c@41
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@41
|
2
|
c@41
|
3 /*
|
c@41
|
4 * SegmenterPlugin.cpp
|
c@41
|
5 *
|
c@41
|
6 * Copyright 2008 Centre for Digital Music, Queen Mary, University of London.
|
c@41
|
7 * All rights reserved.
|
c@41
|
8 */
|
c@41
|
9
|
c@41
|
10 #include <iostream>
|
c@41
|
11 #include <sstream>
|
c@41
|
12
|
c@41
|
13 #include "SimilarityPlugin.h"
|
c@42
|
14 #include "base/Pitch.h"
|
c@41
|
15 #include "dsp/mfcc/MFCC.h"
|
c@42
|
16 #include "dsp/chromagram/Chromagram.h"
|
c@41
|
17 #include "dsp/rateconversion/Decimator.h"
|
c@41
|
18
|
c@41
|
19 using std::string;
|
c@41
|
20 using std::vector;
|
c@41
|
21 using std::cerr;
|
c@41
|
22 using std::endl;
|
c@41
|
23 using std::ostringstream;
|
c@41
|
24
|
c@41
|
25 SimilarityPlugin::SimilarityPlugin(float inputSampleRate) :
|
c@41
|
26 Plugin(inputSampleRate),
|
c@42
|
27 m_type(TypeMFCC),
|
c@41
|
28 m_mfcc(0),
|
c@42
|
29 m_chromagram(0),
|
c@41
|
30 m_decimator(0),
|
c@42
|
31 m_featureColumnSize(20),
|
c@41
|
32 m_blockSize(0),
|
c@41
|
33 m_channels(0)
|
c@41
|
34 {
|
c@41
|
35
|
c@41
|
36 }
|
c@41
|
37
|
c@41
|
38 SimilarityPlugin::~SimilarityPlugin()
|
c@41
|
39 {
|
c@41
|
40 delete m_mfcc;
|
c@42
|
41 delete m_chromagram;
|
c@41
|
42 delete m_decimator;
|
c@41
|
43 }
|
c@41
|
44
|
c@41
|
45 string
|
c@41
|
46 SimilarityPlugin::getIdentifier() const
|
c@41
|
47 {
|
c@41
|
48 return "qm-similarity";
|
c@41
|
49 }
|
c@41
|
50
|
c@41
|
51 string
|
c@41
|
52 SimilarityPlugin::getName() const
|
c@41
|
53 {
|
c@41
|
54 return "Similarity";
|
c@41
|
55 }
|
c@41
|
56
|
c@41
|
57 string
|
c@41
|
58 SimilarityPlugin::getDescription() const
|
c@41
|
59 {
|
c@42
|
60 return "Return a distance matrix for similarity between the input audio channels";
|
c@41
|
61 }
|
c@41
|
62
|
c@41
|
63 string
|
c@41
|
64 SimilarityPlugin::getMaker() const
|
c@41
|
65 {
|
c@41
|
66 return "Chris Cannam, Queen Mary, University of London";
|
c@41
|
67 }
|
c@41
|
68
|
c@41
|
69 int
|
c@41
|
70 SimilarityPlugin::getPluginVersion() const
|
c@41
|
71 {
|
c@41
|
72 return 1;
|
c@41
|
73 }
|
c@41
|
74
|
c@41
|
75 string
|
c@41
|
76 SimilarityPlugin::getCopyright() const
|
c@41
|
77 {
|
c@41
|
78 return "Copyright (c) 2008 - All Rights Reserved";
|
c@41
|
79 }
|
c@41
|
80
|
c@41
|
81 size_t
|
c@41
|
82 SimilarityPlugin::getMinChannelCount() const
|
c@41
|
83 {
|
c@41
|
84 return 2;
|
c@41
|
85 }
|
c@41
|
86
|
c@41
|
87 size_t
|
c@41
|
88 SimilarityPlugin::getMaxChannelCount() const
|
c@41
|
89 {
|
c@41
|
90 return 1024;
|
c@41
|
91 }
|
c@41
|
92
|
c@41
|
93 bool
|
c@41
|
94 SimilarityPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@41
