c@41
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@41
|
2
|
c@41
|
3 /*
|
c@41
|
4 * SegmenterPlugin.cpp
|
c@41
|
5 *
|
c@41
|
6 * Copyright 2008 Centre for Digital Music, Queen Mary, University of London.
|
c@41
|
7 * All rights reserved.
|
c@41
|
8 */
|
c@41
|
9
|
c@41
|
10 #include <iostream>
|
c@44
|
11 #include <cstdio>
|
c@41
|
12
|
c@41
|
13 #include "SimilarityPlugin.h"
|
c@42
|
14 #include "base/Pitch.h"
|
c@41
|
15 #include "dsp/mfcc/MFCC.h"
|
c@42
|
16 #include "dsp/chromagram/Chromagram.h"
|
c@41
|
17 #include "dsp/rateconversion/Decimator.h"
|
c@47
|
18 #include "dsp/rhythm/BeatSpectrum.h"
|
c@47
|
19 #include "maths/KLDivergence.h"
|
c@47
|
20 #include "maths/CosineDistance.h"
|
c@41
|
21
|
c@41
|
22 using std::string;
|
c@41
|
23 using std::vector;
|
c@41
|
24 using std::cerr;
|
c@41
|
25 using std::endl;
|
c@41
|
26 using std::ostringstream;
|
c@41
|
27
|
c@47
|
28 const float
|
c@47
|
29 SimilarityPlugin::m_noRhythm = 0.009;
|
c@47
|
30
|
c@47
|
31 const float
|
c@47
|
32 SimilarityPlugin::m_allRhythm = 0.991;
|
c@47
|
33
|
c@41
|
34 SimilarityPlugin::SimilarityPlugin(float inputSampleRate) :
|
c@41
|
35 Plugin(inputSampleRate),
|
c@42
|
36 m_type(TypeMFCC),
|
c@41
|
37 m_mfcc(0),
|
c@47
|
38 m_rhythmfcc(0),
|
c@42
|
39 m_chromagram(0),
|
c@41
|
40 m_decimator(0),
|
c@42
|
41 m_featureColumnSize(20),
|
c@48
|
42 m_rhythmWeighting(0.5f),
|
c@47
|
43 m_rhythmClipDuration(4.f), // seconds
|
c@47
|
44 m_rhythmClipOrigin(40.f), // seconds
|
c@47
|
45 m_rhythmClipFrameSize(0),
|
c@47
|
46 m_rhythmClipFrames(0),
|
c@47
|
47 m_rhythmColumnSize(20),
|
c@41
|
48 m_blockSize(0),
|
c@47
|
49 m_channels(0),
|
c@47
|
50 m_processRate(0),
|
c@47
|
51 m_frameNo(0),
|
c@47
|
52 m_done(false)
|
c@41
|
53 {
|
c@47
|
54 int rate = lrintf(m_inputSampleRate);
|
c@47
|
55 int internalRate = 22050;
|
c@47
|
56 int decimationFactor = rate / internalRate;
|
c@47
|
57 if (decimationFactor < 1) decimationFactor = 1;
|
c@47
|
58
|
c@47
|
59 // must be a power of two
|
c@47
|
60 while (decimationFactor & (decimationFactor - 1)) ++decimationFactor;
|
c@47
|
61
|
c@47
|
62 m_processRate = rate / decimationFactor; // may be 22050, 24000 etc
|
c@41
|
63 }
|
c@41
|
64
|
c@41
|
65 SimilarityPlugin::~SimilarityPlugin()
|
c@41
|
66 {
|
c@41
|
67 delete m_mfcc;
|
c@47
|
68 delete m_rhythmfcc;
|
c@42
|
69 delete m_chromagram;
|
c@41
|
70 delete m_decimator;
|
c@41
|
71 }
|
c@41
|
72
|
c@41
|
73 string
|
c@41
|
74 SimilarityPlugin::getIdentifier() const
|
c@41
|
75 {
|
c@41
|
76 return "qm-similarity";
|
c@41
|
77 }
|
c@41
|
78
|
c@41
|
79 string
|
c@41
|
80 SimilarityPlugin::getName() const
|
c@41
|
81 {
|
c@41
|
82 return "Similarity";
|
c@41
|
83 }
|
c@41
|
84
|
c@41
|
85 string
|
c@41
|
86 SimilarityPlugin::getDescription() const
|
c@41
|
87 {
|
c@42
|
88 return "Return a distance matrix for similarity between the input audio channels";
|
c@41
|
89 }
|
c@41
|
90
|
c@41
|
91 string
|
c@41
|
92 SimilarityPlugin::getMaker() const
|
c@41
|
93 {
|
c@47
|
94 return "Mark Levy, Kurt Jacobson and Chris Cannam, Queen Mary, University of London";
|
c@41
|
95 }
|
c@41
|
96
|
c@41
|
97 int
|
c@41
|
98 SimilarityPlugin::getPluginVersion() const
|
c@41
|
99 {
|
c@41
|
100 return 1;
|
c@41
|
101 }
|
c@41
|
102
|
c@41
|
103 string
|
c@41
|
104 SimilarityPlugin::getCopyright() const
|
c@41
|
105 {
|
c@41
|
106 return "Copyright (c) 2008 - All Rights Reserved";
|
c@41
|
107 }
|
c@41
|
108
|
c@41
|
109 size_t
|
c@41
|
110 SimilarityPlugin::getMinChannelCount() const
|
c@41
|
111 {
|
c@43
|
112 return 1;
|
c@41
|
113 }
|
c@41
|
114
|
c@41
|
115 size_t
|
c@41
|
116 SimilarityPlugin::getMaxChannelCount() const
|
c@41
|
117 {
|
c@41
|
118 return 1024;
|
c@41
|
119 }
|
c@41
|
120
|
c@41
|
121 bool
|
c@41
|
122 SimilarityPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@41
|
123 {
|
c@41
|
124 if (channels < getMinChannelCount() ||
|
c@41
|
125 channels > getMaxChannelCount()) return false;
|
c@41
|
126
|
c@41
|
127 if (stepSize != getPreferredStepSize()) {
|
c@43
|
128 //!!! actually this perhaps shouldn't be an error... similarly
|
c@43
|
129 //using more than getMaxChannelCount channels
|
