annotate plugins/SimilarityPlugin.cpp @ 44:1dc00e4dbae6

* add a sorted vector output
author Chris Cannam <c.cannam@qmul.ac.uk>
date Thu, 17 Jan 2008 15:37:37 +0000
parents 1389f05cb688
children 5d7ce1d87301
rev   line source
c@41 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@41 2
c@41 3 /*
c@41 4 * SegmenterPlugin.cpp
c@41 5 *
c@41 6 * Copyright 2008 Centre for Digital Music, Queen Mary, University of London.
c@41 7 * All rights reserved.
c@41 8 */
c@41 9
c@41 10 #include <iostream>
c@44 11 #include <cstdio>
c@41 12
c@41 13 #include "SimilarityPlugin.h"
c@42 14 #include "base/Pitch.h"
c@41 15 #include "dsp/mfcc/MFCC.h"
c@42 16 #include "dsp/chromagram/Chromagram.h"
c@41 17 #include "dsp/rateconversion/Decimator.h"
c@41 18
c@41 19 using std::string;
c@41 20 using std::vector;
c@41 21 using std::cerr;
c@41 22 using std::endl;
c@41 23 using std::ostringstream;
c@41 24
c@41 25 SimilarityPlugin::SimilarityPlugin(float inputSampleRate) :
c@41 26 Plugin(inputSampleRate),
c@42 27 m_type(TypeMFCC),
c@41 28 m_mfcc(0),
c@42 29 m_chromagram(0),
c@41 30 m_decimator(0),
c@42 31 m_featureColumnSize(20),
c@41 32 m_blockSize(0),
c@41 33 m_channels(0)
c@41 34 {
c@41 35
c@41 36 }
c@41 37
c@41 38 SimilarityPlugin::~SimilarityPlugin()
c@41 39 {
c@41 40 delete m_mfcc;
c@42 41 delete m_chromagram;
c@41 42 delete m_decimator;
c@41 43 }
c@41 44
c@41 45 string
c@41 46 SimilarityPlugin::getIdentifier() const
c@41 47 {
c@41 48 return "qm-similarity";
c@41 49 }
c@41 50
c@41 51 string
c@41 52 SimilarityPlugin::getName() const
c@41 53 {
c@41 54 return "Similarity";
c@41 55 }
c@41 56
c@41 57 string
c@41 58 SimilarityPlugin::getDescription() const
c@41 59 {
c@42 60 return "Return a distance matrix for similarity between the input audio channels";
c@41 61 }
c@41 62
c@41 63 string
c@41 64 SimilarityPlugin::getMaker() const
c@41 65 {
c@41 66 return "Chris Cannam, Queen Mary, University of London";
c@41 67 }
c@41 68
c@41 69 int
c@41 70 SimilarityPlugin::getPluginVersion() const
c@41 71 {
c@41 72 return 1;
c@41 73 }
c@41 74
c@41 75 string
c@41 76 SimilarityPlugin::getCopyright() const
c@41 77 {
c@41 78 return "Copyright (c) 2008 - All Rights Reserved";
c@41 79 }
c@41 80
c@41 81 size_t
c@41 82 SimilarityPlugin::getMinChannelCount() const
c@41 83 {
c@43 84 return 1;
c@41 85 }
c@41 86
c@41 87 size_t
c@41 88 SimilarityPlugin::getMaxChannelCount() const
c@41 89 {
c@41 90 return 1024;
c@44 91 // return 1;
c@41 92 }
c@41 93
c@41 94 bool
c@41 95 SimilarityPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@41 96 {
c@41 97 if (channels < getMinChannelCount() ||
c@41 98 channels > getMaxChannelCount()) return false;
c@41 99
c@41 100 if (stepSize != getPreferredStepSize()) {
c@43 101 //!!! actually this perhaps shouldn't be an error... similarly
c@43 102 //using more than getMaxChannelCount channels
c@41 103 std::cerr << "SimilarityPlugin::initialise: supplied step size "
c@41 104 << stepSize << " differs from required step size "
c@41 105 << getPreferredStepSize() << std::endl;
c@41 106 return false;
c@41 107 }
c@41 108
c@41 109 if (blockSize != getPreferredBlockSize()) {
c@41 110 std::cerr << "SimilarityPlugin::initialise: supplied block size "
c@41 111 << blockSize << " differs from required block size "
c@41 112 << getPreferredBlockSize() << std::endl;
c@41 113 return false;
c@41 114 }
c@41 115
c@41 116 m_blockSize = blockSize;
c@41 117 m_channels = channels;
c@41 118
c@44 119 m_lastNonEmptyFrame = std::vector<int>(m_channels);
c@44 120 for (int i = 0; i < m_channels; ++i) m_lastNonEmptyFrame[i] = -1;
c@44 121 m_frameNo = 0;
c@44 122
c@41 123 int decimationFactor = getDecimationFactor();
c@41 124 if (decimationFactor > 1) {
c@42 125 m_decimator = new Decimator(m_blockSize, decimationFactor);
