c@41
|
122 bool
|
c@41
|
123 SimilarityPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@41
|
124 {
|
c@52
|
125 if (channels < getMinChannelCount()) return false;
|
c@52
|
126
|
c@52
|
127 // Using more than getMaxChannelCount is not actually a problem
|
c@52
|
128 // for us. Using "incorrect" step and block sizes would be fine
|
c@52
|
129 // for timbral or chroma similarity, but will break rhythmic
|
c@52
|
130 // similarity, so we'd better enforce these.
|
c@41
|
131
|
c@41
|
132 if (stepSize != getPreferredStepSize()) {
|
c@41
|
133 std::cerr << "SimilarityPlugin::initialise: supplied step size "
|
c@41
|
134 << stepSize << " differs from required step size "
|
c@41
|
135 << getPreferredStepSize() << std::endl;
|
c@41
|
136 return false;
|
c@41
|
137 }
|
c@41
|
138
|
c@41
|
139 if (blockSize != getPreferredBlockSize()) {
|
c@41
|
140 std::cerr << "SimilarityPlugin::initialise: supplied block size "
|
c@41
|
141 << blockSize << " differs from required block size "
|
c@41
|
142 << getPreferredBlockSize() << std::endl;
|
c@41
|
143 return false;
|
c@41
|
144 }
|
c@41
|
145
|
c@41
|
146 m_blockSize = blockSize;
|
c@41
|
147 m_channels = channels;
|
c@41
|
148
|
c@44
|
149 m_lastNonEmptyFrame = std::vector<int>(m_channels);
|
c@44
|
150 for (int i = 0; i < m_channels; ++i) m_lastNonEmptyFrame[i] = -1;
|
c@60
|
151
|
c@60
|
152 m_emptyFrameCount = std::vector<int>(m_channels);
|
c@60
|
153 for (int i = 0; i < m_channels; ++i) m_emptyFrameCount[i] = 0;
|
c@60
|
154
|
c@44
|
155 m_frameNo = 0;
|
c@44
|
156
|
c@41
|
157 int decimationFactor = getDecimationFactor();
|
c@41
|
158 if (decimationFactor > 1) {
|
c@42
|
159 m_decimator = new Decimator(m_blockSize, decimationFactor);
|
c@41
|
160 }
|
c@41
|
161
|
c@42
|
162 if (m_type == TypeMFCC) {
|
c@42
|
163
|
c@42
|
164 m_featureColumnSize = 20;
|
c@42
|
165
|
c@47
|
166 MFCCConfig config(m_processRate);
|
c@42
|
167 config.fftsize = 2048;
|
c@42
|
168 config.nceps = m_featureColumnSize - 1;
|
c@42
|
169 config.want_c0 = true;
|
c@45
|
170 config.logpower = 1;
|
c@42
|
171 m_mfcc = new MFCC(config);
|
c@42
|
172 m_fftSize = m_mfcc->getfftlength();
|
c@47
|
173 m_rhythmClipFrameSize = m_fftSize / 4;
|
c@42
|
174
|
c@53
|
175 // std::cerr << "MFCC FS = " << config.FS << ", FFT size = " << m_fftSize<< std::endl;
|
c@43
|
176
|
c@42
|
177 } else if (m_type == TypeChroma) {
|
c@42
|
178
|
c@42
|
179 m_featureColumnSize = 12;
|
c@42
|
180
|
c@66
|
181 // For simplicity, aim to have the chroma fft size equal to
|
c@66
|
182 // 2048, the same as the mfcc fft size (so the input block
|
c@66
|
183 // size does not depend on the feature type and we can use the
|
c@66
|
184 // same processing parameters for rhythm etc). This is also
|
c@66
|
185 // why getPreferredBlockSize can confidently return 2048 * the
|
c@66
|
186 // decimation factor.
|
c@66
|
187
|
c@66
|
188 // The fft size for a chromagram is the filterbank Q value
|
c@66
|
189 // times the sample rate, divided by the minimum frequency,
|
c@66
|
190 // rounded up to the nearest power of two.
|
c@66
|
191
|
c@66
|
192 double q = 1.0 / (pow(2.0, (1.0 / 12.0)) - 1.0);
|
c@66
|
193 double fmin = (q * m_processRate) / 2048.0;
|
c@66
|
194 // std::cerr << "chroma fmin = " << fmin;
|
c@66
|
195
|
c@66
|
196 // Round fmin up to the nearest MIDI pitch multiple of 12.
|
c@66
|
197 // So long as fmin is greater than 12 to start with, this
|
c@66
|
198 // should not change the resulting fft size.