c@41
|
130 std::cerr << "SimilarityPlugin::initialise: supplied step size "
|
c@41
|
131 << stepSize << " differs from required step size "
|
c@41
|
132 << getPreferredStepSize() << std::endl;
|
c@41
|
133 return false;
|
c@41
|
134 }
|
c@41
|
135
|
c@41
|
136 if (blockSize != getPreferredBlockSize()) {
|
c@41
|
137 std::cerr << "SimilarityPlugin::initialise: supplied block size "
|
c@41
|
138 << blockSize << " differs from required block size "
|
c@41
|
139 << getPreferredBlockSize() << std::endl;
|
c@41
|
140 return false;
|
c@41
|
141 }
|
c@41
|
142
|
c@41
|
143 m_blockSize = blockSize;
|
c@41
|
144 m_channels = channels;
|
c@41
|
145
|
c@44
|
146 m_lastNonEmptyFrame = std::vector<int>(m_channels);
|
c@44
|
147 for (int i = 0; i < m_channels; ++i) m_lastNonEmptyFrame[i] = -1;
|
c@44
|
148 m_frameNo = 0;
|
c@44
|
149
|
c@41
|
150 int decimationFactor = getDecimationFactor();
|
c@41
|
151 if (decimationFactor > 1) {
|
c@42
|
152 m_decimator = new Decimator(m_blockSize, decimationFactor);
|
c@41
|
153 }
|
c@41
|
154
|
c@42
|
155 if (m_type == TypeMFCC) {
|
c@42
|
156
|
c@42
|
157 m_featureColumnSize = 20;
|
c@42
|
158
|
c@47
|
159 MFCCConfig config(m_processRate);
|
c@42
|
160 config.fftsize = 2048;
|
c@42
|
161 config.nceps = m_featureColumnSize - 1;
|
c@42
|
162 config.want_c0 = true;
|
c@45
|
163 config.logpower = 1;
|
c@42
|
164 m_mfcc = new MFCC(config);
|
c@42
|
165 m_fftSize = m_mfcc->getfftlength();
|
c@47
|
166 m_rhythmClipFrameSize = m_fftSize / 4;
|
c@42
|
167
|
c@43
|
168 std::cerr << "MFCC FS = " << config.FS << ", FFT size = " << m_fftSize<< std::endl;
|
c@43
|
169
|
c@42
|
170 } else if (m_type == TypeChroma) {
|
c@42
|
171
|
c@42
|
172 m_featureColumnSize = 12;
|
c@42
|
173
|
c@42
|
174 ChromaConfig config;
|
c@47
|
175 config.FS = m_processRate;
|
c@42
|
176 config.min = Pitch::getFrequencyForPitch(24, 0, 440);
|
c@42
|
177 config.max = Pitch::getFrequencyForPitch(96, 0, 440);
|
c@42
|
178 config.BPO = 12;
|
c@42
|
179 config.CQThresh = 0.0054;
|
c@42
|
180 config.isNormalised = true;
|
c@42
|
181 m_chromagram = new Chromagram(config);
|
c@42
|
182 m_fftSize = m_chromagram->getFrameSize();
|
c@42
|
183
|
c@47
|
184 std::cerr << "fftsize = " << m_fftSize << std::endl;
|
c@47
|
185
|
c@47
|
186 m_rhythmClipFrameSize = m_fftSize / 16;
|
c@47
|
187 while (m_rhythmClipFrameSize < 512) m_rhythmClipFrameSize *= 2;
|
c@47
|
188 std::cerr << "m_rhythmClipFrameSize = " << m_rhythmClipFrameSize << std::endl;
|
c@47
|
189
|
c@42
|
190 std::cerr << "min = "<< config.min << ", max = " << config.max << std::endl;
|
c@42
|
191
|
c@42
|
192 } else {
|
c@42
|
193
|
c@42
|
194 std::cerr << "SimilarityPlugin::initialise: internal error: unknown type " << m_type << std::endl;
|
c@42
|
195 return false;
|
c@42
|
196 }
|
c@41
|
197
|
c@47
|
198 if (needRhythm()) {
|
c@47
|
199 m_rhythmClipFrames =
|
c@47
|
200 int(ceil((m_rhythmClipDuration * m_processRate)
|
c@47
|
201 / m_rhythmClipFrameSize));
|
c@47
|
202 std::cerr << "SimilarityPlugin::initialise: rhythm clip is "
|
c@47
|
203 << m_rhythmClipFrames << " frames of size "
|
c@47
|
204 << m_rhythmClipFrameSize << " at process rate "
|
c@47
|
205 << m_processRate << " ( = "
|
c@47
|
206 << (float(m_rhythmClipFrames * m_rhythmClipFrameSize) / m_processRate) << " sec )"
|
c@47
|
207 << std::endl;
|
c@47
|
208
|
c@47
|
209 MFCCConfig config(m_processRate);
|
c@47
|
210 config.fftsize = m_rhythmClipFrameSize;
|
c@47
|
211 config.nceps = m_featureColumnSize - 1;
|
c@47
|
212 config.want_c0 = true;
|
c@47
|
213 config.logpower = 1;
|
c@47
|
214 config.window = RectangularWindow; // because no overlap
|
c@47
|
215 m_rhythmfcc = new MFCC(config);
|
c@47
|
216 }
|
c@47
|
217
|
c@41
|
218 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
219
|
c@42
|
220 m_values.push_back(FeatureMatrix());
|
c@47
|
221
|
c@47
|
222 if (needRhythm()) {
|
c@47
|
223 m_rhythmValues.push_back(FeatureColumnQueue());
|
c@47
|
224 }
|
c@41
|
225 }
|
c@41
|
226
|
c@47
|
227 m_done = false;
|
c@47
|
228
|
c@41
|
229 return true;
|
c@41
|
230 }
|
c@41
|
231
|
c@41
|
232 void
|
c@41
|
233 SimilarityPlugin::reset()
|
c@41
|
234 {
|
c@41
|
235 //!!!