c@41 126 }
c@41 127
c@42 128 if (m_type == TypeMFCC) {
c@42 129
c@42 130 m_featureColumnSize = 20;
c@42 131
c@42 132 MFCCConfig config;
c@42 133 config.FS = lrintf(m_inputSampleRate) / decimationFactor;
c@42 134 config.fftsize = 2048;
c@42 135 config.nceps = m_featureColumnSize - 1;
c@42 136 config.want_c0 = true;
c@42 137 m_mfcc = new MFCC(config);
c@42 138 m_fftSize = m_mfcc->getfftlength();
c@42 139
c@43 140 std::cerr << "MFCC FS = " << config.FS << ", FFT size = " << m_fftSize<< std::endl;
c@43 141
c@42 142 } else if (m_type == TypeChroma) {
c@42 143
c@42 144 m_featureColumnSize = 12;
c@42 145
c@42 146 ChromaConfig config;
c@42 147 config.FS = lrintf(m_inputSampleRate) / decimationFactor;
c@42 148 config.min = Pitch::getFrequencyForPitch(24, 0, 440);
c@42 149 config.max = Pitch::getFrequencyForPitch(96, 0, 440);
c@42 150 config.BPO = 12;
c@42 151 config.CQThresh = 0.0054;
c@42 152 config.isNormalised = true;
c@42 153 m_chromagram = new Chromagram(config);
c@42 154 m_fftSize = m_chromagram->getFrameSize();
c@42 155
c@42 156 std::cerr << "min = "<< config.min << ", max = " << config.max << std::endl;
c@42 157
c@42 158 } else {
c@42 159
c@42 160 std::cerr << "SimilarityPlugin::initialise: internal error: unknown type " << m_type << std::endl;
c@42 161 return false;
c@42 162 }
c@41 163
c@41 164 for (int i = 0; i < m_channels; ++i) {
c@42 165 m_values.push_back(FeatureMatrix());
c@41 166 }
c@41 167
c@41 168 return true;
c@41 169 }
c@41 170
c@41 171 void
c@41 172 SimilarityPlugin::reset()
c@41 173 {
c@41 174 //!!!
c@41 175 }
c@41 176
c@41 177 int
c@41 178 SimilarityPlugin::getDecimationFactor() const
c@41 179 {
c@41 180 int rate = lrintf(m_inputSampleRate);
c@41 181 int internalRate = 22050;
c@41 182 int decimationFactor = rate / internalRate;
c@41 183 if (decimationFactor < 1) decimationFactor = 1;
c@41 184
c@41 185 // must be a power of two
c@41 186 while (decimationFactor & (decimationFactor - 1)) ++decimationFactor;
c@41 187
c@41 188 return decimationFactor;
c@41 189 }
c@41 190
c@41 191 size_t
c@41 192 SimilarityPlugin::getPreferredStepSize() const
c@41 193 {
c@42 194 if (m_blockSize == 0) calculateBlockSize();
c@43 195 if (m_type == TypeChroma) {
c@43 196 return m_blockSize/2;
c@43 197 } else {
c@43 198 // for compatibility with old-skool Soundbite, which doesn't
c@43 199 // overlap blocks on input
c@43 200 return m_blockSize;
c@43 201 }
c@41 202 }
c@41 203
c@41 204 size_t
c@41 205 SimilarityPlugin::getPreferredBlockSize() const
c@41 206 {
c@42 207 if (m_blockSize == 0) calculateBlockSize();
c@42 208 return m_blockSize;
c@42 209 }
c@42 210
c@42 211 void
c@42 212 SimilarityPlugin::calculateBlockSize() const
c@42 213 {
c@42 214 if (m_blockSize != 0) return;
c@42 215 int decimationFactor = getDecimationFactor();
c@42 216 if (m_type == TypeChroma) {
c@42 217 ChromaConfig config;
c@42 218 config.FS = lrintf(m_inputSampleRate) / decimationFactor;
c@42 219 config.min = Pitch::getFrequencyForPitch(24, 0, 440);
c@42 220 config.max = Pitch::getFrequencyForPitch(96, 0, 440);
c@42 221 config.BPO = 12;
c@42 222 config.CQThresh = 0.0054;
c@42 223 config.isNormalised = false;
c@42 224 Chromagram *c = new Chromagram(config);
c@42 225 size_t sz = c->getFrameSize();
c@42 226 delete c;
c@42 227 m_blockSize = sz * decimationFactor;
c@42 228 } else {
c@42 229 m_blockSize = 2048 * decimationFactor;
c@42 230 }
c@41 231 }
c@41 232
c@41 233 SimilarityPlugin::ParameterList SimilarityPlugin::getParameterDescriptors() const
c@41 234 {
c@41 235 ParameterList list;
c@42 236
c@42 237 ParameterDescriptor desc;
c@42 238 desc.identifier = "featureType";
c@42 239 desc.name = "Feature Type";
c@42 240 desc.description = "";//!!!
