annotate plugins/SimilarityPlugin.cpp @ 49:fc88b465548a

* Normalise type option for chromagram * Minimum segment duration option for segmenter * Bit more documentation
author Chris Cannam <c.cannam@qmul.ac.uk>
date Tue, 22 Jan 2008 17:27:48 +0000
parents 3b4572153ce3
children df7a0bc46592
rev   line source
c@41 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@41 2
c@41 3 /*
c@41 4 * SegmenterPlugin.cpp
c@41 5 *
c@41 6 * Copyright 2008 Centre for Digital Music, Queen Mary, University of London.
c@41 7 * All rights reserved.
c@41 8 */
c@41 9
c@41 10 #include <iostream>
c@44 11 #include <cstdio>
c@41 12
c@41 13 #include "SimilarityPlugin.h"
c@42 14 #include "base/Pitch.h"
c@41 15 #include "dsp/mfcc/MFCC.h"
c@42 16 #include "dsp/chromagram/Chromagram.h"
c@41 17 #include "dsp/rateconversion/Decimator.h"
c@47 18 #include "dsp/rhythm/BeatSpectrum.h"
c@47 19 #include "maths/KLDivergence.h"
c@47 20 #include "maths/CosineDistance.h"
c@49 21 #include "maths/MathUtilities.h"
c@41 22
c@41 23 using std::string;
c@41 24 using std::vector;
c@41 25 using std::cerr;
c@41 26 using std::endl;
c@41 27 using std::ostringstream;
c@41 28
c@47 29 const float
c@47 30 SimilarityPlugin::m_noRhythm = 0.009;
c@47 31
c@47 32 const float
c@47 33 SimilarityPlugin::m_allRhythm = 0.991;
c@47 34
c@41 35 SimilarityPlugin::SimilarityPlugin(float inputSampleRate) :
c@41 36 Plugin(inputSampleRate),
c@42 37 m_type(TypeMFCC),
c@41 38 m_mfcc(0),
c@47 39 m_rhythmfcc(0),
c@42 40 m_chromagram(0),
c@41 41 m_decimator(0),
c@42 42 m_featureColumnSize(20),
c@48 43 m_rhythmWeighting(0.5f),
c@47 44 m_rhythmClipDuration(4.f), // seconds
c@47 45 m_rhythmClipOrigin(40.f), // seconds
c@47 46 m_rhythmClipFrameSize(0),
c@47 47 m_rhythmClipFrames(0),
c@47 48 m_rhythmColumnSize(20),
c@41 49 m_blockSize(0),
c@47 50 m_channels(0),
c@47 51 m_processRate(0),
c@47 52 m_frameNo(0),
c@47 53 m_done(false)
c@41 54 {
c@47 55 int rate = lrintf(m_inputSampleRate);
c@47 56 int internalRate = 22050;
c@47 57 int decimationFactor = rate / internalRate;
c@47 58 if (decimationFactor < 1) decimationFactor = 1;
c@47 59
c@47 60 // must be a power of two
c@47 61 while (decimationFactor & (decimationFactor - 1)) ++decimationFactor;
c@47 62
c@47 63 m_processRate = rate / decimationFactor; // may be 22050, 24000 etc
c@41 64 }
c@41 65
c@41 66 SimilarityPlugin::~SimilarityPlugin()
c@41 67 {
c@41 68 delete m_mfcc;
c@47 69 delete m_rhythmfcc;
c@42 70 delete m_chromagram;
c@41 71 delete m_decimator;
c@41 72 }
c@41 73
c@41 74 string
c@41 75 SimilarityPlugin::getIdentifier() const
c@41 76 {
c@41 77 return "qm-similarity";
c@41 78 }
c@41 79
c@41 80 string
c@41 81 SimilarityPlugin::getName() const
c@41 82 {
c@41 83 return "Similarity";
c@41 84 }
c@41 85
c@41 86 string
c@41 87 SimilarityPlugin::getDescription() const
c@41 88 {
c@42 89 return "Return a distance matrix for similarity between the input audio channels";
c@41 90 }
c@41 91
c@41 92 string
c@41 93 SimilarityPlugin::getMaker() const
c@41 94 {
c@47 95 return "Mark Levy, Kurt Jacobson and Chris Cannam, Queen Mary, University of London";
c@41 96 }
c@41 97
c@41 98 int
c@41 99 SimilarityPlugin::getPluginVersion() const
c@41 100 {
c@41 101 return 1;
c@41 102 }
c@41 103
c@41 104 string
c@41 105 SimilarityPlugin::getCopyright() const
c@41 106 {
c@41 107 return "Copyright (c) 2008 - All Rights Reserved";
c@41 108 }
c@41 109
c@41 110 size_t
c@41 111 SimilarityPlugin::getMinChannelCount() const
c@41 112 {
c@43 113 return 1;
c@41 114 }
c@41 115
c@41 116 size_t
c@41 117 SimilarityPlugin::getMaxChannelCount() const
c@41 118 {
c@41 119 return 1024;
c@41 120 }
c@41 121
c@41 122 bool
c@41 123 SimilarityPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@41 124 {
c@41 125 if (channels < getMinChannelCount() ||
c@41 126 channels > getMaxChannelCount()) return false;
c@41 127
c@41 128 if (stepSize != getPreferredStepSize()) {
c@43 129 //!!! actually this perhaps shouldn't be an error... similarly