|
c@66
|
199
|
c@66
|
200 int pmin = Pitch::getPitchForFrequency(float(fmin));
|
c@66
|
201 pmin = ((pmin / 12) + 1) * 12;
|
c@66
|
202 fmin = Pitch::getFrequencyForPitch(pmin);
|
c@66
|
203 // std::cerr << " -> " << fmin << " for pitch " << pmin << std::endl;
|
c@66
|
204
|
c@66
|
205 float fmax = Pitch::getFrequencyForPitch(pmin + 36);
|
c@66
|
206 // std::cerr << "fmax = " << fmax << " for pitch " << (pmin+36) << std::endl;
|
c@66
|
207
|
c@66
|
208
|
c@42
|
209 ChromaConfig config;
|
c@47
|
210 config.FS = m_processRate;
|
c@66
|
211 config.min = fmin;
|
c@66
|
212 config.max = fmax;
|
c@66
|
213 // config.min = Pitch::getFrequencyForPitch(24, 0, 440);
|
c@66
|
214 // config.max = Pitch::getFrequencyForPitch(96, 0, 440);
|
c@42
|
215 config.BPO = 12;
|
c@42
|
216 config.CQThresh = 0.0054;
|
c@49
|
217 // We don't normalise the chromagram's columns individually;
|
c@49
|
218 // we normalise the mean at the end instead
|
c@49
|
219 config.normalise = MathUtilities::NormaliseNone;
|
c@42
|
220 m_chromagram = new Chromagram(config);
|
c@42
|
221 m_fftSize = m_chromagram->getFrameSize();
|
c@66
|
222
|
c@66
|
223 if (m_fftSize != 2048) {
|
c@66
|
224 std::cerr << "WARNING: SimilarityPlugin::initialise: Internal processing FFT size " << m_fftSize << " != expected size 2048 in chroma mode" << std::endl;
|
c@66
|
225 }
|
c@42
|
226
|
c@67
|
227 std::cerr << "fftsize = " << m_fftSize << std::endl;
|
c@47
|
228
|
c@66
|
229 m_rhythmClipFrameSize = m_fftSize / 4;
|
c@66
|
230
|
c@66
|
231 // m_rhythmClipFrameSize = m_fftSize / 16;
|
c@66
|
232 // while (m_rhythmClipFrameSize < 512) m_rhythmClipFrameSize *= 2;
|
c@66
|
233
|
c@67
|
234 std::cerr << "m_rhythmClipFrameSize = " << m_rhythmClipFrameSize << std::endl;
|
c@47
|
235
|
c@67
|
236 std::cerr << "min = "<< config.min << ", max = " << config.max << std::endl;
|
c@42
|
237
|
c@42
|
238 } else {
|
c@42
|
239
|
c@42
|
240 std::cerr << "SimilarityPlugin::initialise: internal error: unknown type " << m_type << std::endl;
|
c@42
|
241 return false;
|
c@42
|
242 }
|
c@41
|
243
|
c@47
|
244 if (needRhythm()) {
|
c@47
|
245 m_rhythmClipFrames =
|
c@47
|
246 int(ceil((m_rhythmClipDuration * m_processRate)
|
c@47
|
247 / m_rhythmClipFrameSize));
|
c@67
|
248 std::cerr << "SimilarityPlugin::initialise: rhythm clip requires "
|
c@67
|
249 << m_rhythmClipFrames << " frames of size "
|
c@67
|
250 << m_rhythmClipFrameSize << " at process rate "
|
c@67
|
251 << m_processRate << " ( = "
|
c@67
|
252 << (float(m_rhythmClipFrames * m_rhythmClipFrameSize) / m_processRate) << " sec )"
|
c@67
|
253 << std::endl;
|
c@47
|
254
|
c@47
|
255 MFCCConfig config(m_processRate);
|
c@47
|
256 config.fftsize = m_rhythmClipFrameSize;
|
c@67
|
257 config.nceps = m_rhythmColumnSize - 1;
|
c@47
|
258 config.want_c0 = true;
|
c@47
|
259 config.logpower = 1;
|
c@47
|
260 config.window = RectangularWindow; // because no overlap
|
c@47
|
261 m_rhythmfcc = new MFCC(config);
|
c@47
|
262 }
|
c@47
|
263
|
c@41
|
264 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
265
|
c@42
|
266 m_values.push_back(FeatureMatrix());
|
c@47
|
267
|
c@47
|
268 if (needRhythm()) {
|
c@47
|
269 m_rhythmValues.push_back(FeatureColumnQueue());
|
c@47
|
270 }
|
c@41
|
271 }
|
c@41
|
272
|
c@47
|
273 m_done = false;
|
c@47
|
274
|
c@41
|
275 return true;
|
c@41
|
276 }
|
c@41
|
277
|
c@41
|
278 void
|
c@41
|
279 SimilarityPlugin::reset()
|
c@41
|
280 {
|
c@57
|
281 for (int i = 0; i < m_values.size(); ++i) {
|
c@57
|
282 m_values[i].clear();
|
c@57
|
283 }
|
c@57
|
284
|
c@57
|
285 for (int i = 0; i < m_rhythmValues.size(); ++i) {
|
c@57
|
286 m_rhythmValues[i].clear();
|
c@57
|
287 }
|
c@57
|
288
|
c@60
|
289 for (int i = 0; i < m_lastNonEmptyFrame.size(); ++i) {
|
c@60
|
290 m_lastNonEmptyFrame[i] = -1;
|
c@60
|
291 }
|
c@60
|
292
|
c@60
|
293 for (int i = 0; i < m_emptyFrameCount.size(); ++i) {
|
c@60
|
294 m_emptyFrameCount[i] = 0;
|
c@60
|
295 }
|
c@60
|
296
|
c@47
|