|
95 {
|
c@41
|
96 if (channels < getMinChannelCount() ||
|
c@41
|
97 channels > getMaxChannelCount()) return false;
|
c@41
|
98
|
c@41
|
99 if (stepSize != getPreferredStepSize()) {
|
c@41
|
100 std::cerr << "SimilarityPlugin::initialise: supplied step size "
|
c@41
|
101 << stepSize << " differs from required step size "
|
c@41
|
102 << getPreferredStepSize() << std::endl;
|
c@41
|
103 return false;
|
c@41
|
104 }
|
c@41
|
105
|
c@41
|
106 if (blockSize != getPreferredBlockSize()) {
|
c@41
|
107 std::cerr << "SimilarityPlugin::initialise: supplied block size "
|
c@41
|
108 << blockSize << " differs from required block size "
|
c@41
|
109 << getPreferredBlockSize() << std::endl;
|
c@41
|
110 return false;
|
c@41
|
111 }
|
c@41
|
112
|
c@41
|
113 m_blockSize = blockSize;
|
c@41
|
114 m_channels = channels;
|
c@41
|
115
|
c@41
|
116 int decimationFactor = getDecimationFactor();
|
c@41
|
117 if (decimationFactor > 1) {
|
c@42
|
118 m_decimator = new Decimator(m_blockSize, decimationFactor);
|
c@41
|
119 }
|
c@41
|
120
|
c@42
|
121 if (m_type == TypeMFCC) {
|
c@42
|
122
|
c@42
|
123 m_featureColumnSize = 20;
|
c@42
|
124
|
c@42
|
125 MFCCConfig config;
|
c@42
|
126 config.FS = lrintf(m_inputSampleRate) / decimationFactor;
|
c@42
|
127 config.fftsize = 2048;
|
c@42
|
128 config.nceps = m_featureColumnSize - 1;
|
c@42
|
129 config.want_c0 = true;
|
c@42
|
130 m_mfcc = new MFCC(config);
|
c@42
|
131 m_fftSize = m_mfcc->getfftlength();
|
c@42
|
132
|
c@42
|
133 } else if (m_type == TypeChroma) {
|
c@42
|
134
|
c@42
|
135 m_featureColumnSize = 12;
|
c@42
|
136
|
c@42
|
137 ChromaConfig config;
|
c@42
|
138 config.FS = lrintf(m_inputSampleRate) / decimationFactor;
|
c@42
|
139 config.min = Pitch::getFrequencyForPitch(24, 0, 440);
|
c@42
|
140 config.max = Pitch::getFrequencyForPitch(96, 0, 440);
|
c@42
|
141 config.BPO = 12;
|
c@42
|
142 config.CQThresh = 0.0054;
|
c@42
|
143 config.isNormalised = true;
|
c@42
|
144 m_chromagram = new Chromagram(config);
|
c@42
|
145 m_fftSize = m_chromagram->getFrameSize();
|
c@42
|
146
|
c@42
|
147 std::cerr << "min = "<< config.min << ", max = " << config.max << std::endl;
|
c@42
|
148
|
c@42
|
149 } else {
|
c@42
|
150
|
c@42
|
151 std::cerr << "SimilarityPlugin::initialise: internal error: unknown type " << m_type << std::endl;
|
c@42
|
152 return false;
|
c@42
|
153 }
|
c@41
|
154
|
c@41
|
155 for (int i = 0; i < m_channels; ++i) {
|
c@42
|
156 m_values.push_back(FeatureMatrix());
|
c@41
|
157 }
|
c@41
|
158
|
c@41
|
159 return true;
|
c@41
|
160 }
|
c@41
|
161
|
c@41
|
162 void
|
c@41
|
163 SimilarityPlugin::reset()
|
c@41
|
164 {
|
c@41
|
165 //!!!