c@43 130 //using more than getMaxChannelCount channels
c@41 131 std::cerr << "SimilarityPlugin::initialise: supplied step size "
c@41 132 << stepSize << " differs from required step size "
c@41 133 << getPreferredStepSize() << std::endl;
c@41 134 return false;
c@41 135 }
c@41 136
c@41 137 if (blockSize != getPreferredBlockSize()) {
c@41 138 std::cerr << "SimilarityPlugin::initialise: supplied block size "
c@41 139 << blockSize << " differs from required block size "
c@41 140 << getPreferredBlockSize() << std::endl;
c@41 141 return false;
c@41 142 }
c@41 143
c@41 144 m_blockSize = blockSize;
c@41 145 m_channels = channels;
c@41 146
c@44 147 m_lastNonEmptyFrame = std::vector<int>(m_channels);
c@44 148 for (int i = 0; i < m_channels; ++i) m_lastNonEmptyFrame[i] = -1;
c@44 149 m_frameNo = 0;
c@44 150
c@41 151 int decimationFactor = getDecimationFactor();
c@41 152 if (decimationFactor > 1) {
c@42 153 m_decimator = new Decimator(m_blockSize, decimationFactor);
c@41 154 }
c@41 155
c@42 156 if (m_type == TypeMFCC) {
c@42 157
c@42 158 m_featureColumnSize = 20;
c@42 159
c@47 160 MFCCConfig config(m_processRate);
c@42 161 config.fftsize = 2048;
c@42 162 config.nceps = m_featureColumnSize - 1;
c@42 163 config.want_c0 = true;
c@45 164 config.logpower = 1;
c@42 165 m_mfcc = new MFCC(config);
c@42 166 m_fftSize = m_mfcc->getfftlength();
c@47 167 m_rhythmClipFrameSize = m_fftSize / 4;
c@42 168
c@43 169 std::cerr << "MFCC FS = " << config.FS << ", FFT size = " << m_fftSize<< std::endl;
c@43 170
c@42 171 } else if (m_type == TypeChroma) {
c@42 172
c@42 173 m_featureColumnSize = 12;
c@42 174
c@42 175 ChromaConfig config;
c@47 176 config.FS = m_processRate;
c@42 177 config.min = Pitch::getFrequencyForPitch(24, 0, 440);
c@42 178 config.max = Pitch::getFrequencyForPitch(96, 0, 440);
c@42 179 config.BPO = 12;
c@42 180 config.CQThresh = 0.0054;
c@49 181 // We don't normalise the chromagram's columns individually;
c@49 182 // we normalise the mean at the end instead
c@49 183 config.normalise = MathUtilities::NormaliseNone;
c@42 184 m_chromagram = new Chromagram(config);
c@42 185 m_fftSize = m_chromagram->getFrameSize();
c@42 186
c@47 187 std::cerr << "fftsize = " << m_fftSize << std::endl;
c@47 188
c@47 189 m_rhythmClipFrameSize = m_fftSize / 16;
c@47 190 while (m_rhythmClipFrameSize < 512) m_rhythmClipFrameSize *= 2;
c@47 191 std::cerr << "m_rhythmClipFrameSize = " << m_rhythmClipFrameSize << std::endl;
c@47 192
c@42 193 std::cerr << "min = "<< config.min << ", max = " << config.max << std::endl;
c@42 194
c@42 195 } else {
c@42 196
c@42 197 std::cerr << "SimilarityPlugin::initialise: internal error: unknown type " << m_type << std::endl;
c@42 198 return false;
c@42 199 }
c@41 200
c@47 201 if (needRhythm()) {
c@47 202 m_rhythmClipFrames =
c@47 203 int(ceil((m_rhythmClipDuration * m_processRate)
c@47 204 / m_rhythmClipFrameSize));
c@47 205 std::cerr << "SimilarityPlugin::initialise: rhythm clip is "
c@47 206 << m_rhythmClipFrames << " frames of size "
c@47 207 << m_rhythmClipFrameSize << " at process rate "
c@47 208 << m_processRate << " ( = "
c@47 209 << (float(m_rhythmClipFrames * m_rhythmClipFrameSize) / m_processRate) << " sec )"
c@47 210 << std::endl;
c@47 211
c@47 212 MFCCConfig config(m_processRate);
c@47 213 config.fftsize = m_rhythmClipFrameSize;
c@47 214 config.nceps = m_featureColumnSize - 1;
c@47 215 config.want_c0 = true;
c@47 216 config.logpower = 1;
c@47 217 config.window = RectangularWindow; // because no overlap
c@47 218 m_rhythmfcc = new MFCC(config);
c@47 219 }
c@47 220
c@41 221 for (int i = 0; i < m_channels; ++i) {
c@47 222
c@42 223 m_values.push_back(FeatureMatrix());
c@47 224
c@47 225 if (needRhythm()) {
c@47 226 m_rhythmValues.push_back(FeatureColumnQueue());
c@47 227 }
c@41 228 }
c@41 229
c@47 230 m_done = false;
c@47 231
c@41 232 return true;
c@41 233 }
c@41 234
c@41 235 void
c@41 236 SimilarityPlugin::reset()
c@41 237 {
c@41 238 //!!!