297 m_done = false;
|
c@41
|
298 }
|
c@41
|
299
|
c@41
|
300 int
|
c@41
|
301 SimilarityPlugin::getDecimationFactor() const
|
c@41
|
302 {
|
c@41
|
303 int rate = lrintf(m_inputSampleRate);
|
c@47
|
304 return rate / m_processRate;
|
c@41
|
305 }
|
c@41
|
306
|
c@41
|
307 size_t
|
c@41
|
308 SimilarityPlugin::getPreferredStepSize() const
|
c@41
|
309 {
|
c@42
|
310 if (m_blockSize == 0) calculateBlockSize();
|
c@47
|
311
|
c@47
|
312 // there is also an assumption to this effect in process()
|
c@47
|
313 // (referring to m_fftSize/2 instead of a literal post-decimation
|
c@47
|
314 // step size):
|
c@45
|
315 return m_blockSize/2;
|
c@41
|
316 }
|
c@41
|
317
|
c@41
|
318 size_t
|
c@41
|
319 SimilarityPlugin::getPreferredBlockSize() const
|
c@41
|
320 {
|
c@42
|
321 if (m_blockSize == 0) calculateBlockSize();
|
c@42
|
322 return m_blockSize;
|
c@42
|
323 }
|
c@42
|
324
|
c@42
|
325 void
|
c@42
|
326 SimilarityPlugin::calculateBlockSize() const
|
c@42
|
327 {
|
c@42
|
328 if (m_blockSize != 0) return;
|
c@42
|
329 int decimationFactor = getDecimationFactor();
|
c@66
|
330 m_blockSize = 2048 * decimationFactor;
|
c@41
|
331 }
|
c@41
|
332
|
c@41
|
333 SimilarityPlugin::ParameterList SimilarityPlugin::getParameterDescriptors() const
|
c@41
|
334 {
|
c@41
|
335 ParameterList list;
|
c@42
|
336
|
c@42
|
337 ParameterDescriptor desc;
|
c@42
|
338 desc.identifier = "featureType";
|
c@42
|
339 desc.name = "Feature Type";
|
c@48
|
340 desc.description = "Audio feature used for similarity measure. Timbral: use the first 20 MFCCs (19 plus C0). Chromatic: use 12 bin-per-octave chroma. Rhythmic: compare beat spectra of short regions.";
|
c@42
|
341 desc.unit = "";
|
c@42
|
342 desc.minValue = 0;
|
c@48
|
343 desc.maxValue = 4;
|
c@48
|
344 desc.defaultValue = 1;
|
c@42
|
345 desc.isQuantized = true;
|
c@42
|
346 desc.quantizeStep = 1;
|
c@48
|
347 desc.valueNames.push_back("Timbre");
|
c@48
|
348 desc.valueNames.push_back("Timbre and Rhythm");
|
c@48
|
349 desc.valueNames.push_back("Chroma");
|
c@48
|
350 desc.valueNames.push_back("Chroma and Rhythm");
|
c@48
|
351 desc.valueNames.push_back("Rhythm only");
|
c@42
|
352 list.push_back(desc);
|
c@48
|
353 /*
|
c@47
|
354 desc.identifier = "rhythmWeighting";
|
c@47
|
355 desc.name = "Influence of Rhythm";
|
c@47
|
356 desc.description = "Proportion of similarity measure made up from rhythmic similarity component, from 0 (entirely timbral or chromatic) to 100 (entirely rhythmic).";
|
c@47
|
357 desc.unit = "%";
|
c@47
|
358 desc.minValue = 0;
|
c@47
|
359 desc.maxValue = 100;
|
c@47
|
360 desc.defaultValue = 0;
|
c@48
|
361 desc.isQuantized = false;
|
c@47
|
362 desc.valueNames.clear();
|
c@47
|
363 list.push_back(desc);
|
c@48
|
364 */
|
c@41
|
365 return list;
|
c@41
|
366 }
|
c@41
|
367
|
c@41
|
368 float
|
c@41
|
369 SimilarityPlugin::getParameter(std::string param) const
|
c@41
|
370 {
|
c@42
|
371 if (param == "featureType") {
|
c@48
|
372
|
c@48
|
373 if (m_rhythmWeighting > m_allRhythm) {
|
c@48
|
374 return 4;
|
c@48
|
375 }
|
c@48
|
376
|
c@48
|
377 switch (m_type) {
|
c@48
|
378
|
c@48
|
379 case TypeMFCC:
|
c@48
|
380 if (m_rhythmWeighting < m_noRhythm) return 0;
|
c@48
|
381 else return 1;
|
c@48
|
382 break;
|
c@48
|
383
|
c@48
|
384 case TypeChroma:
|
c@48
|
385 if (m_rhythmWeighting < m_noRhythm) return 2;
|
c@48
|
386 else return 3;
|
c@48
|
387 break;
|
c@48
|
388 }
|
c@48
|
389
|
c@48
|
390 return 1;
|
c@48
|
391
|
c@48
|
392 // } else if (param == "rhythmWeighting") {
|
c@48
|
393 // return nearbyint(m_rhythmWeighting * 100.0);
|
c@42
|
394 }
|
c@42
|
395
|
c@41
|
396 std::cerr << "WARNING: SimilarityPlugin::getParameter: unknown parameter \""
|
c@41
|
397 << param << "\"" << std::endl;
|
c@41
|
398 return 0.0;
|
c@41
|
399 }
|
c@41
|
400
|
c@41
|
401 void
|
c@41
|
402 SimilarityPlugin::setParameter(std::string param, float value)
|
c@41
|
403 {
|
c@42
|
404 if (param == "featureType") {
|
c@48
|
405
|