|
c@41
|
166 }
|
c@41
|
167
|
c@41
|
168 int
|
c@41
|
169 SimilarityPlugin::getDecimationFactor() const
|
c@41
|
170 {
|
c@41
|
171 int rate = lrintf(m_inputSampleRate);
|
c@41
|
172 int internalRate = 22050;
|
c@41
|
173 int decimationFactor = rate / internalRate;
|
c@41
|
174 if (decimationFactor < 1) decimationFactor = 1;
|
c@41
|
175
|
c@41
|
176 // must be a power of two
|
c@41
|
177 while (decimationFactor & (decimationFactor - 1)) ++decimationFactor;
|
c@41
|
178
|
c@41
|
179 return decimationFactor;
|
c@41
|
180 }
|
c@41
|
181
|
c@41
|
182 size_t
|
c@41
|
183 SimilarityPlugin::getPreferredStepSize() const
|
c@41
|
184 {
|
c@42
|
185 if (m_blockSize == 0) calculateBlockSize();
|
c@42
|
186 return m_blockSize/2;
|
c@41
|
187 }
|
c@41
|
188
|
c@41
|
189 size_t
|
c@41
|
190 SimilarityPlugin::getPreferredBlockSize() const
|
c@41
|
191 {
|
c@42
|
192 if (m_blockSize == 0) calculateBlockSize();
|
c@42
|
193 return m_blockSize;
|
c@42
|
194 }
|
c@42
|
195
|
c@42
|
196 void
|
c@42
|
197 SimilarityPlugin::calculateBlockSize() const
|
c@42
|
198 {
|
c@42
|
199 if (m_blockSize != 0) return;
|
c@42
|
200 int decimationFactor = getDecimationFactor();
|
c@42
|
201 if (m_type == TypeChroma) {
|
c@42
|
202 ChromaConfig config;
|
c@42
|
203 config.FS = lrintf(m_inputSampleRate) / decimationFactor;
|
c@42
|
204 config.min = Pitch::getFrequencyForPitch(24, 0, 440);
|
c@42
|
205 config.max = Pitch::getFrequencyForPitch(96, 0, 440);
|
c@42
|
206 config.BPO = 12;
|
c@42
|
207 config.CQThresh = 0.0054;
|
c@42
|
208 config.isNormalised = false;
|
c@42
|
209 Chromagram *c = new Chromagram(config);
|
c@42
|
210 size_t sz = c->getFrameSize();
|
c@42
|
211 delete c;
|
c@42
|
212 m_blockSize = sz * decimationFactor;
|
c@42
|
213 } else {
|
c@42
|
214 m_blockSize = 2048 * decimationFactor;
|
c@42
|
215 }
|
c@41
|
216 }
|
c@41
|
217
|
c@41
|
218 SimilarityPlugin::ParameterList SimilarityPlugin::getParameterDescriptors() const
|
c@41
|
219 {
|
c@41
|
220 ParameterList list;
|
c@42
|
221
|
c@42
|
222 ParameterDescriptor desc;
|
c@42
|
223 desc.identifier = "featureType";
|
c@42
|
224 desc.name = "Feature Type";
|
c@42
|
225 desc.description = "";//!!!
|
c@42
|
226 desc.unit = "";
|
c@42
|
227 desc.minValue = 0;
|
c@42
|
228 desc.maxValue = 1;
|
c@42
|
229 desc.defaultValue = 0;
|
c@42
|
230 desc.isQuantized = true;
|
c@42
|
231 desc.quantizeStep = 1;
|
c@42
|
232 desc.valueNames.push_back("Timbral (MFCC)");
|
c@42
|
233 desc.valueNames.push_back("Chromatic (Chroma)");
|
c@42
|
234 list.push_back(desc);
|
c@42
|
235
|
c@41
|
236 return list;
|
c@41
|
237 }
|
c@41
|
238
|
c@41
|
239 float
|
c@41
|
240 SimilarityPlugin::getParameter(std::string param) const
|
c@41
|
241 {
|
c@42
|
242 if (param == "featureType") {
|
c@42
|
243 if (m_type == TypeMFCC) return 0;
|
c@42
|
244 else if (m_type == TypeChroma) return 1;
|
c@42
|
245 else return 0;
|
c@42
|
246 }
|
c@42
|
247
|
c@41
|
248 std::cerr << "WARNING: SimilarityPlugin::getParameter: unknown parameter \""
|
c@41
|
249 << param << "\"" << std::endl;
|
c@41
|
250 return 0.0;
|
c@41
|
251 }
|
c@41
|
252
|
c@41
|
253 void
|
c@41
|
254 SimilarityPlugin::setParameter(std::string param, float value)
|
c@41
|
255 {
|
c@42
|
256 if (param == "featureType") {
|
c@42
|