c@47 239 m_done = false;
c@41 240 }
c@41 241
c@41 242 int
c@41 243 SimilarityPlugin::getDecimationFactor() const
c@41 244 {
c@41 245 int rate = lrintf(m_inputSampleRate);
c@47 246 return rate / m_processRate;
c@41 247 }
c@41 248
c@41 249 size_t
c@41 250 SimilarityPlugin::getPreferredStepSize() const
c@41 251 {
c@42 252 if (m_blockSize == 0) calculateBlockSize();
c@47 253
c@47 254 // there is also an assumption to this effect in process()
c@47 255 // (referring to m_fftSize/2 instead of a literal post-decimation
c@47 256 // step size):
c@45 257 return m_blockSize/2;
c@41 258 }
c@41 259
c@41 260 size_t
c@41 261 SimilarityPlugin::getPreferredBlockSize() const
c@41 262 {
c@42 263 if (m_blockSize == 0) calculateBlockSize();
c@42 264 return m_blockSize;
c@42 265 }
c@42 266
c@42 267 void
c@42 268 SimilarityPlugin::calculateBlockSize() const
c@42 269 {
c@42 270 if (m_blockSize != 0) return;
c@42 271 int decimationFactor = getDecimationFactor();
c@42 272 if (m_type == TypeChroma) {
c@42 273 ChromaConfig config;
c@47 274 config.FS = m_processRate;
c@42 275 config.min = Pitch::getFrequencyForPitch(24, 0, 440);
c@42 276 config.max = Pitch::getFrequencyForPitch(96, 0, 440);
c@42 277 config.BPO = 12;
c@42 278 config.CQThresh = 0.0054;
c@49 279 config.normalise = MathUtilities::NormaliseNone;
c@42 280 Chromagram *c = new Chromagram(config);
c@42 281 size_t sz = c->getFrameSize();
c@42 282 delete c;
c@42 283 m_blockSize = sz * decimationFactor;
c@42 284 } else {
c@42 285 m_blockSize = 2048 * decimationFactor;
c@42 286 }
c@41 287 }
c@41 288
c@41 289 SimilarityPlugin::ParameterList SimilarityPlugin::getParameterDescriptors() const
c@41 290 {
c@41 291 ParameterList list;
c@42 292
c@42 293 ParameterDescriptor desc;
c@42 294 desc.identifier = "featureType";
c@42 295 desc.name = "Feature Type";
c@48 296 desc.description = "Audio feature used for similarity measure. Timbral: use the first 20 MFCCs (19 plus C0). Chromatic: use 12 bin-per-octave chroma. Rhythmic: compare beat spectra of short regions.";
c@42 297 desc.unit = "";
c@42 298 desc.minValue = 0;
c@48 299 desc.maxValue = 4;
c@48 300 desc.defaultValue = 1;
c@42 301 desc.isQuantized = true;
c@42 302 desc.quantizeStep = 1;
c@48 303 desc.valueNames.push_back("Timbre");
c@48 304 desc.valueNames.push_back("Timbre and Rhythm");
c@48 305 desc.valueNames.push_back("Chroma");
c@48 306 desc.valueNames.push_back("Chroma and Rhythm");
c@48 307 desc.valueNames.push_back("Rhythm only");
c@42 308 list.push_back(desc);
c@48 309 /*
c@47 310 desc.identifier = "rhythmWeighting";
c@47 311 desc.name = "Influence of Rhythm";
c@47 312 desc.description = "Proportion of similarity measure made up from rhythmic similarity component, from 0 (entirely timbral or chromatic) to 100 (entirely rhythmic).";
c@47 313 desc.unit = "%";
c@47 314 desc.minValue = 0;
c@47 315 desc.maxValue = 100;
c@47 316 desc.defaultValue = 0;
c@48 317 desc.isQuantized = false;
c@47 318 desc.valueNames.clear();
c@47 319 list.push_back(desc);
c@48 320 */
c@41 321 return list;
c@41 322 }
c@41 323
c@41 324 float
c@41 325 SimilarityPlugin::getParameter(std::string param) const
c@41 326 {
c@42 327 if (param == "featureType") {
c@48 328
c@48 329 if (m_rhythmWeighting > m_allRhythm) {
c@48 330 return 4;
c@48 331 }
c@48 332
c@48 333 switch (m_type) {
c@48 334
c@48 335 case TypeMFCC:
c@48 336 if (m_rhythmWeighting < m_noRhythm) return 0;
c@48 337 else return 1;
c@48 338 break;
c@48 339
c@48 340 case TypeChroma:
c@48 341 if (m_rhythmWeighting < m_noRhythm) return 2;