c@42
|
406 int v = int(value + 0.1);
|
c@48
|
407
|
c@48
|
408 Type newType = m_type;
|
c@48
|
409
|
c@48
|
410 switch (v) {
|
c@48
|
411 case 0: newType = TypeMFCC; m_rhythmWeighting = 0.0f; break;
|
c@48
|
412 case 1: newType = TypeMFCC; m_rhythmWeighting = 0.5f; break;
|
c@48
|
413 case 2: newType = TypeChroma; m_rhythmWeighting = 0.0f; break;
|
c@48
|
414 case 3: newType = TypeChroma; m_rhythmWeighting = 0.5f; break;
|
c@48
|
415 case 4: newType = TypeMFCC; m_rhythmWeighting = 1.f; break;
|
c@48
|
416 }
|
c@48
|
417
|
c@48
|
418 if (newType != m_type) m_blockSize = 0;
|
c@48
|
419
|
c@48
|
420 m_type = newType;
|
c@42
|
421 return;
|
c@48
|
422
|
c@48
|
423 // } else if (param == "rhythmWeighting") {
|
c@48
|
424 // m_rhythmWeighting = value / 100;
|
c@48
|
425 // return;
|
c@42
|
426 }
|
c@42
|
427
|
c@41
|
428 std::cerr << "WARNING: SimilarityPlugin::setParameter: unknown parameter \""
|
c@41
|
429 << param << "\"" << std::endl;
|
c@41
|
430 }
|
c@41
|
431
|
c@41
|
432 SimilarityPlugin::OutputList
|
c@41
|
433 SimilarityPlugin::getOutputDescriptors() const
|
c@41
|
434 {
|
c@41
|
435 OutputList list;
|
c@41
|
436
|
c@41
|
437 OutputDescriptor similarity;
|
c@43
|
438 similarity.identifier = "distancematrix";
|
c@43
|
439 similarity.name = "Distance Matrix";
|
c@43
|
440 similarity.description = "Distance matrix for similarity metric. Smaller = more similar. Should be symmetrical.";
|
c@41
|
441 similarity.unit = "";
|
c@41
|
442 similarity.hasFixedBinCount = true;
|
c@41
|
443 similarity.binCount = m_channels;
|
c@41
|
444 similarity.hasKnownExtents = false;
|
c@41
|
445 similarity.isQuantized = false;
|
c@41
|
446 similarity.sampleType = OutputDescriptor::FixedSampleRate;
|
c@41
|
447 similarity.sampleRate = 1;
|
c@41
|
448
|
c@43
|
449 m_distanceMatrixOutput = list.size();
|
c@41
|
450 list.push_back(similarity);
|
c@41
|
451
|
c@43
|
452 OutputDescriptor simvec;
|
c@43
|
453 simvec.identifier = "distancevector";
|
c@43
|
454 simvec.name = "Distance from First Channel";
|
c@43
|
455 simvec.description = "Distance vector for similarity of each channel to the first channel. Smaller = more similar.";
|
c@43
|
456 simvec.unit = "";
|
c@43
|
457 simvec.hasFixedBinCount = true;
|
c@43
|
458 simvec.binCount = m_channels;
|
c@43
|
459 simvec.hasKnownExtents = false;
|
c@43
|
460 simvec.isQuantized = false;
|
c@43
|
461 simvec.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
462 simvec.sampleRate = 1;
|
c@43
|
463
|
c@43
|
464 m_distanceVectorOutput = list.size();
|
c@43
|
465 list.push_back(simvec);
|
c@43
|
466
|
c@44
|
467 OutputDescriptor sortvec;
|
c@44
|
468 sortvec.identifier = "sorteddistancevector";
|
c@44
|
469 sortvec.name = "Ordered Distances from First Channel";
|
c@44
|
470 sortvec.description = "Vector of the order of other channels in similarity to the first, followed by distance vector for similarity of each to the first. Smaller = more similar.";
|
c@44
|
471 sortvec.unit = "";
|
c@44
|
472 sortvec.hasFixedBinCount = true;
|
c@44
|
473 sortvec.binCount = m_channels;
|
c@44
|
474 sortvec.hasKnownExtents = false;
|
c@44
|
475 sortvec.isQuantized = false;
|
c@44
|
476 sortvec.sampleType = OutputDescriptor::FixedSampleRate;
|
c@44
|
477 sortvec.sampleRate = 1;
|
c@44
|
478
|
c@44
|
479 m_sortedVectorOutput = list.size();
|
c@44
|
480 list.push_back(sortvec);
|
c@44
|
481
|
c@41
|
482 OutputDescriptor means;
|
c@41
|
483 means.identifier = "means";
|
c@42
|
484 means.name = "Feature Means";
|
c@43
|
485 means.description = "Means of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
|
c@41
|
486 means.unit = "";
|
c@41
|
487 means.hasFixedBinCount = true;
|
c@43
|
488 means.binCount = m_featureColumnSize;
|
c@41
|
489 means.hasKnownExtents = false;
|
c@41
|
490 means.isQuantized = false;
|
c@43
|
491 means.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
492 means.sampleRate = 1;
|
c@41
|
493
|
c@43
|
494 m_meansOutput = list.size();
|