|
c@47
|
236 m_done = false;
|
c@41
|
237 }
|
c@41
|
238
|
c@41
|
239 int
|
c@41
|
240 SimilarityPlugin::getDecimationFactor() const
|
c@41
|
241 {
|
c@41
|
242 int rate = lrintf(m_inputSampleRate);
|
c@47
|
243 return rate / m_processRate;
|
c@41
|
244 }
|
c@41
|
245
|
c@41
|
246 size_t
|
c@41
|
247 SimilarityPlugin::getPreferredStepSize() const
|
c@41
|
248 {
|
c@42
|
249 if (m_blockSize == 0) calculateBlockSize();
|
c@47
|
250
|
c@47
|
251 // there is also an assumption to this effect in process()
|
c@47
|
252 // (referring to m_fftSize/2 instead of a literal post-decimation
|
c@47
|
253 // step size):
|
c@45
|
254 return m_blockSize/2;
|
c@41
|
255 }
|
c@41
|
256
|
c@41
|
257 size_t
|
c@41
|
258 SimilarityPlugin::getPreferredBlockSize() const
|
c@41
|
259 {
|
c@42
|
260 if (m_blockSize == 0) calculateBlockSize();
|
c@42
|
261 return m_blockSize;
|
c@42
|
262 }
|
c@42
|
263
|
c@42
|
264 void
|
c@42
|
265 SimilarityPlugin::calculateBlockSize() const
|
c@42
|
266 {
|
c@42
|
267 if (m_blockSize != 0) return;
|
c@42
|
268 int decimationFactor = getDecimationFactor();
|
c@42
|
269 if (m_type == TypeChroma) {
|
c@42
|
270 ChromaConfig config;
|
c@47
|
271 config.FS = m_processRate;
|
c@42
|
272 config.min = Pitch::getFrequencyForPitch(24, 0, 440);
|
c@42
|
273 config.max = Pitch::getFrequencyForPitch(96, 0, 440);
|
c@42
|
274 config.BPO = 12;
|
c@42
|
275 config.CQThresh = 0.0054;
|
c@42
|
276 config.isNormalised = false;
|
c@42
|
277 Chromagram *c = new Chromagram(config);
|
c@42
|
278 size_t sz = c->getFrameSize();
|
c@42
|
279 delete c;
|
c@42
|
280 m_blockSize = sz * decimationFactor;
|
c@42
|
281 } else {
|
c@42
|
282 m_blockSize = 2048 * decimationFactor;
|
c@42
|
283 }
|
c@41
|
284 }
|
c@41
|
285
|
c@41
|
286 SimilarityPlugin::ParameterList SimilarityPlugin::getParameterDescriptors() const
|
c@41
|
287 {
|
c@41
|
288 ParameterList list;
|
c@42
|
289
|
c@42
|
290 ParameterDescriptor desc;
|
c@42
|
291 desc.identifier = "featureType";
|
c@42
|
292 desc.name = "Feature Type";
|
c@48
|
293 desc.description = "Audio feature used for similarity measure. Timbral: use the first 20 MFCCs (19 plus C0). Chromatic: use 12 bin-per-octave chroma. Rhythmic: compare beat spectra of short regions.";
|
c@42
|
294 desc.unit = "";
|
c@42
|
295 desc.minValue = 0;
|
c@48
|
296 desc.maxValue = 4;
|
c@48
|
297 desc.defaultValue = 1;
|
c@42
|
298 desc.isQuantized = true;
|
c@42
|
299 desc.quantizeStep = 1;
|
c@48
|
300 desc.valueNames.push_back("Timbre");
|
c@48
|
301 desc.valueNames.push_back("Timbre and Rhythm");
|
c@48
|
302 desc.valueNames.push_back("Chroma");
|
c@48
|
303 desc.valueNames.push_back("Chroma and Rhythm");
|
c@48
|
304 desc.valueNames.push_back("Rhythm only");
|
c@42
|
305 list.push_back(desc);
|
c@48
|
306 /*
|
c@47
|
307 desc.identifier = "rhythmWeighting";
|
c@47
|
308 desc.name = "Influence of Rhythm";
|
c@47
|
309 desc.description = "Proportion of similarity measure made up from rhythmic similarity component, from 0 (entirely timbral or chromatic) to 100 (entirely rhythmic).";
|
c@47
|
310 desc.unit = "%";
|
c@47
|
311 desc.minValue = 0;
|
c@47
|
312 desc.maxValue = 100;
|
c@47
|
313 desc.defaultValue = 0;
|
c@48
|
314 desc.isQuantized = false;
|
c@47
|
315 desc.valueNames.clear();
|
c@47
|
316 list.push_back(desc);
|
c@48
|
317 */
|
c@41
|
318 return list;
|
c@41
|
319 }
|
c@41
|
320
|
c@41
|
321 float
|
c@41
|
322 SimilarityPlugin::getParameter(std::string param) const
|
c@41
|
323 {
|
c@42
|
324 if (param == "featureType") {
|
c@48
|
325
|
c@48
|
326 if (m_rhythmWeighting > m_allRhythm) {
|
c@48
|
327 return 4;
|
c@48
|
328 }
|
c@48
|
329
|
c@48
|
330 switch (m_type) {
|
c@48
|
331
|
c@48
|
332 case TypeMFCC:
|
c@48
|
333 if (m_rhythmWeighting < m_noRhythm) return 0;
|
c@48
|
334 else return 1;
|
c@48
|
335 break;
|
c@48
|
336
|
c@48
|
337 case TypeChroma:
|
c@48
|