c@48 342 else return 3;
c@48 343 break;
c@48 344 }
c@48 345
c@48 346 return 1;
c@48 347
c@48 348 // } else if (param == "rhythmWeighting") {
c@48 349 // return nearbyint(m_rhythmWeighting * 100.0);
c@42 350 }
c@42 351
c@41 352 std::cerr << "WARNING: SimilarityPlugin::getParameter: unknown parameter \""
c@41 353 << param << "\"" << std::endl;
c@41 354 return 0.0;
c@41 355 }
c@41 356
c@41 357 void
c@41 358 SimilarityPlugin::setParameter(std::string param, float value)
c@41 359 {
c@42 360 if (param == "featureType") {
c@48 361
c@42 362 int v = int(value + 0.1);
c@48 363
c@48 364 Type newType = m_type;
c@48 365
c@48 366 switch (v) {
c@48 367 case 0: newType = TypeMFCC; m_rhythmWeighting = 0.0f; break;
c@48 368 case 1: newType = TypeMFCC; m_rhythmWeighting = 0.5f; break;
c@48 369 case 2: newType = TypeChroma; m_rhythmWeighting = 0.0f; break;
c@48 370 case 3: newType = TypeChroma; m_rhythmWeighting = 0.5f; break;
c@48 371 case 4: newType = TypeMFCC; m_rhythmWeighting = 1.f; break;
c@48 372 }
c@48 373
c@48 374 if (newType != m_type) m_blockSize = 0;
c@48 375
c@48 376 m_type = newType;
c@42 377 return;
c@48 378
c@48 379 // } else if (param == "rhythmWeighting") {
c@48 380 // m_rhythmWeighting = value / 100;
c@48 381 // return;
c@42 382 }
c@42 383
c@41 384 std::cerr << "WARNING: SimilarityPlugin::setParameter: unknown parameter \""
c@41 385 << param << "\"" << std::endl;
c@41 386 }
c@41 387
c@41 388 SimilarityPlugin::OutputList
c@41 389 SimilarityPlugin::getOutputDescriptors() const
c@41 390 {
c@41 391 OutputList list;
c@41 392
c@41 393 OutputDescriptor similarity;
c@43 394 similarity.identifier = "distancematrix";
c@43 395 similarity.name = "Distance Matrix";
c@43 396 similarity.description = "Distance matrix for similarity metric. Smaller = more similar. Should be symmetrical.";
c@41 397 similarity.unit = "";
c@41 398 similarity.hasFixedBinCount = true;
c@41 399 similarity.binCount = m_channels;
c@41 400 similarity.hasKnownExtents = false;
c@41 401 similarity.isQuantized = false;
c@41 402 similarity.sampleType = OutputDescriptor::FixedSampleRate;
c@41 403 similarity.sampleRate = 1;
c@41 404
c@43 405 m_distanceMatrixOutput = list.size();
c@41 406 list.push_back(similarity);
c@41 407
c@43 408 OutputDescriptor simvec;
c@43 409 simvec.identifier = "distancevector";
c@43 410 simvec.name = "Distance from First Channel";
c@43 411 simvec.description = "Distance vector for similarity of each channel to the first channel. Smaller = more similar.";
c@43 412 simvec.unit = "";
c@43 413 simvec.hasFixedBinCount = true;
c@43 414 simvec.binCount = m_channels;
c@43 415 simvec.hasKnownExtents = false;
c@43 416 simvec.isQuantized = false;
c@43 417 simvec.sampleType = OutputDescriptor::FixedSampleRate;
c@43 418 simvec.sampleRate = 1;
c@43 419
c@43 420 m_distanceVectorOutput = list.size();
c@43 421 list.push_back(simvec);
c@43 422
c@44 423 OutputDescriptor sortvec;
c@44 424 sortvec.identifier = "sorteddistancevector";
c@44 425 sortvec.name = "Ordered Distances from First Channel";
c@44 426 sortvec.description = "Vector of the order of other channels in similarity to the first, followed by distance vector for similarity of each to the first. Smaller = more similar.";
c@44 427 sortvec.unit = "";
c@44 428 sortvec.hasFixedBinCount = true;
c@44 429 sortvec.binCount = m_channels;
c@44 430 sortvec.hasKnownExtents = false;
c@44 431 sortvec.isQuantized = false;
c@44 432 sortvec.sampleType = OutputDescriptor::FixedSampleRate;
c@44 433 sortvec.sampleRate = 1;
c@44 434