c@42 241 desc.unit = "";
c@42 242 desc.minValue = 0;
c@42 243 desc.maxValue = 1;
c@42 244 desc.defaultValue = 0;
c@42 245 desc.isQuantized = true;
c@42 246 desc.quantizeStep = 1;
c@42 247 desc.valueNames.push_back("Timbral (MFCC)");
c@42 248 desc.valueNames.push_back("Chromatic (Chroma)");
c@42 249 list.push_back(desc);
c@42 250
c@41 251 return list;
c@41 252 }
c@41 253
c@41 254 float
c@41 255 SimilarityPlugin::getParameter(std::string param) const
c@41 256 {
c@42 257 if (param == "featureType") {
c@42 258 if (m_type == TypeMFCC) return 0;
c@42 259 else if (m_type == TypeChroma) return 1;
c@42 260 else return 0;
c@42 261 }
c@42 262
c@41 263 std::cerr << "WARNING: SimilarityPlugin::getParameter: unknown parameter \""
c@41 264 << param << "\"" << std::endl;
c@41 265 return 0.0;
c@41 266 }
c@41 267
c@41 268 void
c@41 269 SimilarityPlugin::setParameter(std::string param, float value)
c@41 270 {
c@42 271 if (param == "featureType") {
c@42 272 int v = int(value + 0.1);
c@42 273 Type prevType = m_type;
c@42 274 if (v == 0) m_type = TypeMFCC;
c@42 275 else if (v == 1) m_type = TypeChroma;
c@42 276 if (m_type != prevType) m_blockSize = 0;
c@42 277 return;
c@42 278 }
c@42 279
c@41 280 std::cerr << "WARNING: SimilarityPlugin::setParameter: unknown parameter \""
c@41 281 << param << "\"" << std::endl;
c@41 282 }
c@41 283
c@41 284 SimilarityPlugin::OutputList
c@41 285 SimilarityPlugin::getOutputDescriptors() const
c@41 286 {
c@41 287 OutputList list;
c@41 288
c@41 289 OutputDescriptor similarity;
c@43 290 similarity.identifier = "distancematrix";
c@43 291 similarity.name = "Distance Matrix";
c@43 292 similarity.description = "Distance matrix for similarity metric. Smaller = more similar. Should be symmetrical.";
c@41 293 similarity.unit = "";
c@41 294 similarity.hasFixedBinCount = true;
c@41 295 similarity.binCount = m_channels;
c@41 296 similarity.hasKnownExtents = false;
c@41 297 similarity.isQuantized = false;
c@41 298 similarity.sampleType = OutputDescriptor::FixedSampleRate;
c@41 299 similarity.sampleRate = 1;
c@41 300
c@43 301 m_distanceMatrixOutput = list.size();
c@41 302 list.push_back(similarity);
c@41 303
c@43 304 OutputDescriptor simvec;
c@43 305 simvec.identifier = "distancevector";
c@43 306 simvec.name = "Distance from First Channel";
c@43 307 simvec.description = "Distance vector for similarity of each channel to the first channel. Smaller = more similar.";
c@43 308 simvec.unit = "";
c@43 309 simvec.hasFixedBinCount = true;
c@43 310 simvec.binCount = m_channels;
c@43 311 simvec.hasKnownExtents = false;
c@43 312 simvec.isQuantized = false;
c@43 313 simvec.sampleType = OutputDescriptor::FixedSampleRate;
c@43 314 simvec.sampleRate = 1;
c@43 315
c@43 316 m_distanceVectorOutput = list.size();
c@43 317 list.push_back(simvec);
c@43 318
c@44 319 OutputDescriptor sortvec;
c@44 320 sortvec.identifier = "sorteddistancevector";
c@44 321 sortvec.name = "Ordered Distances from First Channel";
c@44 322 sortvec.description = "Vector of the order of other channels in similarity to the first, followed by distance vector for similarity of each to the first. Smaller = more similar.";