338 if (m_rhythmWeighting < m_noRhythm) return 2;
|
c@48
|
339 else return 3;
|
c@48
|
340 break;
|
c@48
|
341 }
|
c@48
|
342
|
c@48
|
343 return 1;
|
c@48
|
344
|
c@48
|
345 // } else if (param == "rhythmWeighting") {
|
c@48
|
346 // return nearbyint(m_rhythmWeighting * 100.0);
|
c@42
|
347 }
|
c@42
|
348
|
c@41
|
349 std::cerr << "WARNING: SimilarityPlugin::getParameter: unknown parameter \""
|
c@41
|
350 << param << "\"" << std::endl;
|
c@41
|
351 return 0.0;
|
c@41
|
352 }
|
c@41
|
353
|
c@41
|
354 void
|
c@41
|
355 SimilarityPlugin::setParameter(std::string param, float value)
|
c@41
|
356 {
|
c@42
|
357 if (param == "featureType") {
|
c@48
|
358
|
c@42
|
359 int v = int(value + 0.1);
|
c@48
|
360
|
c@48
|
361 Type newType = m_type;
|
c@48
|
362
|
c@48
|
363 switch (v) {
|
c@48
|
364 case 0: newType = TypeMFCC; m_rhythmWeighting = 0.0f; break;
|
c@48
|
365 case 1: newType = TypeMFCC; m_rhythmWeighting = 0.5f; break;
|
c@48
|
366 case 2: newType = TypeChroma; m_rhythmWeighting = 0.0f; break;
|
c@48
|
367 case 3: newType = TypeChroma; m_rhythmWeighting = 0.5f; break;
|
c@48
|
368 case 4: newType = TypeMFCC; m_rhythmWeighting = 1.f; break;
|
c@48
|
369 }
|
c@48
|
370
|
c@48
|
371 if (newType != m_type) m_blockSize = 0;
|
c@48
|
372
|
c@48
|
373 m_type = newType;
|
c@42
|
374 return;
|
c@48
|
375
|
c@48
|
376 // } else if (param == "rhythmWeighting") {
|
c@48
|
377 // m_rhythmWeighting = value / 100;
|
c@48
|
378 // return;
|
c@42
|
379 }
|
c@42
|
380
|
c@41
|
381 std::cerr << "WARNING: SimilarityPlugin::setParameter: unknown parameter \""
|
c@41
|
382 << param << "\"" << std::endl;
|
c@41
|
383 }
|
c@41
|
384
|
c@41
|
385 SimilarityPlugin::OutputList
|
c@41
|
386 SimilarityPlugin::getOutputDescriptors() const
|
c@41
|
387 {
|
c@41
|
388 OutputList list;
|
c@41
|
389
|
c@41
|
390 OutputDescriptor similarity;
|
c@43
|
391 similarity.identifier = "distancematrix";
|
c@43
|
392 similarity.name = "Distance Matrix";
|
c@43
|
393 similarity.description = "Distance matrix for similarity metric. Smaller = more similar. Should be symmetrical.";
|
c@41
|
394 similarity.unit = "";
|
c@41
|
395 similarity.hasFixedBinCount = true;
|
c@41
|
396 similarity.binCount = m_channels;
|
c@41
|
397 similarity.hasKnownExtents = false;
|
c@41
|
398 similarity.isQuantized = false;
|
c@41
|
399 similarity.sampleType = OutputDescriptor::FixedSampleRate;
|
c@41
|
400 similarity.sampleRate = 1;
|
c@41
|
401
|
c@43
|
402 m_distanceMatrixOutput = list.size();
|
c@41
|
403 list.push_back(similarity);
|
c@41
|
404
|
c@43
|
405 OutputDescriptor simvec;
|
c@43
|
406 simvec.identifier = "distancevector";
|
c@43
|
407 simvec.name = "Distance from First Channel";
|
c@43
|
408 simvec.description = "Distance vector for similarity of each channel to the first channel. Smaller = more similar.";
|
c@43
|
409 simvec.unit = "";
|
c@43
|
410 simvec.hasFixedBinCount = true;
|
c@43
|
411 simvec.binCount = m_channels;
|
c@43
|
412 simvec.hasKnownExtents = false;
|
c@43
|
413 simvec.isQuantized = false;
|
c@43
|
414 simvec.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
415 simvec.sampleRate = 1;
|
c@43
|
416
|
c@43
|
417 m_distanceVectorOutput = list.size();
|
c@43
|
418 list.push_back(simvec);
|
c@43
|
419
|
c@44
|
420 OutputDescriptor sortvec;
|
c@44
|
421 sortvec.identifier = "sorteddistancevector";
|
c@44
|
422 sortvec.name = "Ordered Distances from First Channel";
|
c@44
|
423 sortvec.description = "Vector of the order of other channels in similarity to the first, followed by distance vector for similarity of each to the first. Smaller = more similar.";
|
c@44
|
424 sortvec.unit = "";
|
c@44
|
425 sortvec.hasFixedBinCount = true;
|
c@44
|
426 sortvec.binCount = m_channels;
|
c@44
|
427 sortvec.hasKnownExtents = false;
|
c@44
|
428 sortvec.isQuantized = false;
|
c@44
|
429 sortvec.sampleType = OutputDescriptor::FixedSampleRate;