c@41
|
495 list.push_back(means);
|
c@41
|
496
|
c@41
|
497 OutputDescriptor variances;
|
c@41
|
498 variances.identifier = "variances";
|
c@42
|
499 variances.name = "Feature Variances";
|
c@43
|
500 variances.description = "Variances of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
|
c@41
|
501 variances.unit = "";
|
c@41
|
502 variances.hasFixedBinCount = true;
|
c@43
|
503 variances.binCount = m_featureColumnSize;
|
c@41
|
504 variances.hasKnownExtents = false;
|
c@41
|
505 variances.isQuantized = false;
|
c@43
|
506 variances.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
507 variances.sampleRate = 1;
|
c@41
|
508
|
c@43
|
509 m_variancesOutput = list.size();
|
c@41
|
510 list.push_back(variances);
|
c@41
|
511
|
c@47
|
512 OutputDescriptor beatspectrum;
|
c@47
|
513 beatspectrum.identifier = "beatspectrum";
|
c@47
|
514 beatspectrum.name = "Beat Spectra";
|
c@47
|
515 beatspectrum.description = "Rhythmic self-similarity vectors (beat spectra) for the input channels. Feature time (sec) corresponds to input channel. Not returned if rhythm weighting is zero.";
|
c@47
|
516 beatspectrum.unit = "";
|
c@47
|
517 if (m_rhythmClipFrames > 0) {
|
c@47
|
518 beatspectrum.hasFixedBinCount = true;
|
c@47
|
519 beatspectrum.binCount = m_rhythmClipFrames / 2;
|
c@47
|
520 } else {
|
c@47
|
521 beatspectrum.hasFixedBinCount = false;
|
c@47
|
522 }
|
c@47
|
523 beatspectrum.hasKnownExtents = false;
|
c@47
|
524 beatspectrum.isQuantized = false;
|
c@47
|
525 beatspectrum.sampleType = OutputDescriptor::FixedSampleRate;
|
c@47
|
526 beatspectrum.sampleRate = 1;
|
c@47
|
527
|
c@47
|
528 m_beatSpectraOutput = list.size();
|
c@47
|
529 list.push_back(beatspectrum);
|
c@47
|
530
|
c@41
|
531 return list;
|
c@41
|
532 }
|
c@41
|
533
|
c@41
|
534 SimilarityPlugin::FeatureSet
|
c@41
|
535 SimilarityPlugin::process(const float *const *inputBuffers, Vamp::RealTime /* timestamp */)
|
c@41
|
536 {
|
c@47
|
537 if (m_done) {
|
c@47
|
538 return FeatureSet();
|
c@47
|
539 }
|
c@47
|
540
|
c@41
|
541 double *dblbuf = new double[m_blockSize];
|
c@41
|
542 double *decbuf = dblbuf;
|
c@42
|
543 if (m_decimator) decbuf = new double[m_fftSize];
|
c@42
|
544
|
c@47
|
545 double *raw = new double[std::max(m_featureColumnSize,
|
c@47
|
546 m_rhythmColumnSize)];
|
c@41
|
547
|
c@43
|
548 float threshold = 1e-10;
|
c@43
|
549
|
c@47
|
550 bool someRhythmFrameNeeded = false;
|
c@47
|
551
|
c@41
|
552 for (size_t c = 0; c < m_channels; ++c) {
|
c@41
|
553
|
c@43
|
554 bool empty = true;
|
c@43
|
555
|
c@41
|
556 for (int i = 0; i < m_blockSize; ++i) {
|
c@43
|
557 float val = inputBuffers[c][i];
|
c@43
|
558 if (fabs(val) > threshold) empty = false;
|
c@43
|
559 dblbuf[i] = val;
|
c@41
|
560 }
|
c@41
|
561
|
c@47
|
562 if (empty) {
|
c@47
|
563 if (needRhythm() && ((m_frameNo % 2) == 0)) {
|
c@47
|
564 for (int i = 0; i < m_fftSize / m_rhythmClipFrameSize; ++i) {
|
c@47
|
565 if (m_rhythmValues[c].size() < m_rhythmClipFrames) {
|
c@47
|
566 FeatureColumn mf(m_rhythmColumnSize);
|
c@47
|
567 for (int i = 0; i < m_rhythmColumnSize; ++i) {
|
c@47
|
568 mf[i] = 0.0;
|
c@47
|
569 }
|
c@47
|
570 m_rhythmValues[c].push_back(mf);
|
c@47
|
571 }
|
c@47
|
572 }
|
c@47
|
573 }
|
c@60
|
574 m_emptyFrameCount[c]++;
|
c@47
|
575 continue;
|
c@47
|
576 }
|
c@47
|
577
|
c@44
|
578 m_lastNonEmptyFrame[c] = m_frameNo;
|
c@43
|
579
|
c@41
|
580 if (m_decimator) {
|
c@41
|
581 m_decimator->process(dblbuf, decbuf);
|
c@41
|
582 }
|
c@42
|
583
|
c@47
|
584 if (needTimbre()) {
|
c@47
|
585
|
c@66
|
586 FeatureColumn mf(m_featureColumnSize);
|
c@66
|
587
|
c@47
|
588 if (m_type == TypeMFCC) {
|
c@47
|
589 m_mfcc->process(decbuf, raw);
|
c@66
|
590 for (int i = 0; i < m_featureColumnSize; ++i) {
|
c@66
|
591 mf[i] = raw[i];
|
c@66
|
592 }
|
c@47
|
593 } else if (m_type == TypeChroma) {
|
c@66
|
594 double *chroma = m_chromagram->process(decbuf);
|
c@66
|
595 for (int i = 0; i < m_featureColumnSize; ++i) {