c@44 323 sortvec.unit = "";
c@44 324 sortvec.hasFixedBinCount = true;
c@44 325 sortvec.binCount = m_channels;
c@44 326 sortvec.hasKnownExtents = false;
c@44 327 sortvec.isQuantized = false;
c@44 328 sortvec.sampleType = OutputDescriptor::FixedSampleRate;
c@44 329 sortvec.sampleRate = 1;
c@44 330
c@44 331 m_sortedVectorOutput = list.size();
c@44 332 list.push_back(sortvec);
c@44 333
c@41 334 OutputDescriptor means;
c@41 335 means.identifier = "means";
c@42 336 means.name = "Feature Means";
c@43 337 means.description = "Means of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
c@41 338 means.unit = "";
c@41 339 means.hasFixedBinCount = true;
c@43 340 means.binCount = m_featureColumnSize;
c@41 341 means.hasKnownExtents = false;
c@41 342 means.isQuantized = false;
c@43 343 means.sampleType = OutputDescriptor::FixedSampleRate;
c@43 344 means.sampleRate = 1;
c@41 345
c@43 346 m_meansOutput = list.size();
c@41 347 list.push_back(means);
c@41 348
c@41 349 OutputDescriptor variances;
c@41 350 variances.identifier = "variances";
c@42 351 variances.name = "Feature Variances";
c@43 352 variances.description = "Variances of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
c@41 353 variances.unit = "";
c@41 354 variances.hasFixedBinCount = true;
c@43 355 variances.binCount = m_featureColumnSize;
c@41 356 variances.hasKnownExtents = false;
c@41 357 variances.isQuantized = false;
c@43 358 variances.sampleType = OutputDescriptor::FixedSampleRate;
c@43 359 variances.sampleRate = 1;
c@41 360
c@43 361 m_variancesOutput = list.size();
c@41 362 list.push_back(variances);
c@41 363
c@41 364 return list;
c@41 365 }
c@41 366
c@41 367 SimilarityPlugin::FeatureSet
c@41 368 SimilarityPlugin::process(const float *const *inputBuffers, Vamp::RealTime /* timestamp */)
c@41 369 {
c@41 370 double *dblbuf = new double[m_blockSize];
c@41 371 double *decbuf = dblbuf;
c@42 372 if (m_decimator) decbuf = new double[m_fftSize];
c@42 373
c@42 374 double *raw = 0;
c@42 375 bool ownRaw = false;
c@42 376
c@42 377 if (m_type == TypeMFCC) {
c@42 378 raw = new double[m_featureColumnSize];
c@42 379 ownRaw = true;
c@42 380 }
c@41 381
c@43 382 float threshold = 1e-10;
c@43 383
c@41 384 for (size_t c = 0; c < m_channels; ++c) {
c@41 385
c@43 386 bool empty = true;
c@43 387
c@41 388 for (int i = 0; i < m_blockSize; ++i) {
c@43 389 float val = inputBuffers[c][i];
c@43 390 if (fabs(val) > threshold) empty = false;
c@43 391 dblbuf[i] = val;
c@41 392 }
c@41 393
c@43 394 if (empty) continue;
c@44 395 m_lastNonEmptyFrame[c] = m_frameNo;
c@43 396
c@41 397 if (m_decimator) {
c@41 398 m_decimator->process(dblbuf, decbuf);
c@41 399 }
c@42 400
c@42 401 if (m_type == TypeMFCC) {
c@42 402 m_mfcc->process(m_fftSize, decbuf, raw);
c@42 403 } else if (m_type == TypeChroma) {
c@42 404 raw = m_chromagram->process(decbuf);
c@42 405 }
c@41 406
c@42 407 FeatureColumn mf(m_featureColumnSize);
c@44 408 // std::cout << m_frameNo << ":" << c << ": ";
c@44 409 for (int i = 0; i < m_featureColumnSize; ++i) {