|
c@44
|
430 sortvec.sampleRate = 1;
|
c@44
|
431
|
c@44
|
432 m_sortedVectorOutput = list.size();
|
c@44
|
433 list.push_back(sortvec);
|
c@44
|
434
|
c@41
|
435 OutputDescriptor means;
|
c@41
|
436 means.identifier = "means";
|
c@42
|
437 means.name = "Feature Means";
|
c@43
|
438 means.description = "Means of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
|
c@41
|
439 means.unit = "";
|
c@41
|
440 means.hasFixedBinCount = true;
|
c@43
|
441 means.binCount = m_featureColumnSize;
|
c@41
|
442 means.hasKnownExtents = false;
|
c@41
|
443 means.isQuantized = false;
|
c@43
|
444 means.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
445 means.sampleRate = 1;
|
c@41
|
446
|
c@43
|
447 m_meansOutput = list.size();
|
c@41
|
448 list.push_back(means);
|
c@41
|
449
|
c@41
|
450 OutputDescriptor variances;
|
c@41
|
451 variances.identifier = "variances";
|
c@42
|
452 variances.name = "Feature Variances";
|
c@43
|
453 variances.description = "Variances of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
|
c@41
|
454 variances.unit = "";
|
c@41
|
455 variances.hasFixedBinCount = true;
|
c@43
|
456 variances.binCount = m_featureColumnSize;
|
c@41
|
457 variances.hasKnownExtents = false;
|
c@41
|
458 variances.isQuantized = false;
|
c@43
|
459 variances.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
460 variances.sampleRate = 1;
|
c@41
|
461
|
c@43
|
462 m_variancesOutput = list.size();
|
c@41
|
463 list.push_back(variances);
|
c@41
|
464
|
c@47
|
465 OutputDescriptor beatspectrum;
|
c@47
|
466 beatspectrum.identifier = "beatspectrum";
|
c@47
|
467 beatspectrum.name = "Beat Spectra";
|
c@47
|
468 beatspectrum.description = "Rhythmic self-similarity vectors (beat spectra) for the input channels. Feature time (sec) corresponds to input channel. Not returned if rhythm weighting is zero.";
|
c@47
|
469 beatspectrum.unit = "";
|
c@47
|
470 if (m_rhythmClipFrames > 0) {
|
c@47
|
471 beatspectrum.hasFixedBinCount = true;
|
c@47
|
472 beatspectrum.binCount = m_rhythmClipFrames / 2;
|
c@47
|
473 } else {
|
c@47
|
474 beatspectrum.hasFixedBinCount = false;
|
c@47
|
475 }
|
c@47
|
476 beatspectrum.hasKnownExtents = false;
|
c@47
|
477 beatspectrum.isQuantized = false;
|
c@47
|
478 beatspectrum.sampleType = OutputDescriptor::FixedSampleRate;
|
c@47
|
479 beatspectrum.sampleRate = 1;
|
c@47
|
480
|
c@47
|
481 m_beatSpectraOutput = list.size();
|
c@47
|
482 list.push_back(beatspectrum);
|
c@47
|
483
|
c@41
|
484 return list;
|
c@41
|
485 }
|
c@41
|
486
|
c@41
|
487 SimilarityPlugin::FeatureSet
|
c@41
|
488 SimilarityPlugin::process(const float *const *inputBuffers, Vamp::RealTime /* timestamp */)
|
c@41
|
489 {
|
c@47
|
490 if (m_done) {
|
c@47
|
491 return FeatureSet();
|
c@47
|
492 }
|
c@47
|
493
|
c@41
|
494 double *dblbuf = new double[m_blockSize];
|
c@41
|
495 double *decbuf = dblbuf;
|
c@42
|
496 if (m_decimator) decbuf = new double[m_fftSize];
|
c@42
|
497
|
c@47
|
498 double *raw = new double[std::max(m_featureColumnSize,
|
c@47
|
499 m_rhythmColumnSize)];
|
c@41
|
500
|
c@43
|
501 float threshold = 1e-10;
|
c@43
|
502
|
c@47
|
503 bool someRhythmFrameNeeded = false;
|
c@47
|
504
|
c@41
|
505 for (size_t c = 0; c < m_channels; ++c) {
|
c@41
|
506
|
c@43
|
507 bool empty = true;
|
c@43
|
508
|
c@41
|
509 for (int i = 0; i < m_blockSize; ++i) {
|
c@43
|
510 float val = inputBuffers[c][i];
|
c@43
|
511 if (fabs(val) > threshold) empty = false;
|
c@43
|
512 dblbuf[i] = val;
|
c@41
|
513 }
|
c@41
|
514
|
c@47
|
515 if (empty) {
|
c@47
|
516 if (needRhythm() && ((m_frameNo % 2) == 0)) {
|
c@47
|
517 for (int i = 0; i < m_fftSize / m_rhythmClipFrameSize; ++i) {
|
c@47
|
518 if (m_rhythmValues[c].size() < m_rhythmClipFrames) {
|
c@47
|
519 FeatureColumn mf(m_rhythmColumnSize);
|
c@47
|
520 for (int i = 0; i < m_rhythmColumnSize; ++i) {
|
c@47
|
521 mf[i] = 0.0;
|
c@47
|