|
c@66
|
596 mf[i] = chroma[i];
|
c@66
|
597 }
|
c@47
|
598 }
|
c@41
|
599
|
c@47
|
600 m_values[c].push_back(mf);
|
c@44
|
601 }
|
c@41
|
602
|
c@47
|
603 // std::cerr << "needRhythm = " << needRhythm() << ", frame = " << m_frameNo << std::endl;
|
c@47
|
604
|
c@47
|
605 if (needRhythm() && ((m_frameNo % 2) == 0)) {
|
c@47
|
606
|
c@47
|
607 // The incoming frames are overlapping; we only use every
|
c@47
|
608 // other one, because we don't want the overlap (it would
|
c@47
|
609 // screw up the rhythm)
|
c@47
|
610
|
c@47
|
611 int frameOffset = 0;
|
c@47
|
612
|
c@47
|
613 while (frameOffset + m_rhythmClipFrameSize <= m_fftSize) {
|
c@47
|
614
|
c@47
|
615 bool needRhythmFrame = true;
|
c@47
|
616
|
c@47
|
617 if (m_rhythmValues[c].size() >= m_rhythmClipFrames) {
|
c@47
|
618
|
c@47
|
619 needRhythmFrame = false;
|
c@47
|
620
|
c@47
|
621 // assumes hopsize = framesize/2
|
c@47
|
622 float current = m_frameNo * (m_fftSize/2) + frameOffset;
|
c@47
|
623 current = current / m_processRate;
|
c@47
|
624 if (current - m_rhythmClipDuration < m_rhythmClipOrigin) {
|
c@47
|
625 needRhythmFrame = true;
|
c@47
|
626 m_rhythmValues[c].pop_front();
|
c@47
|
627 }
|
c@47
|
628
|
c@53
|
629 // if (needRhythmFrame) {
|
c@53
|
630 // std::cerr << "at current = " <<current << " (frame = " << m_frameNo << "), have " << m_rhythmValues[c].size() << ", need rhythm = " << needRhythmFrame << std::endl;
|
c@53
|
631 // }
|
c@47
|
632
|
c@47
|
633 }
|
c@47
|
634
|
c@47
|
635 if (needRhythmFrame) {
|
c@47
|
636
|
c@47
|
637 someRhythmFrameNeeded = true;
|
c@47
|
638
|
c@47
|
639 m_rhythmfcc->process(decbuf + frameOffset, raw);
|
c@47
|
640
|
c@47
|
641 FeatureColumn mf(m_rhythmColumnSize);
|
c@47
|
642 for (int i = 0; i < m_rhythmColumnSize; ++i) {
|
c@47
|
643 mf[i] = raw[i];
|
c@47
|
644 }
|
c@47
|
645
|
c@47
|
646 m_rhythmValues[c].push_back(mf);
|
c@47
|
647 }
|
c@47
|
648
|
c@47
|
649 frameOffset += m_rhythmClipFrameSize;
|
c@47
|
650 }
|
c@47
|
651 }
|
c@47
|
652 }
|
c@47
|
653
|
c@47
|
654 if (!needTimbre() && !someRhythmFrameNeeded && ((m_frameNo % 2) == 0)) {
|
c@53
|
655 // std::cerr << "done!" << std::endl;
|
c@47
|
656 m_done = true;
|
c@41
|
657 }
|
c@41
|
658
|
c@41
|
659 if (m_decimator) delete[] decbuf;
|
c@41
|
660 delete[] dblbuf;
|
c@47
|
661 delete[] raw;
|
c@41
|
662
|
c@44
|
663 ++m_frameNo;
|
c@44
|
664
|
c@41
|
665 return FeatureSet();
|
c@41
|
666 }
|
c@41
|
667
|
c@47
|
668 SimilarityPlugin::FeatureMatrix
|
c@47
|
669 SimilarityPlugin::calculateTimbral(FeatureSet &returnFeatures)
|
c@41
|
670 {
|
c@47
|
671 FeatureMatrix m(m_channels); // means
|
c@47
|
672 FeatureMatrix v(m_channels); // variances
|
c@41
|
673
|
c@41
|
674 for (int i = 0; i < m_channels; ++i) {
|
c@41
|
675
|
c@42
|
676 FeatureColumn mean(m_featureColumnSize), variance(m_featureColumnSize);
|
c@41
|
677
|
c@42
|
678 for (int j = 0; j < m_featureColumnSize; ++j) {
|
c@41
|
679
|
c@43
|
680 mean[j] = 0.0;
|
c@43
|
681 variance[j] = 0.0;
|
c@41
|
682 int count;
|
c@41
|
683
|
c@44
|
684 // We want to take values up to, but not including, the
|
c@44
|
685 // last non-empty frame (which may be partial)
|
c@43
|
686
|
c@60
|
687 int sz = m_lastNonEmptyFrame[i] - m_emptyFrameCount[i];
|
c@44
|
688 if (sz < 0) sz = 0;
|
c@60
|
689 if (sz >= m_values[i].size()) sz = m_values[i].size()-1;
|
c@43
|
690
|
c@41
|
691 count = 0;
|
c@43
|
692 for (int k = 0; k < sz; ++k) {
|
c@42
|
693 double val = m_values[i][k][j];
|
c@41
|
694 if (isnan(val) || isinf(val)) continue;
|
c@41
|
695 mean[j] += val;
|
c@41
|
696 ++count;
|
c@41
|
697 }
|
c@41
|
698 if (count > 0) mean[j] /= count;
|
c@41
|
699
|
c@41
|
700 count = 0;
|
c@43
|
701 for (int k = 0; k < sz; ++k) {
|
c@42
|
702 double val = ((m_values[i][k][j] - mean[j]) *
|
c@42
|
703 (m_values[i][k][j] - mean[j]));
|
c@41
|
704 if (isnan(val) || isinf(val)) continue;
|
c@41
|
705 variance[j] += val;
|
c@41
|
706 ++count;
|
c@41
|
707 }
|
c@41
|