c@44 435 m_sortedVectorOutput = list.size();
c@44 436 list.push_back(sortvec);
c@44 437
c@41 438 OutputDescriptor means;
c@41 439 means.identifier = "means";
c@42 440 means.name = "Feature Means";
c@43 441 means.description = "Means of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
c@41 442 means.unit = "";
c@41 443 means.hasFixedBinCount = true;
c@43 444 means.binCount = m_featureColumnSize;
c@41 445 means.hasKnownExtents = false;
c@41 446 means.isQuantized = false;
c@43 447 means.sampleType = OutputDescriptor::FixedSampleRate;
c@43 448 means.sampleRate = 1;
c@41 449
c@43 450 m_meansOutput = list.size();
c@41 451 list.push_back(means);
c@41 452
c@41 453 OutputDescriptor variances;
c@41 454 variances.identifier = "variances";
c@42 455 variances.name = "Feature Variances";
c@43 456 variances.description = "Variances of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
c@41 457 variances.unit = "";
c@41 458 variances.hasFixedBinCount = true;
c@43 459 variances.binCount = m_featureColumnSize;
c@41 460 variances.hasKnownExtents = false;
c@41 461 variances.isQuantized = false;
c@43 462 variances.sampleType = OutputDescriptor::FixedSampleRate;
c@43 463 variances.sampleRate = 1;
c@41 464
c@43 465 m_variancesOutput = list.size();
c@41 466 list.push_back(variances);
c@41 467
c@47 468 OutputDescriptor beatspectrum;
c@47 469 beatspectrum.identifier = "beatspectrum";
c@47 470 beatspectrum.name = "Beat Spectra";
c@47 471 beatspectrum.description = "Rhythmic self-similarity vectors (beat spectra) for the input channels. Feature time (sec) corresponds to input channel. Not returned if rhythm weighting is zero.";
c@47 472 beatspectrum.unit = "";
c@47 473 if (m_rhythmClipFrames > 0) {
c@47 474 beatspectrum.hasFixedBinCount = true;
c@47 475 beatspectrum.binCount = m_rhythmClipFrames / 2;
c@47 476 } else {
c@47 477 beatspectrum.hasFixedBinCount = false;
c@47 478 }
c@47 479 beatspectrum.hasKnownExtents = false;
c@47 480 beatspectrum.isQuantized = false;
c@47 481 beatspectrum.sampleType = OutputDescriptor::FixedSampleRate;
c@47 482 beatspectrum.sampleRate = 1;
c@47 483
c@47 484 m_beatSpectraOutput = list.size();
c@47 485 list.push_back(beatspectrum);
c@47 486
c@41 487 return list;
c@41 488 }
c@41 489
c@41 490 SimilarityPlugin::FeatureSet
c@41 491 SimilarityPlugin::process(const float *const *inputBuffers, Vamp::RealTime /* timestamp */)
c@41 492 {
c@47 493 if (m_done) {
c@47 494 return FeatureSet();
c@47 495 }
c@47 496
c@41 497 double *dblbuf = new double[m_blockSize];
c@41 498 double *decbuf = dblbuf;
c@42 499 if (m_decimator) decbuf = new double[m_fftSize];
c@42 500
c@47 501 double *raw = new double[std::max(m_featureColumnSize,
c@47 502 m_rhythmColumnSize)];
c@41 503
c@43 504 float threshold = 1e-10;
c@43 505
c@47 506 bool someRhythmFrameNeeded = false;
c@47 507
c@41 508 for (size_t c = 0; c < m_channels; ++c) {
c@41 509
c@43 510 bool empty = true;
c@43 511
c@41 512 for (int i = 0; i < m_blockSize; ++i) {
c@43 513 float val = inputBuffers[c][i];
c@43 514 if (fabs(val) > threshold) empty = false;
c@43 515 dblbuf[i] = val;
c@41 516 }
c@41 517
c@47 518 if (empty) {
c@47 519 if (needRhythm() && ((m_frameNo % 2) == 0)) {
c@47 520 for (int i = 0; i < m_fftSize / m_rhythmClipFrameSize; ++i) {
c@47 521 if (m_rhythmValues[c].size() < m_rhythmClipFrames) {
c@47 522 FeatureColumn mf(m_rhythmColumnSize);
c@47 523 for (int i = 0; i < m_rhythmColumnSize; ++i) {
c@47 524 mf[i] = 0.0;
c@47 525 }
c@47 526 m_rhythmValues[c].push_back(mf);
c@47 527 }
c@47 528 }
c@47 529 }
c@47 530 continue;