257 int v = int(value + 0.1);
|
c@42
|
258 Type prevType = m_type;
|
c@42
|
259 if (v == 0) m_type = TypeMFCC;
|
c@42
|
260 else if (v == 1) m_type = TypeChroma;
|
c@42
|
261 if (m_type != prevType) m_blockSize = 0;
|
c@42
|
262 return;
|
c@42
|
263 }
|
c@42
|
264
|
c@41
|
265 std::cerr << "WARNING: SimilarityPlugin::setParameter: unknown parameter \""
|
c@41
|
266 << param << "\"" << std::endl;
|
c@41
|
267 }
|
c@41
|
268
|
c@41
|
269 SimilarityPlugin::OutputList
|
c@41
|
270 SimilarityPlugin::getOutputDescriptors() const
|
c@41
|
271 {
|
c@41
|
272 OutputList list;
|
c@41
|
273
|
c@41
|
274 OutputDescriptor similarity;
|
c@41
|
275 similarity.identifier = "distance";
|
c@41
|
276 similarity.name = "Distance";
|
c@42
|
277 similarity.description = "Distance Metric for Similarity (smaller = more similar)";
|
c@41
|
278 similarity.unit = "";
|
c@41
|
279 similarity.hasFixedBinCount = true;
|
c@41
|
280 similarity.binCount = m_channels;
|
c@41
|
281 similarity.hasKnownExtents = false;
|
c@41
|
282 similarity.isQuantized = false;
|
c@41
|
283 similarity.sampleType = OutputDescriptor::FixedSampleRate;
|
c@41
|
284 similarity.sampleRate = 1;
|
c@41
|
285
|
c@41
|
286 list.push_back(similarity);
|
c@41
|
287
|
c@41
|
288 OutputDescriptor means;
|
c@41
|
289 means.identifier = "means";
|
c@42
|
290 means.name = "Feature Means";
|
c@41
|
291 means.description = "";
|
c@41
|
292 means.unit = "";
|
c@41
|
293 means.hasFixedBinCount = true;
|
c@41
|
294 means.binCount = m_channels;
|
c@41
|
295 means.hasKnownExtents = false;
|
c@41
|
296 means.isQuantized = false;
|
c@41
|
297 means.sampleType = OutputDescriptor::VariableSampleRate;
|
c@41
|
298 means.sampleRate = m_inputSampleRate / getPreferredStepSize();
|
c@41
|
299
|
c@41
|
300 list.push_back(means);
|
c@41
|
301
|
c@41
|
302 OutputDescriptor variances;
|
c@41
|
303 variances.identifier = "variances";
|
c@42
|
304 variances.name = "Feature Variances";
|
c@41
|
305 variances.description = "";
|
c@41
|
306 variances.unit = "";
|
c@41
|
307 variances.hasFixedBinCount = true;
|
c@41
|
308 variances.binCount = m_channels;
|
c@41
|
309 variances.hasKnownExtents = false;
|
c@41
|
310 variances.isQuantized = false;
|
c@41
|
311 variances.sampleType = OutputDescriptor::VariableSampleRate;
|
c@41
|
312 variances.sampleRate = m_inputSampleRate / getPreferredStepSize();
|
c@41
|
313
|
c@41
|
314 list.push_back(variances);
|
c@41
|
315
|
c@41
|
316 return list;
|
c@41
|
317 }
|
c@41
|
318
|
c@41
|
319 SimilarityPlugin::FeatureSet
|
c@41
|
320 SimilarityPlugin::process(const float *const *inputBuffers, Vamp::RealTime /* timestamp */)
|
c@41
|
321 {
|
c@41
|
322 double *dblbuf = new double[m_blockSize];
|
c@41
|
323 double *decbuf = dblbuf;
|
c@42
|
324 if (m_decimator) decbuf = new double[m_fftSize];
|
c@42
|
325
|
c@42
|
326 double *raw = 0;
|
c@42
|
327 bool ownRaw = false;
|
c@42
|
328
|
c@42
|
329 if (m_type == TypeMFCC) {
|
c@42
|
330 raw = new double[m_featureColumnSize];
|
c@42
|
331 ownRaw = true;
|
c@42
|
332 }
|
c@41
|
333
|
c@41
|
334 for (size_t c = 0; c < m_channels; ++c) {
|
c@41
|
335
|
c@41
|
336 for (int i = 0; i < m_blockSize; ++i) {
|
c@41
|
337 dblbuf[i] = inputBuffers[c][i];
|
c@41
|
338 }
|
c@41
|
339
|
c@41
|
340 if (m_decimator) {
|
c@41
|