708 if (count > 0) variance[j] /= count;
|
c@41
|
709 }
|
c@41
|
710
|
c@41
|
711 m[i] = mean;
|
c@41
|
712 v[i] = variance;
|
c@41
|
713 }
|
c@41
|
714
|
c@47
|
715 FeatureMatrix distances(m_channels);
|
c@42
|
716
|
c@48
|
717 if (m_type == TypeMFCC) {
|
c@48
|
718
|
c@48
|
719 // "Despite the fact that MFCCs extracted from music are
|
c@48
|
720 // clearly not Gaussian, [14] showed, somewhat surprisingly,
|
c@48
|
721 // that a similarity function comparing single Gaussians
|
c@48
|
722 // modelling MFCCs for each track can perform as well as
|
c@48
|
723 // mixture models. A great advantage of using single
|
c@48
|
724 // Gaussians is that a simple closed form exists for the KL
|
c@48
|
725 // divergence." -- Mark Levy, "Lightweight measures for
|
c@48
|
726 // timbral similarity of musical audio"
|
c@48
|
727 // (http://www.elec.qmul.ac.uk/easaier/papers/mlevytimbralsimilarity.pdf)
|
c@48
|
728
|
c@48
|
729 KLDivergence kld;
|
c@48
|
730
|
c@48
|
731 for (int i = 0; i < m_channels; ++i) {
|
c@48
|
732 for (int j = 0; j < m_channels; ++j) {
|
c@48
|
733 double d = kld.distanceGaussian(m[i], v[i], m[j], v[j]);
|
c@48
|
734 distances[i].push_back(d);
|
c@48
|
735 }
|
c@48
|
736 }
|
c@48
|
737
|
c@48
|
738 } else {
|
c@48
|
739
|
c@49
|
740 // We use the KL divergence for distributions of discrete
|
c@49
|
741 // variables, as chroma are histograms already. Or at least,
|
c@49
|
742 // they will be when we've normalised them like this:
|
c@49
|
743 for (int i = 0; i < m_channels; ++i) {
|
c@49
|
744 MathUtilities::normalise(m[i], MathUtilities::NormaliseUnitSum);
|
c@49
|
745 }
|
c@48
|
746
|
c@48
|
747 KLDivergence kld;
|
c@48
|
748
|
c@48
|
749 for (int i = 0; i < m_channels; ++i) {
|
c@48
|
750 for (int j = 0; j < m_channels; ++j) {
|
c@48
|
751 double d = kld.distanceDistribution(m[i], m[j], true);
|
c@48
|
752 distances[i].push_back(d);
|
c@48
|
753 }
|
c@41
|
754 }
|
c@41
|
755 }
|
c@47
|
756
|
c@44
|
757 Feature feature;
|
c@44
|
758 feature.hasTimestamp = true;
|
c@44
|
759
|
c@44
|
760 char labelBuffer[100];
|
c@43
|
761
|
c@41
|
762 for (int i = 0; i < m_channels; ++i) {
|
c@41
|
763
|
c@41
|
764 feature.timestamp = Vamp::RealTime(i, 0);
|
c@41
|
765
|
c@44
|
766 sprintf(labelBuffer, "Means for channel %d", i+1);
|
c@44
|
767 feature.label = labelBuffer;
|
c@44
|
768
|
c@41
|
769 feature.values.clear();
|
c@42
|
770 for (int k = 0; k < m_featureColumnSize; ++k) {
|
c@41
|
771 feature.values.push_back(m[i][k]);
|
c@41
|
772 }
|
c@41
|
773
|
c@43
|
774 returnFeatures[m_meansOutput].push_back(feature);
|
c@41
|
775
|
c@44
|
776 sprintf(labelBuffer, "Variances for channel %d", i+1);
|
c@44
|
777 feature.label = labelBuffer;
|
c@44
|
778
|
c@41
|
779 feature.values.clear();
|
c@42
|
780 for (int k = 0; k < m_featureColumnSize; ++k) {
|
c@41
|
781 feature.values.push_back(v[i][k]);
|
c@41
|
782 }
|
c@41
|
783
|
c@43
|
784 returnFeatures[m_variancesOutput].push_back(feature);
|
c@47
|
785 }
|
c@47
|
786
|
c@47
|
787 return distances;
|
c@47
|
788 }
|
c@47
|
789
|
c@47
|
790 SimilarityPlugin::FeatureMatrix
|
c@47
|
791 SimilarityPlugin::calculateRhythmic(FeatureSet &returnFeatures)
|
c@47
|
792 {
|
c@47
|
793 if (!needRhythm()) return FeatureMatrix();
|
c@47
|
794
|
c@60
|
795 // std::cerr << "SimilarityPlugin::initialise: rhythm clip for channel 0 contains "
|
c@60
|
796 // << m_rhythmValues[0].size() << " frames of size "
|
c@60
|
797 // << m_rhythmClipFrameSize << " at process rate "
|
c@60
|
798 // << m_processRate << " ( = "
|
c@60
|
799 // << (float(m_rhythmValues[0].size() * m_rhythmClipFrameSize) / m_processRate) << " sec )"
|
c@60
|
800 // << std::endl;
|
c@60
|
801
|
c@47
|
802 BeatSpectrum bscalc;
|
c@47
|
803 CosineDistance cd;
|
c@47
|
804
|
c@47
|
805 // Our rhythm feature matrix is a deque of vectors for practical
|
c@47
|
806 // reasons, but BeatSpectrum::process wants a vector of vectors
|
c@47
|
807 // (which is what FeatureMatrix happens to be).