c@47 531 }
c@47 532
c@44 533 m_lastNonEmptyFrame[c] = m_frameNo;
c@43 534
c@41 535 if (m_decimator) {
c@41 536 m_decimator->process(dblbuf, decbuf);
c@41 537 }
c@42 538
c@47 539 if (needTimbre()) {
c@47 540
c@47 541 if (m_type == TypeMFCC) {
c@47 542 m_mfcc->process(decbuf, raw);
c@47 543 } else if (m_type == TypeChroma) {
c@47 544 raw = m_chromagram->process(decbuf);
c@47 545 }
c@41 546
c@47 547 FeatureColumn mf(m_featureColumnSize);
c@47 548 for (int i = 0; i < m_featureColumnSize; ++i) {
c@47 549 mf[i] = raw[i];
c@47 550 }
c@47 551
c@47 552 m_values[c].push_back(mf);
c@44 553 }
c@41 554
c@47 555 // std::cerr << "needRhythm = " << needRhythm() << ", frame = " << m_frameNo << std::endl;
c@47 556
c@47 557 if (needRhythm() && ((m_frameNo % 2) == 0)) {
c@47 558
c@47 559 // The incoming frames are overlapping; we only use every
c@47 560 // other one, because we don't want the overlap (it would
c@47 561 // screw up the rhythm)
c@47 562
c@47 563 int frameOffset = 0;
c@47 564
c@47 565 while (frameOffset + m_rhythmClipFrameSize <= m_fftSize) {
c@47 566
c@47 567 bool needRhythmFrame = true;
c@47 568
c@47 569 if (m_rhythmValues[c].size() >= m_rhythmClipFrames) {
c@47 570
c@47 571 needRhythmFrame = false;
c@47 572
c@47 573 // assumes hopsize = framesize/2
c@47 574 float current = m_frameNo * (m_fftSize/2) + frameOffset;
c@47 575 current = current / m_processRate;
c@47 576 if (current - m_rhythmClipDuration < m_rhythmClipOrigin) {
c@47 577 needRhythmFrame = true;
c@47 578 m_rhythmValues[c].pop_front();
c@47 579 }
c@47 580
c@47 581 if (needRhythmFrame) {
c@47 582 std::cerr << "at current = " <<current << " (frame = " << m_frameNo << "), have " << m_rhythmValues[c].size() << ", need rhythm = " << needRhythmFrame << std::endl;
c@47 583 }
c@47 584
c@47 585 }
c@47 586
c@47 587 if (needRhythmFrame) {
c@47 588
c@47 589 someRhythmFrameNeeded = true;
c@47 590
c@47 591 m_rhythmfcc->process(decbuf + frameOffset, raw);
c@47 592
c@47 593 FeatureColumn mf(m_rhythmColumnSize);
c@47 594 for (int i = 0; i < m_rhythmColumnSize; ++i) {
c@47 595 mf[i] = raw[i];
c@47 596 }
c@47 597
c@47 598 m_rhythmValues[c].push_back(mf);
c@47 599 }
c@47 600
c@47 601 frameOffset += m_rhythmClipFrameSize;
c@47 602 }
c@47 603 }
c@47 604 }
c@47 605
c@47 606 if (!needTimbre() && !someRhythmFrameNeeded && ((m_frameNo % 2) == 0)) {
c@47 607 std::cerr << "done!" << std::endl;
c@47 608 m_done = true;
c@41 609 }
c@41 610
c@41 611 if (m_decimator) delete[] decbuf;
c@41 612 delete[] dblbuf;
c@47 613 delete[] raw;
c@41 614
c@44 615 ++m_frameNo;
c@44 616
c@41 617 return FeatureSet();
c@41 618 }
c@41 619
c@47 620 SimilarityPlugin::FeatureMatrix
c@47 621 SimilarityPlugin::calculateTimbral(FeatureSet &returnFeatures)
c@41 622 {
c@47 623 FeatureMatrix m(m_channels); // means
c@47 624 FeatureMatrix v(m_channels); // variances
c@41 625
c@41 626 for (int i = 0; i < m_channels; ++i) {
c@41 627
c@42 628 FeatureColumn mean(m_featureColumnSize), variance(m_featureColumnSize);
c@41 629
c@42 630 for (int j = 0; j < m_featureColumnSize; ++j) {
c@41 631
c@43 632 mean[j] = 0.0;
c@43 633 variance[j] = 0.0;
c@41 634 int count;
c@41 635
c@44 636 // We want to take values up to, but not including, the
c@44 637 // last non-empty frame (which may be partial)
c@43 638
c@44 639 int sz = m_lastNonEmptyFrame[i];
c@44 640 if (sz < 0) sz = 0;
c@43 641
c@41 642 count = 0;
c@43 643 for (int k = 0; k < sz; ++k) {
c@42 644 double val = m_values[i][k][j];
c@41 645 if (isnan(val) || isinf(val)) continue;
c@41 646 mean[j] += val;