c@44 410 mf[i] = raw[i];
c@44 411 // std::cout << raw[i] << " ";
c@44 412 }
c@44 413 // std::cout << std::endl;
c@41 414
c@42 415 m_values[c].push_back(mf);
c@41 416 }
c@41 417
c@41 418 if (m_decimator) delete[] decbuf;
c@41 419 delete[] dblbuf;
c@42 420
c@42 421 if (ownRaw) delete[] raw;
c@41 422
c@44 423 ++m_frameNo;
c@44 424
c@41 425 return FeatureSet();
c@41 426 }
c@41 427
c@41 428 SimilarityPlugin::FeatureSet
c@41 429 SimilarityPlugin::getRemainingFeatures()
c@41 430 {
c@42 431 std::vector<FeatureColumn> m(m_channels);
c@42 432 std::vector<FeatureColumn> v(m_channels);
c@41 433
c@41 434 for (int i = 0; i < m_channels; ++i) {
c@41 435
c@42 436 FeatureColumn mean(m_featureColumnSize), variance(m_featureColumnSize);
c@41 437
c@42 438 for (int j = 0; j < m_featureColumnSize; ++j) {
c@41 439
c@43 440 mean[j] = 0.0;
c@43 441 variance[j] = 0.0;
c@41 442 int count;
c@41 443
c@44 444 // We want to take values up to, but not including, the
c@44 445 // last non-empty frame (which may be partial)
c@43 446
c@44 447 int sz = m_lastNonEmptyFrame[i];
c@44 448 if (sz < 0) sz = 0;
c@43 449
c@43 450 // std::cout << "\nBin " << j << ":" << std::endl;
c@42 451
c@41 452 count = 0;
c@43 453 for (int k = 0; k < sz; ++k) {
c@42 454 double val = m_values[i][k][j];
c@42 455 // std::cout << val << " ";
c@41 456 if (isnan(val) || isinf(val)) continue;
c@41 457 mean[j] += val;
c@41 458 ++count;
c@41 459 }
c@41 460 if (count > 0) mean[j] /= count;
c@43 461 // std::cout << "\n" << count << " non-NaN non-inf values, so mean = " << mean[j] << std::endl;
c@41 462
c@41 463 count = 0;
c@43 464 for (int k = 0; k < sz; ++k) {
c@42 465 double val = ((m_values[i][k][j] - mean[j]) *
c@42 466 (m_values[i][k][j] - mean[j]));
c@41 467 if (isnan(val) || isinf(val)) continue;
c@41 468 variance[j] += val;
c@41 469 ++count;
c@41 470 }
c@41 471 if (count > 0) variance[j] /= count;
c@43 472 // std::cout << "... and variance = " << variance[j] << std::endl;
c@41 473 }
c@41 474
c@41 475 m[i] = mean;
c@41 476 v[i] = variance;
c@41 477 }
c@41 478
c@42 479 // we want to return a matrix of the distances between channels,
c@41 480 // but Vamp doesn't have a matrix return type so we actually
c@41 481 // return a series of vectors
c@41 482
c@41 483 std::vector<std::vector<double> > distances;
c@41 484
c@42 485 // "Despite the fact that MFCCs extracted from music are clearly
c@42 486 // not Gaussian, [14] showed, somewhat surprisingly, that a
c@42 487 // similarity function comparing single Gaussians modelling MFCCs
c@42 488 // for each track can perform as well as mixture models. A great
c@42 489 // advantage of using single Gaussians is that a simple closed
c@42 490 // form exists for the KL divergence." -- Mark Levy, "Lightweight
c@42 491 // measures for timbral similarity of musical audio"
c@42 492 // (http://www.elec.qmul.ac.uk/easaier/papers/mlevytimbralsimilarity.pdf)
c@42 493 //
c@42 494 // This code calculates a symmetrised distance metric based on the
c@42 495 // KL divergence of Gaussian models of the MFCC values.