341 m_decimator->process(dblbuf, decbuf);
|
c@41
|
342 }
|
c@42
|
343
|
c@42
|
344 if (m_type == TypeMFCC) {
|
c@42
|
345 m_mfcc->process(m_fftSize, decbuf, raw);
|
c@42
|
346 } else if (m_type == TypeChroma) {
|
c@42
|
347 raw = m_chromagram->process(decbuf);
|
c@42
|
348 }
|
c@41
|
349
|
c@42
|
350 FeatureColumn mf(m_featureColumnSize);
|
c@42
|
351 for (int i = 0; i < m_featureColumnSize; ++i) mf[i] = raw[i];
|
c@41
|
352
|
c@42
|
353 m_values[c].push_back(mf);
|
c@41
|
354 }
|
c@41
|
355
|
c@41
|
356 if (m_decimator) delete[] decbuf;
|
c@41
|
357 delete[] dblbuf;
|
c@42
|
358
|
c@42
|
359 if (ownRaw) delete[] raw;
|
c@41
|
360
|
c@41
|
361 return FeatureSet();
|
c@41
|
362 }
|
c@41
|
363
|
c@41
|
364 SimilarityPlugin::FeatureSet
|
c@41
|
365 SimilarityPlugin::getRemainingFeatures()
|
c@41
|
366 {
|
c@42
|
367 std::vector<FeatureColumn> m(m_channels);
|
c@42
|
368 std::vector<FeatureColumn> v(m_channels);
|
c@41
|
369
|
c@41
|
370 for (int i = 0; i < m_channels; ++i) {
|
c@41
|
371
|
c@42
|
372 FeatureColumn mean(m_featureColumnSize), variance(m_featureColumnSize);
|
c@41
|
373
|
c@42
|
374 for (int j = 0; j < m_featureColumnSize; ++j) {
|
c@41
|
375
|
c@41
|
376 mean[j] = variance[j] = 0.0;
|
c@41
|
377 int count;
|
c@41
|
378
|
c@42
|
379 // std::cout << i << "," << j << ":" << std::endl;
|
c@42
|
380
|
c@41
|
381 count = 0;
|
c@42
|
382 for (int k = 0; k < m_values[i].size(); ++k) {
|
c@42
|
383 double val = m_values[i][k][j];
|
c@42
|
384 // std::cout << val << " ";
|
c@41
|
385 if (isnan(val) || isinf(val)) continue;
|
c@41
|
386 mean[j] += val;
|
c@41
|
387 ++count;
|
c@41
|
388 }
|
c@41
|
389 if (count > 0) mean[j] /= count;
|
c@42
|
390
|
c@42
|
391 // std::cout << std::endl;
|
c@41
|
392
|
c@41
|
393 count = 0;
|
c@42
|
394 for (int k = 0; k < m_values[i].size(); ++k) {
|
c@42
|
395 double val = ((m_values[i][k][j] - mean[j]) *
|
c@42
|
396 (m_values[i][k][j] - mean[j]));
|
c@41
|
397 if (isnan(val) || isinf(val)) continue;
|
c@41
|
398 variance[j] += val;
|
c@41
|
399 ++count;
|
c@41
|
400 }
|
c@41
|
401 if (count > 0) variance[j] /= count;
|
c@41
|
402 }
|
c@41
|
403
|
c@41
|
404 m[i] = mean;
|
c@41
|
405 v[i] = variance;
|
c@41
|
406 }
|
c@41
|
407
|
c@42
|
408 // we want to return a matrix of the distances between channels,
|
c@41
|
409 // but Vamp doesn't have a matrix return type so we actually
|
c@41
|
410 // return a series of vectors
|
c@41
|
411
|
c@41
|
412 std::vector<std::vector<double> > distances;
|
c@41
|
413
|
c@42
|
414 // "Despite the fact that MFCCs extracted from music are clearly
|
c@42
|
415 // not Gaussian, [14] showed, somewhat surprisingly, that a
|
c@42
|
416 // similarity function comparing single Gaussians modelling MFCCs
|
c@42
|
417 // for each track can perform as well as mixture models. A great
|
c@42
|
418 // advantage of using single Gaussians is that a simple closed
|
c@42
|
419 // form exists for the KL divergence." -- Mark Levy, "Lightweight
|
c@42
|
420 // measures for timbral similarity of musical audio"
|
c@42
|
421 // (http://www.elec.qmul.ac.uk/easaier/papers/mlevytimbralsimilarity.pdf)
|
c@42
|
422 //
|
c@42
|
423 // This code calculates a symmetrised distance metric based on the
|
c@42
|
424 // KL divergence of Gaussian models of the MFCC values.