522 }
|
c@47
|
523 m_rhythmValues[c].push_back(mf);
|
c@47
|
524 }
|
c@47
|
525 }
|
c@47
|
526 }
|
c@47
|
527 continue;
|
c@47
|
528 }
|
c@47
|
529
|
c@44
|
530 m_lastNonEmptyFrame[c] = m_frameNo;
|
c@43
|
531
|
c@41
|
532 if (m_decimator) {
|
c@41
|
533 m_decimator->process(dblbuf, decbuf);
|
c@41
|
534 }
|
c@42
|
535
|
c@47
|
536 if (needTimbre()) {
|
c@47
|
537
|
c@47
|
538 if (m_type == TypeMFCC) {
|
c@47
|
539 m_mfcc->process(decbuf, raw);
|
c@47
|
540 } else if (m_type == TypeChroma) {
|
c@47
|
541 raw = m_chromagram->process(decbuf);
|
c@47
|
542 }
|
c@41
|
543
|
c@47
|
544 FeatureColumn mf(m_featureColumnSize);
|
c@47
|
545 for (int i = 0; i < m_featureColumnSize; ++i) {
|
c@47
|
546 mf[i] = raw[i];
|
c@47
|
547 }
|
c@47
|
548
|
c@47
|
549 m_values[c].push_back(mf);
|
c@44
|
550 }
|
c@41
|
551
|
c@47
|
552 // std::cerr << "needRhythm = " << needRhythm() << ", frame = " << m_frameNo << std::endl;
|
c@47
|
553
|
c@47
|
554 if (needRhythm() && ((m_frameNo % 2) == 0)) {
|
c@47
|
555
|
c@47
|
556 // The incoming frames are overlapping; we only use every
|
c@47
|
557 // other one, because we don't want the overlap (it would
|
c@47
|
558 // screw up the rhythm)
|
c@47
|
559
|
c@47
|
560 int frameOffset = 0;
|
c@47
|
561
|
c@47
|
562 while (frameOffset + m_rhythmClipFrameSize <= m_fftSize) {
|
c@47
|
563
|
c@47
|
564 bool needRhythmFrame = true;
|
c@47
|
565
|
c@47
|
566 if (m_rhythmValues[c].size() >= m_rhythmClipFrames) {
|
c@47
|
567
|
c@47
|
568 needRhythmFrame = false;
|
c@47
|
569
|
c@47
|
570 // assumes hopsize = framesize/2
|
c@47
|
571 float current = m_frameNo * (m_fftSize/2) + frameOffset;
|
c@47
|
572 current = current / m_processRate;
|
c@47
|
573 if (current - m_rhythmClipDuration < m_rhythmClipOrigin) {
|
c@47
|
574 needRhythmFrame = true;
|
c@47
|
575 m_rhythmValues[c].pop_front();
|
c@47
|
576 }
|
c@47
|
577
|
c@47
|
578 if (needRhythmFrame) {
|
c@47
|
579 std::cerr << "at current = " <<current << " (frame = " << m_frameNo << "), have " << m_rhythmValues[c].size() << ", need rhythm = " << needRhythmFrame << std::endl;
|
c@47
|
580 }
|
c@47
|
581
|
c@47
|
582 }
|
c@47
|
583
|
c@47
|
584 if (needRhythmFrame) {
|
c@47
|
585
|
c@47
|
586 someRhythmFrameNeeded = true;
|
c@47
|
587
|
c@47
|
588 m_rhythmfcc->process(decbuf + frameOffset, raw);
|
c@47
|
589
|
c@47
|
590 FeatureColumn mf(m_rhythmColumnSize);
|
c@47
|
591 for (int i = 0; i < m_rhythmColumnSize; ++i) {
|
c@47
|
592 mf[i] = raw[i];
|
c@47
|
593 }
|
c@47
|
594
|
c@47
|
595 m_rhythmValues[c].push_back(mf);
|
c@47
|
596 }
|
c@47
|
597
|
c@47
|
598 frameOffset += m_rhythmClipFrameSize;
|
c@47
|
599 }
|
c@47
|
600 }
|
c@47
|
601 }
|
c@47
|
602
|
c@47
|
603 if (!needTimbre() && !someRhythmFrameNeeded && ((m_frameNo % 2) == 0)) {
|
c@47
|
604 std::cerr << "done!" << std::endl;
|
c@47
|
605 m_done = true;
|
c@41
|
606 }
|
c@41
|
607
|
c@41
|
608 if (m_decimator) delete[] decbuf;
|
c@41
|
609 delete[] dblbuf;
|
c@47
|
610 delete[] raw;
|
c@41
|
611
|
c@44
|
612 ++m_frameNo;
|
c@44
|
613
|
c@41
|
614 return FeatureSet();
|
c@41
|
615 }
|
c@41
|
616
|
c@47
|
617 SimilarityPlugin::FeatureMatrix
|
c@47
|
618 SimilarityPlugin::calculateTimbral(FeatureSet &returnFeatures)
|
c@41
|
619 {
|
c@47
|
620 FeatureMatrix m(m_channels); // means
|
c@47
|
621 FeatureMatrix v(m_channels); // variances
|
c@41
|
622
|
c@41
|
623 for (int i = 0; i < m_channels; ++i) {
|
c@41
|
624
|
c@42
|
625 FeatureColumn mean(m_featureColumnSize), variance(m_featureColumnSize);
|
c@41
|
626
|
c@42
|
627 for (int j = 0; j < m_featureColumnSize; ++j) {
|
c@41
|
628
|
c@43
|
629 mean[j] = 0.0;
|
c@43
|
630 variance[j] = 0.0;
|
c@41
|
631 int count;
|
c@41
|
632
|
c@44
|
633 // We want to take values up to, but not including, the
|
c@44
|
634 // last non-empty frame (which may be partial)
|
c@43
|
635
|
c@44
|
636 int sz = m_lastNonEmptyFrame[i];
|