c@41 647 ++count;
c@41 648 }
c@41 649 if (count > 0) mean[j] /= count;
c@41 650
c@41 651 count = 0;
c@43 652 for (int k = 0; k < sz; ++k) {
c@42 653 double val = ((m_values[i][k][j] - mean[j]) *
c@42 654 (m_values[i][k][j] - mean[j]));
c@41 655 if (isnan(val) || isinf(val)) continue;
c@41 656 variance[j] += val;
c@41 657 ++count;
c@41 658 }
c@41 659 if (count > 0) variance[j] /= count;
c@41 660 }
c@41 661
c@41 662 m[i] = mean;
c@41 663 v[i] = variance;
c@41 664 }
c@41 665
c@47 666 FeatureMatrix distances(m_channels);
c@42 667
c@48 668 if (m_type == TypeMFCC) {
c@48 669
c@48 670 // "Despite the fact that MFCCs extracted from music are
c@48 671 // clearly not Gaussian, [14] showed, somewhat surprisingly,
c@48 672 // that a similarity function comparing single Gaussians
c@48 673 // modelling MFCCs for each track can perform as well as
c@48 674 // mixture models. A great advantage of using single
c@48 675 // Gaussians is that a simple closed form exists for the KL
c@48 676 // divergence." -- Mark Levy, "Lightweight measures for
c@48 677 // timbral similarity of musical audio"
c@48 678 // (http://www.elec.qmul.ac.uk/easaier/papers/mlevytimbralsimilarity.pdf)
c@48 679
c@48 680 KLDivergence kld;
c@48 681
c@48 682 for (int i = 0; i < m_channels; ++i) {
c@48 683 for (int j = 0; j < m_channels; ++j) {
c@48 684 double d = kld.distanceGaussian(m[i], v[i], m[j], v[j]);
c@48 685 distances[i].push_back(d);
c@48 686 }
c@48 687 }
c@48 688
c@48 689 } else {
c@48 690
c@49 691 // We use the KL divergence for distributions of discrete
c@49 692 // variables, as chroma are histograms already. Or at least,
c@49 693 // they will be when we've normalised them like this:
c@49 694 for (int i = 0; i < m_channels; ++i) {
c@49 695 MathUtilities::normalise(m[i], MathUtilities::NormaliseUnitSum);
c@49 696 }
c@48 697
c@48 698 KLDivergence kld;
c@48 699
c@48 700 for (int i = 0; i < m_channels; ++i) {
c@48 701 for (int j = 0; j < m_channels; ++j) {
c@48 702 double d = kld.distanceDistribution(m[i], m[j], true);
c@48 703 distances[i].push_back(d);
c@48 704 }
c@41 705 }
c@41 706 }
c@47 707
c@44 708 Feature feature;
c@44 709 feature.hasTimestamp = true;
c@44 710
c@44 711 char labelBuffer[100];
c@43 712
c@41 713 for (int i = 0; i < m_channels; ++i) {
c@41 714
c@41 715 feature.timestamp = Vamp::RealTime(i, 0);
c@41 716
c@44 717 sprintf(labelBuffer, "Means for channel %d", i+1);
c@44 718 feature.label = labelBuffer;
c@44 719
c@41 720 feature.values.clear();
c@42 721 for (int k = 0; k < m_featureColumnSize; ++k) {
c@41 722 feature.values.push_back(m[i][k]);
c@41 723 }
c@41 724
c@43 725 returnFeatures[m_meansOutput].push_back(feature);
c@41 726
c@44 727 sprintf(labelBuffer, "Variances for channel %d", i+1);
c@44 728 feature.label = labelBuffer;
c@44 729
c@41 730 feature.values.clear();
c@42 731 for (int k = 0; k < m_featureColumnSize; ++k) {
c@41 732 feature.values.push_back(v[i][k]);
c@41 733 }
c@41 734
c@43 735 returnFeatures[m_variancesOutput].push_back(feature);
c@47 736 }
c@47 737
c@47 738 return distances;
c@47 739 }
c@47 740
c@47 741 SimilarityPlugin::FeatureMatrix
c@47 742 SimilarityPlugin::calculateRhythmic(FeatureSet &returnFeatures)
c@47 743 {
c@47 744 if (!needRhythm()) return FeatureMatrix();
c@47 745
c@47 746 BeatSpectrum bscalc;
c@47 747 CosineDistance cd;
c@47 748
c@47 749 // Our rhythm feature matrix is a deque of vectors for practical
c@47 750 // reasons, but BeatSpectrum::process wants a vector of vectors
c@47 751 // (which is what FeatureMatrix happens to be).