|
c@42
|
425
|
c@41
|
426 for (int i = 0; i < m_channels; ++i) {
|
c@41
|
427 distances.push_back(std::vector<double>());
|
c@41
|
428 for (int j = 0; j < m_channels; ++j) {
|
c@42
|
429 double d = -2.0 * m_featureColumnSize;
|
c@42
|
430 for (int k = 0; k < m_featureColumnSize; ++k) {
|
c@42
|
431 // m[i][k] is the mean of feature bin k for channel i
|
c@42
|
432 // v[i][k] is the variance of feature bin k for channel i
|
c@41
|
433 d += v[i][k] / v[j][k] + v[j][k] / v[i][k];
|
c@41
|
434 d += (m[i][k] - m[j][k])
|
c@41
|
435 * (1.0 / v[i][k] + 1.0 / v[j][k])
|
c@41
|
436 * (m[i][k] - m[j][k]);
|
c@41
|
437 }
|
c@41
|
438 d /= 2.0;
|
c@41
|
439 distances[i].push_back(d);
|
c@41
|
440 }
|
c@41
|
441 }
|
c@41
|
442
|
c@41
|
443 FeatureSet returnFeatures;
|
c@41
|
444
|
c@41
|
445 for (int i = 0; i < m_channels; ++i) {
|
c@41
|
446
|
c@41
|
447 Feature feature;
|
c@41
|
448 feature.hasTimestamp = true; // otherwise hosts will tend to stamp them at the end of the file, which is annoying
|
c@41
|
449 feature.timestamp = Vamp::RealTime(i, 0);
|
c@41
|
450
|
c@41
|
451 feature.values.clear();
|
c@42
|
452 for (int k = 0; k < m_featureColumnSize; ++k) {
|
c@41
|
453 feature.values.push_back(m[i][k]);
|
c@41
|
454 }
|
c@41
|
455
|
c@41
|
456 returnFeatures[1].push_back(feature);
|
c@41
|
457
|
c@41
|
458 feature.values.clear();
|
c@42
|
459 for (int k = 0; k < m_featureColumnSize; ++k) {
|
c@41
|
460 feature.values.push_back(v[i][k]);
|
c@41
|
461 }
|
c@41
|
462
|
c@41
|
463 returnFeatures[2].push_back(feature);
|
c@41
|
464
|
c@41
|
465 feature.values.clear();
|
c@41
|
466 for (int j = 0; j < m_channels; ++j) {
|
c@41
|
467 feature.values.push_back(distances[i][j]);
|
c@41
|
468 }
|
c@41
|
469 ostringstream oss;
|
c@41
|
470 oss << "Distance from " << (i + 1);
|
c@41
|
471 feature.label = oss.str();
|
c@41
|
472
|
c@41
|
473 returnFeatures[0].push_back(feature);
|
c@41
|
474 }
|
c@41
|
475
|
c@41
|
476 return returnFeatures;
|
c@41
|
477 }
|