c@44
|
637 if (sz < 0) sz = 0;
|
c@43
|
638
|
c@41
|
639 count = 0;
|
c@43
|
640 for (int k = 0; k < sz; ++k) {
|
c@42
|
641 double val = m_values[i][k][j];
|
c@41
|
642 if (isnan(val) || isinf(val)) continue;
|
c@41
|
643 mean[j] += val;
|
c@41
|
644 ++count;
|
c@41
|
645 }
|
c@41
|
646 if (count > 0) mean[j] /= count;
|
c@41
|
647
|
c@41
|
648 count = 0;
|
c@43
|
649 for (int k = 0; k < sz; ++k) {
|
c@42
|
650 double val = ((m_values[i][k][j] - mean[j]) *
|
c@42
|
651 (m_values[i][k][j] - mean[j]));
|
c@41
|
652 if (isnan(val) || isinf(val)) continue;
|
c@41
|
653 variance[j] += val;
|
c@41
|
654 ++count;
|
c@41
|
655 }
|
c@41
|
656 if (count > 0) variance[j] /= count;
|
c@41
|
657 }
|
c@41
|
658
|
c@41
|
659 m[i] = mean;
|
c@41
|
660 v[i] = variance;
|
c@41
|
661 }
|
c@41
|
662
|
c@47
|
663 FeatureMatrix distances(m_channels);
|
c@42
|
664
|
c@48
|
665 if (m_type == TypeMFCC) {
|
c@48
|
666
|
c@48
|
667 // "Despite the fact that MFCCs extracted from music are
|
c@48
|
668 // clearly not Gaussian, [14] showed, somewhat surprisingly,
|
c@48
|
669 // that a similarity function comparing single Gaussians
|
c@48
|
670 // modelling MFCCs for each track can perform as well as
|
c@48
|
671 // mixture models. A great advantage of using single
|
c@48
|
672 // Gaussians is that a simple closed form exists for the KL
|
c@48
|
673 // divergence." -- Mark Levy, "Lightweight measures for
|
c@48
|
674 // timbral similarity of musical audio"
|
c@48
|
675 // (http://www.elec.qmul.ac.uk/easaier/papers/mlevytimbralsimilarity.pdf)
|
c@48
|
676
|
c@48
|
677 KLDivergence kld;
|
c@48
|
678
|
c@48
|
679 for (int i = 0; i < m_channels; ++i) {
|
c@48
|
680 for (int j = 0; j < m_channels; ++j) {
|
c@48
|
681 double d = kld.distanceGaussian(m[i], v[i], m[j], v[j]);
|
c@48
|
682 distances[i].push_back(d);
|
c@48
|
683 }
|
c@48
|
684 }
|
c@48
|
685
|
c@48
|
686 } else {
|
c@48
|
687
|
c@48
|
688 // Chroma are histograms already
|
c@48
|
689
|
c@48
|
690 KLDivergence kld;
|
c@48
|
691
|
c@48
|
692 for (int i = 0; i < m_channels; ++i) {
|
c@48
|
693 for (int j = 0; j < m_channels; ++j) {
|
c@48
|
694 double d = kld.distanceDistribution(m[i], m[j], true);
|
c@48
|
695 distances[i].push_back(d);
|
c@48
|
696 }
|
c@41
|
697 }
|
c@41
|
698 }
|
c@47
|
699
|
c@44
|
700 Feature feature;
|
c@44
|
701 feature.hasTimestamp = true;
|
c@44
|
702
|
c@44
|
703 char labelBuffer[100];
|
c@43
|
704
|
c@41
|
705 for (int i = 0; i < m_channels; ++i) {
|
c@41
|
706
|
c@41
|
707 feature.timestamp = Vamp::RealTime(i, 0);
|
c@41
|
708
|
c@44
|
709 sprintf(labelBuffer, "Means for channel %d", i+1);
|
c@44
|
710 feature.label = labelBuffer;
|
c@44
|
711
|
c@41
|
712 feature.values.clear();
|
c@42
|
713 for (int k = 0; k < m_featureColumnSize; ++k) {
|
c@41
|
714 feature.values.push_back(m[i][k]);
|
c@41
|
715 }
|
c@41
|
716
|
c@43
|
717 returnFeatures[m_meansOutput].push_back(feature);
|
c@41
|
718
|
c@44
|
719 sprintf(labelBuffer, "Variances for channel %d", i+1);
|
c@44
|
720 feature.label = labelBuffer;
|
c@44
|
721
|
c@41
|
722 feature.values.clear();
|
c@42
|
723 for (int k = 0; k < m_featureColumnSize; ++k) {
|
c@41
|
724 feature.values.push_back(v[i][k]);
|
c@41
|
725 }
|
c@41
|
726
|
c@43
|
727 returnFeatures[m_variancesOutput].push_back(feature);
|
c@47
|
728 }
|
c@47
|
729
|
c@47
|
730 return distances;
|
c@47
|
731 }
|
c@47
|
732
|
c@47
|
733 SimilarityPlugin::FeatureMatrix
|
c@47
|
734 SimilarityPlugin::calculateRhythmic(FeatureSet &returnFeatures)
|
c@47
|
735 {
|
c@47
|
736 if (!needRhythm()) return FeatureMatrix();
|
c@47
|
737
|
c@47
|
738 BeatSpectrum bscalc;
|
c@47
|
739 CosineDistance cd;
|
c@47
|
740
|
c@47
|
741 // Our rhythm feature matrix is a deque of vectors for practical
|
c@47
|
742 // reasons, but BeatSpectrum::process wants a vector of vectors
|
c@47
|
743 // (which is what FeatureMatrix happens to be).