|
c@47
|
808
|
c@47
|
809 FeatureMatrixSet bsinput(m_channels);
|
c@47
|
810 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
811 for (int j = 0; j < m_rhythmValues[i].size(); ++j) {
|
c@47
|
812 bsinput[i].push_back(m_rhythmValues[i][j]);
|
c@47
|
813 }
|
c@47
|
814 }
|
c@47
|
815
|
c@47
|
816 FeatureMatrix bs(m_channels);
|
c@47
|
817 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
818 bs[i] = bscalc.process(bsinput[i]);
|
c@47
|
819 }
|
c@47
|
820
|
c@47
|
821 FeatureMatrix distances(m_channels);
|
c@47
|
822 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
823 for (int j = 0; j < m_channels; ++j) {
|
c@47
|
824 double d = cd.distance(bs[i], bs[j]);
|
c@47
|
825 distances[i].push_back(d);
|
c@47
|
826 }
|
c@47
|
827 }
|
c@47
|
828
|
c@47
|
829 Feature feature;
|
c@47
|
830 feature.hasTimestamp = true;
|
c@47
|
831
|
c@47
|
832 char labelBuffer[100];
|
c@47
|
833
|
c@47
|
834 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
835
|
c@47
|
836 feature.timestamp = Vamp::RealTime(i, 0);
|
c@47
|
837
|
c@47
|
838 sprintf(labelBuffer, "Beat spectrum for channel %d", i+1);
|
c@47
|
839 feature.label = labelBuffer;
|
c@47
|
840
|
c@47
|
841 feature.values.clear();
|
c@47
|
842 for (int j = 0; j < bs[i].size(); ++j) {
|
c@47
|
843 feature.values.push_back(bs[i][j]);
|
c@47
|
844 }
|
c@47
|
845
|
c@47
|
846 returnFeatures[m_beatSpectraOutput].push_back(feature);
|
c@47
|
847 }
|
c@47
|
848
|
c@47
|
849 return distances;
|
c@47
|
850 }
|
c@47
|
851
|
c@47
|
852 double
|
c@47
|
853 SimilarityPlugin::getDistance(const FeatureMatrix &timbral,
|
c@47
|
854 const FeatureMatrix &rhythmic,
|
c@47
|
855 int i, int j)
|
c@47
|
856 {
|
c@47
|
857 double distance = 1.0;
|
c@47
|
858 if (needTimbre()) distance *= timbral[i][j];
|
c@47
|
859 if (needRhythm()) distance *= rhythmic[i][j];
|
c@47
|
860 return distance;
|
c@47
|
861 }
|
c@47
|
862
|
c@47
|
863 SimilarityPlugin::FeatureSet
|
c@47
|
864 SimilarityPlugin::getRemainingFeatures()
|
c@47
|
865 {
|
c@47
|
866 FeatureSet returnFeatures;
|
c@47
|
867
|
c@47
|
868 // We want to return a matrix of the distances between channels,
|
c@47
|
869 // but Vamp doesn't have a matrix return type so we will actually
|
c@47
|
870 // return a series of vectors
|
c@47
|
871
|
c@47
|
872 FeatureMatrix timbralDistances, rhythmicDistances;
|
c@47
|
873
|
c@47
|
874 if (needTimbre()) {
|
c@47
|
875 timbralDistances = calculateTimbral(returnFeatures);
|
c@47
|
876 }
|
c@47
|
877
|
c@47
|
878 if (needRhythm()) {
|
c@47
|
879 rhythmicDistances = calculateRhythmic(returnFeatures);
|
c@47
|
880 }
|
c@47
|
881
|
c@47
|
882 // We give all features a timestamp, otherwise hosts will tend to
|
c@47
|
883 // stamp them at the end of the file, which is annoying
|
c@47
|
884
|
c@47
|
885 Feature feature;
|
c@47
|
886 feature.hasTimestamp = true;
|
c@47
|
887
|
c@47
|
888 Feature distanceVectorFeature;
|
c@47
|
889 distanceVectorFeature.label = "Distance from first channel";
|
c@47
|
890 distanceVectorFeature.hasTimestamp = true;
|
c@47
|
891 distanceVectorFeature.timestamp = Vamp::RealTime::zeroTime;
|
c@47
|
892
|
c@47
|
893 std::map<double, int> sorted;
|
c@47
|
894
|
c@47
|
895 char labelBuffer[100];
|
c@47
|
896
|
c@47
|
897 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
898
|
c@47
|
899 feature.timestamp = Vamp::RealTime(i, 0);
|
c@41
|
900
|
c@41
|
901 feature.values.clear();
|
c@41
|
902 for (int j = 0; j < m_channels; ++j) {
|
c@47
|
903 double dist = getDistance(timbralDistances, rhythmicDistances, i, j);
|
c@47
|
904 feature.values.push_back(dist);
|
c@41
|
905 }
|
c@43
|
906
|
c@44
|
907 sprintf(labelBuffer, "Distances from channel %d", i+1);
|
c@44
|
908 feature.label = labelBuffer;
|
c@41
|
909
|
c@43
|
910 returnFeatures[m_distanceMatrixOutput].push_back(feature);
|
c@43
|
911
|
c@47
|
912 double fromFirst =
|
c@47
|
913 getDistance(timbralDistances, rhythmicDistances, 0, i);
|
c@44
|
914
|
c@47
|
915 distanceVectorFeature.values.push_back(fromFirst);
|
c@47
|
916 sorted[fromFirst] = i;
|
c@41
|
917 }
|
c@41
|
918
|
c@43
|
919 returnFeatures[m_distanceVectorOutput].push_back(distanceVectorFeature);
|
c@43
|
920
|
c@44
|
921 feature.label = "Order of channels by similarity to first channel";
|
c@44
|
922 feature.values.clear();
|
c@44
|
923 feature.timestamp = Vamp::RealTime(0, 0);
|
c@44
|
924
|
c@44
|
925 for (std::map<double, int>::iterator i = sorted.begin();
|
c@44
|
926 i != sorted.end(); ++i) {
|
c@45
|
927 feature.values.push_back(i->second + 1);
|
c@44
|
928 }
|
c@44
|
929
|
c@44
|
930 returnFeatures[m_sortedVectorOutput].push_back(feature);
|
c@44
|
931
|
c@44
|
932 feature.label = "Ordered distances of channels from first channel";
|
c@44
|
933 feature.values.clear();
|
c@44
|
934 feature.timestamp = Vamp::RealTime(1, 0);
|
c@44
|
935
|
c@44
|
936 for (std::map<double, int>::iterator i = sorted.begin();
|
c@44
|
937 i != sorted.end(); ++i) {
|
c@44
|
938 feature.values.push_back(i->first);
|
c@44
|
939 }
|
c@44
|
940
|
c@44
|
941 returnFeatures[m_sortedVectorOutput].push_back(feature);
|
c@44
|
942
|
c@41
|
943 return returnFeatures;
|
c@41
|
944 }
|