c@42 496
c@41 497 for (int i = 0; i < m_channels; ++i) {
c@41 498 distances.push_back(std::vector<double>());
c@41 499 for (int j = 0; j < m_channels; ++j) {
c@42 500 double d = -2.0 * m_featureColumnSize;
c@42 501 for (int k = 0; k < m_featureColumnSize; ++k) {
c@42 502 // m[i][k] is the mean of feature bin k for channel i
c@42 503 // v[i][k] is the variance of feature bin k for channel i
c@41 504 d += v[i][k] / v[j][k] + v[j][k] / v[i][k];
c@41 505 d += (m[i][k] - m[j][k])
c@41 506 * (1.0 / v[i][k] + 1.0 / v[j][k])
c@41 507 * (m[i][k] - m[j][k]);
c@41 508 }
c@41 509 d /= 2.0;
c@41 510 distances[i].push_back(d);
c@41 511 }
c@41 512 }
c@41 513
c@44 514 // We give all features a timestamp, otherwise hosts will tend to
c@44 515 // stamp them at the end of the file, which is annoying
c@44 516
c@41 517 FeatureSet returnFeatures;
c@41 518
c@44 519 Feature feature;
c@44 520 feature.hasTimestamp = true;
c@44 521
c@43 522 Feature distanceVectorFeature;
c@43 523 distanceVectorFeature.label = "Distance from first channel";
c@44 524 distanceVectorFeature.hasTimestamp = true;
c@44 525 distanceVectorFeature.timestamp = Vamp::RealTime::zeroTime;
c@44 526
c@44 527 std::map<double, int> sorted;
c@44 528
c@44 529 char labelBuffer[100];
c@43 530
c@41 531 for (int i = 0; i < m_channels; ++i) {
c@41 532
c@41 533 feature.timestamp = Vamp::RealTime(i, 0);
c@41 534
c@44 535 sprintf(labelBuffer, "Means for channel %d", i+1);
c@44 536 feature.label = labelBuffer;
c@44 537
c@41 538 feature.values.clear();
c@42 539 for (int k = 0; k < m_featureColumnSize; ++k) {
c@41 540 feature.values.push_back(m[i][k]);
c@41 541 }
c@41 542
c@43 543 returnFeatures[m_meansOutput].push_back(feature);
c@41 544
c@44 545 sprintf(labelBuffer, "Variances for channel %d", i+1);
c@44 546 feature.label = labelBuffer;
c@44 547
c@41 548 feature.values.clear();
c@42 549 for (int k = 0; k < m_featureColumnSize; ++k) {
c@41 550 feature.values.push_back(v[i][k]);
c@41 551 }
c@41 552
c@43 553 returnFeatures[m_variancesOutput].push_back(feature);
c@41 554
c@41 555 feature.values.clear();
c@41 556 for (int j = 0; j < m_channels; ++j) {
c@41 557 feature.values.push_back(distances[i][j]);
c@41 558 }
c@43 559
c@44 560 sprintf(labelBuffer, "Distances from channel %d", i+1);
c@44 561 feature.label = labelBuffer;
c@41 562
c@43 563 returnFeatures[m_distanceMatrixOutput].push_back(feature);
c@43 564
c@43 565 distanceVectorFeature.values.push_back(distances[0][i]);
c@44 566
c@44 567 sorted[distances[0][i]] = i;
c@41 568 }
c@41 569
c@43 570 returnFeatures[m_distanceVectorOutput].push_back(distanceVectorFeature);
c@43 571
c@44 572 feature.label = "Order of channels by similarity to first channel";
c@44 573 feature.values.clear();
c@44 574 feature.timestamp = Vamp::RealTime(0, 0);
c@44 575
c@44 576 for (std::map<double, int>::iterator i = sorted.begin();
c@44 577 i != sorted.end(); ++i) {
c@44 578 feature.values.push_back(i->second);
c@44 579 }
c@44 580
c@44 581 returnFeatures[m_sortedVectorOutput].push_back(feature);
c@44 582
c@44 583 feature.label = "Ordered distances of channels from first channel";
c@44 584 feature.values.clear();
c@44 585 feature.timestamp = Vamp::RealTime(1, 0);
c@44 586
c@44 587 for (std::map<double, int>::iterator i = sorted.begin();
c@44 588 i != sorted.end(); ++i) {
c@44 589 feature.values.push_back(i->first);
c@44 590 }
c@44 591
c@44 592 returnFeatures[m_sortedVectorOutput].push_back(feature);
c@44 593
c@41 594 return returnFeatures;
c@41 595 }