|
c@47
|
744
|
c@47
|
745 FeatureMatrixSet bsinput(m_channels);
|
c@47
|
746 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
747 for (int j = 0; j < m_rhythmValues[i].size(); ++j) {
|
c@47
|
748 bsinput[i].push_back(m_rhythmValues[i][j]);
|
c@47
|
749 }
|
c@47
|
750 }
|
c@47
|
751
|
c@47
|
752 FeatureMatrix bs(m_channels);
|
c@47
|
753 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
754 bs[i] = bscalc.process(bsinput[i]);
|
c@47
|
755 }
|
c@47
|
756
|
c@47
|
757 FeatureMatrix distances(m_channels);
|
c@47
|
758 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
759 for (int j = 0; j < m_channels; ++j) {
|
c@47
|
760 double d = cd.distance(bs[i], bs[j]);
|
c@47
|
761 distances[i].push_back(d);
|
c@47
|
762 }
|
c@47
|
763 }
|
c@47
|
764
|
c@47
|
765 Feature feature;
|
c@47
|
766 feature.hasTimestamp = true;
|
c@47
|
767
|
c@47
|
768 char labelBuffer[100];
|
c@47
|
769
|
c@47
|
770 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
771
|
c@47
|
772 feature.timestamp = Vamp::RealTime(i, 0);
|
c@47
|
773
|
c@47
|
774 sprintf(labelBuffer, "Beat spectrum for channel %d", i+1);
|
c@47
|
775 feature.label = labelBuffer;
|
c@47
|
776
|
c@47
|
777 feature.values.clear();
|
c@47
|
778 for (int j = 0; j < bs[i].size(); ++j) {
|
c@47
|
779 feature.values.push_back(bs[i][j]);
|
c@47
|
780 }
|
c@47
|
781
|
c@47
|
782 returnFeatures[m_beatSpectraOutput].push_back(feature);
|
c@47
|
783 }
|
c@47
|
784
|
c@47
|
785 return distances;
|
c@47
|
786 }
|
c@47
|
787
|
c@47
|
788 double
|
c@47
|
789 SimilarityPlugin::getDistance(const FeatureMatrix &timbral,
|
c@47
|
790 const FeatureMatrix &rhythmic,
|
c@47
|
791 int i, int j)
|
c@47
|
792 {
|
c@47
|
793 double distance = 1.0;
|
c@47
|
794 if (needTimbre()) distance *= timbral[i][j];
|
c@47
|
795 if (needRhythm()) distance *= rhythmic[i][j];
|
c@47
|
796 return distance;
|
c@47
|
797 }
|
c@47
|
798
|
c@47
|
799 SimilarityPlugin::FeatureSet
|
c@47
|
800 SimilarityPlugin::getRemainingFeatures()
|
c@47
|
801 {
|
c@47
|
802 FeatureSet returnFeatures;
|
c@47
|
803
|
c@47
|
804 // We want to return a matrix of the distances between channels,
|
c@47
|
805 // but Vamp doesn't have a matrix return type so we will actually
|
c@47
|
806 // return a series of vectors
|
c@47
|
807
|
c@47
|
808 FeatureMatrix timbralDistances, rhythmicDistances;
|
c@47
|
809
|
c@47
|
810 if (needTimbre()) {
|
c@47
|
811 timbralDistances = calculateTimbral(returnFeatures);
|
c@47
|
812 }
|
c@47
|
813
|
c@47
|
814 if (needRhythm()) {
|
c@47
|
815 rhythmicDistances = calculateRhythmic(returnFeatures);
|
c@47
|
816 }
|
c@47
|
817
|
c@47
|
818 // We give all features a timestamp, otherwise hosts will tend to
|
c@47
|
819 // stamp them at the end of the file, which is annoying
|
c@47
|
820
|
c@47
|
821 Feature feature;
|
c@47
|
822 feature.hasTimestamp = true;
|
c@47
|
823
|
c@47
|
824 Feature distanceVectorFeature;
|
c@47
|
825 distanceVectorFeature.label = "Distance from first channel";
|
c@47
|
826 distanceVectorFeature.hasTimestamp = true;
|
c@47
|
827 distanceVectorFeature.timestamp = Vamp::RealTime::zeroTime;
|
c@47
|
828
|
c@47
|
829 std::map<double, int> sorted;
|
c@47
|
830
|
c@47
|
831 char labelBuffer[100];
|
c@47
|
832
|
c@47
|
833 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
834
|
c@47
|
835 feature.timestamp = Vamp::RealTime(i, 0);
|
c@41
|
836
|
c@41
|
837 feature.values.clear();
|
c@41
|
838 for (int j = 0; j < m_channels; ++j) {
|
c@47
|
839 double dist = getDistance(timbralDistances, rhythmicDistances, i, j);
|
c@47
|
840 feature.values.push_back(dist);
|
c@41
|
841 }
|
c@43
|
842
|
c@44
|
843 sprintf(labelBuffer, "Distances from channel %d", i+1);
|
c@44
|
844 feature.label = labelBuffer;
|
c@41
|
845
|
c@43
|
846 returnFeatures[m_distanceMatrixOutput].push_back(feature);
|
c@43
|
847
|
c@47
|
848 double fromFirst =
|
c@47
|
849 getDistance(timbralDistances, rhythmicDistances, 0, i);
|
c@44
|
850
|
c@47
|
851 distanceVectorFeature.values.push_back(fromFirst);
|
c@47
|
852 sorted[fromFirst] = i;
|
c@41
|
853 }
|
c@41
|
854
|
c@43
|
855 returnFeatures[m_distanceVectorOutput].push_back(distanceVectorFeature);
|
c@43
|
856
|
c@44
|
857 feature.label = "Order of channels by similarity to first channel";
|
c@44
|
858 feature.values.clear();
|
c@44
|
859 feature.timestamp = Vamp::RealTime(0, 0);
|
c@44
|
860
|
c@44
|
861 for (std::map<double, int>::iterator i = sorted.begin();
|
c@44
|
862 i != sorted.end(); ++i) {
|
c@45
|
863 feature.values.push_back(i->second + 1);
|
c@44
|
864 }
|
c@44
|
865
|
c@44
|
866 returnFeatures[m_sortedVectorOutput].push_back(feature);
|
c@44
|
867
|
c@44
|
868 feature.label = "Ordered distances of channels from first channel";
|
c@44
|
869 feature.values.clear();
|
c@44
|
870 feature.timestamp = Vamp::RealTime(1, 0);
|
c@44
|
871
|
c@44
|
872 for (std::map<double, int>::iterator i = sorted.begin();
|
c@44
|
873 i != sorted.end(); ++i) {
|
c@44
|
874 feature.values.push_back(i->first);
|
c@44
|
875 }
|
c@44
|
876
|
c@44
|
877 returnFeatures[m_sortedVectorOutput].push_back(feature);
|
c@44
|
878
|
c@41
|
879 return returnFeatures;
|
c@41
|
880 }
|