c@47 752
c@47 753 FeatureMatrixSet bsinput(m_channels);
c@47 754 for (int i = 0; i < m_channels; ++i) {
c@47 755 for (int j = 0; j < m_rhythmValues[i].size(); ++j) {
c@47 756 bsinput[i].push_back(m_rhythmValues[i][j]);
c@47 757 }
c@47 758 }
c@47 759
c@47 760 FeatureMatrix bs(m_channels);
c@47 761 for (int i = 0; i < m_channels; ++i) {
c@47 762 bs[i] = bscalc.process(bsinput[i]);
c@47 763 }
c@47 764
c@47 765 FeatureMatrix distances(m_channels);
c@47 766 for (int i = 0; i < m_channels; ++i) {
c@47 767 for (int j = 0; j < m_channels; ++j) {
c@47 768 double d = cd.distance(bs[i], bs[j]);
c@47 769 distances[i].push_back(d);
c@47 770 }
c@47 771 }
c@47 772
c@47 773 Feature feature;
c@47 774 feature.hasTimestamp = true;
c@47 775
c@47 776 char labelBuffer[100];
c@47 777
c@47 778 for (int i = 0; i < m_channels; ++i) {
c@47 779
c@47 780 feature.timestamp = Vamp::RealTime(i, 0);
c@47 781
c@47 782 sprintf(labelBuffer, "Beat spectrum for channel %d", i+1);
c@47 783 feature.label = labelBuffer;
c@47 784
c@47 785 feature.values.clear();
c@47 786 for (int j = 0; j < bs[i].size(); ++j) {
c@47 787 feature.values.push_back(bs[i][j]);
c@47 788 }
c@47 789
c@47 790 returnFeatures[m_beatSpectraOutput].push_back(feature);
c@47 791 }
c@47 792
c@47 793 return distances;
c@47 794 }
c@47 795
c@47 796 double
c@47 797 SimilarityPlugin::getDistance(const FeatureMatrix &timbral,
c@47 798 const FeatureMatrix &rhythmic,
c@47 799 int i, int j)
c@47 800 {
c@47 801 double distance = 1.0;
c@47 802 if (needTimbre()) distance *= timbral[i][j];
c@47 803 if (needRhythm()) distance *= rhythmic[i][j];
c@47 804 return distance;
c@47 805 }
c@47 806
c@47 807 SimilarityPlugin::FeatureSet
c@47 808 SimilarityPlugin::getRemainingFeatures()
c@47 809 {
c@47 810 FeatureSet returnFeatures;
c@47 811
c@47 812 // We want to return a matrix of the distances between channels,
c@47 813 // but Vamp doesn't have a matrix return type so we will actually
c@47 814 // return a series of vectors
c@47 815
c@47 816 FeatureMatrix timbralDistances, rhythmicDistances;
c@47 817
c@47 818 if (needTimbre()) {
c@47 819 timbralDistances = calculateTimbral(returnFeatures);
c@47 820 }
c@47 821
c@47 822 if (needRhythm()) {
c@47 823 rhythmicDistances = calculateRhythmic(returnFeatures);
c@47 824 }
c@47 825
c@47 826 // We give all features a timestamp, otherwise hosts will tend to
c@47 827 // stamp them at the end of the file, which is annoying
c@47 828
c@47 829 Feature feature;
c@47 830 feature.hasTimestamp = true;
c@47 831
c@47 832 Feature distanceVectorFeature;
c@47 833 distanceVectorFeature.label = "Distance from first channel";
c@47 834 distanceVectorFeature.hasTimestamp = true;
c@47 835 distanceVectorFeature.timestamp = Vamp::RealTime::zeroTime;
c@47 836
c@47 837 std::map<double, int> sorted;
c@47 838
c@47 839 char labelBuffer[100];
c@47 840
c@47 841 for (int i = 0; i < m_channels; ++i) {
c@47 842
c@47 843 feature.timestamp = Vamp::RealTime(i, 0);
c@41 844
c@41 845 feature.values.clear();
c@41 846 for (int j = 0; j < m_channels; ++j) {
c@47 847 double dist = getDistance(timbralDistances, rhythmicDistances, i, j);
c@47 848 feature.values.push_back(dist);
c@41 849 }
c@43 850
c@44 851 sprintf(labelBuffer, "Distances from channel %d", i+1);
c@44 852 feature.label = labelBuffer;
c@41 853
c@43 854 returnFeatures[m_distanceMatrixOutput].push_back(feature);
c@43 855
c@47 856 double fromFirst =
c@47 857 getDistance(timbralDistances, rhythmicDistances, 0, i);
c@44 858
c@47 859 distanceVectorFeature.values.push_back(fromFirst);
c@47 860 sorted[fromFirst] = i;
c@41 861 }
c@41 862
c@43 863 returnFeatures[m_distanceVectorOutput].push_back(distanceVectorFeature);
c@43 864
c@44 865 feature.label = "Order of channels by similarity to first channel";
c@44 866 feature.values.clear();
c@44 867 feature.timestamp = Vamp::RealTime(0, 0);
c@44 868
c@44 869 for (std::map<double, int>::iterator i = sorted.begin();
c@44 870 i != sorted.end(); ++i) {
c@45 871 feature.values.push_back(i->second + 1);
c@44 872 }
c@44 873
c@44 874 returnFeatures[m_sortedVectorOutput].push_back(feature);
c@44 875
c@44 876 feature.label = "Ordered distances of channels from first channel";
c@44 877 feature.values.clear();
c@44 878 feature.timestamp = Vamp::RealTime(1, 0);
c@44 879
c@44 880 for (std::map<double, int>::iterator i = sorted.begin();
c@44 881 i != sorted.end(); ++i) {
c@44 882 feature.values.push_back(i->first);
c@44 883 }
c@44 884
c@44 885 returnFeatures[m_sortedVectorOutput].push_back(feature);
c@44 886
c@41 887 return returnFeatures;
c@41 888 }