annotate plugins/SimilarityPlugin.cpp @ 48:3b4572153ce3

* Similarity -> single user control rather than separate weighting * Key detector -> correct reported min/max values for outputs * Start some documentation
author Chris Cannam <c.cannam@qmul.ac.uk>
date Mon, 21 Jan 2008 18:05:28 +0000
parents f8c5f11e60a6
children fc88b465548a
rev   line source
c@41 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@41 2
c@41 3 /*
c@41 4 * SegmenterPlugin.cpp
c@41 5 *
c@41 6 * Copyright 2008 Centre for Digital Music, Queen Mary, University of London.
c@41 7 * All rights reserved.
c@41 8 */
c@41 9
c@41 10 #include <iostream>
c@44 11 #include <cstdio>
c@41 12
c@41 13 #include "SimilarityPlugin.h"
c@42 14 #include "base/Pitch.h"
c@41 15 #include "dsp/mfcc/MFCC.h"
c@42 16 #include "dsp/chromagram/Chromagram.h"
c@41 17 #include "dsp/rateconversion/Decimator.h"
c@47 18 #include "dsp/rhythm/BeatSpectrum.h"
c@47 19 #include "maths/KLDivergence.h"
c@47 20 #include "maths/CosineDistance.h"
c@41 21
c@41 22 using std::string;
c@41 23 using std::vector;
c@41 24 using std::cerr;
c@41 25 using std::endl;
c@41 26 using std::ostringstream;
c@41 27
c@47 28 const float
c@47 29 SimilarityPlugin::m_noRhythm = 0.009;
c@47 30
c@47 31 const float
c@47 32 SimilarityPlugin::m_allRhythm = 0.991;
c@47 33
c@41 34 SimilarityPlugin::SimilarityPlugin(float inputSampleRate) :
c@41 35 Plugin(inputSampleRate),
c@42 36 m_type(TypeMFCC),
c@41 37 m_mfcc(0),
c@47 38 m_rhythmfcc(0),
c@42 39 m_chromagram(0),
c@41 40 m_decimator(0),
c@42 41 m_featureColumnSize(20),
c@48 42 m_rhythmWeighting(0.5f),
c@47 43 m_rhythmClipDuration(4.f), // seconds
c@47 44 m_rhythmClipOrigin(40.f), // seconds
c@47 45 m_rhythmClipFrameSize(0),
c@47 46 m_rhythmClipFrames(0),
c@47 47 m_rhythmColumnSize(20),
c@41 48 m_blockSize(0),
c@47 49 m_channels(0),
c@47 50 m_processRate(0),
c@47 51 m_frameNo(0),
c@47 52 m_done(false)
c@41 53 {
c@47 54 int rate = lrintf(m_inputSampleRate);
c@47 55 int internalRate = 22050;
c@47 56 int decimationFactor = rate / internalRate;
c@47 57 if (decimationFactor < 1) decimationFactor = 1;
c@47 58
c@47 59 // must be a power of two
c@47 60 while (decimationFactor & (decimationFactor - 1)) ++decimationFactor;
c@47 61
c@47 62 m_processRate = rate / decimationFactor; // may be 22050, 24000 etc
c@41 63 }
c@41 64
c@41 65 SimilarityPlugin::~SimilarityPlugin()
c@41 66 {
c@41 67 delete m_mfcc;
c@47 68 delete m_rhythmfcc;
c@42 69 delete m_chromagram;
c@41 70 delete m_decimator;
c@41 71 }
c@41 72
c@41 73 string
c@41 74 SimilarityPlugin::getIdentifier() const
c@41 75 {
c@41 76 return "qm-similarity";
c@41 77 }
c@41 78
c@41 79 string
c@41 80 SimilarityPlugin::getName() const
c@41 81 {
c@41 82 return "Similarity";
c@41 83 }
c@41 84
c@41 85 string
c@41 86 SimilarityPlugin::getDescription() const
c@41 87 {
c@42 88 return "Return a distance matrix for similarity between the input audio channels";
c@41 89 }
c@41 90
c@41 91 string
c@41 92 SimilarityPlugin::getMaker() const
c@41 93 {
c@47 94 return "Mark Levy, Kurt Jacobson and Chris Cannam, Queen Mary, University of London";
c@41 95 }
c@41 96
c@41 97 int
c@41 98 SimilarityPlugin::getPluginVersion() const
c@41 99 {
c@41 100 return 1;
c@41 101 }
c@41 102
c@41 103 string
c@41 104 SimilarityPlugin::getCopyright() const
c@41 105 {
c@41 106 return "Copyright (c) 2008 - All Rights Reserved";
c@41 107 }
c@41 108
c@41 109 size_t
c@41 110 SimilarityPlugin::getMinChannelCount() const
c@41 111 {
c@43 112 return 1;
c@41 113 }
c@41 114
c@41 115 size_t
c@41 116 SimilarityPlugin::getMaxChannelCount() const
c@41 117 {
c@41 118 return 1024;
c@41 119 }
c@41 120
c@41 121 bool
c@41 122 SimilarityPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@41 123 {
c@41 124 if (channels < getMinChannelCount() ||
c@41 125 channels > getMaxChannelCount()) return false;
c@41 126
c@41 127 if (stepSize != getPreferredStepSize()) {
c@43 128 //!!! actually this perhaps shouldn't be an error... similarly
c@43 129 //using more than getMaxChannelCount channels
c@41 130 std::cerr << "SimilarityPlugin::initialise: supplied step size "
c@41 131 << stepSize << " differs from required step size "
c@41 132 << getPreferredStepSize() << std::endl;
c@41 133 return false;
c@41 134 }
c@41 135
c@41 136 if (blockSize != getPreferredBlockSize()) {
c@41 137 std::cerr << "SimilarityPlugin::initialise: supplied block size "
c@41 138 << blockSize << " differs from required block size "
c@41 139 << getPreferredBlockSize() << std::endl;
c@41 140 return false;
c@41 141 }
c@41 142
c@41 143 m_blockSize = blockSize;
c@41 144 m_channels = channels;
c@41 145
c@44 146 m_lastNonEmptyFrame = std::vector<int>(m_channels);
c@44 147 for (int i = 0; i < m_channels; ++i) m_lastNonEmptyFrame[i] = -1;
c@44 148 m_frameNo = 0;
c@44 149
c@41 150 int decimationFactor = getDecimationFactor();
c@41 151 if (decimationFactor > 1) {
c@42 152 m_decimator = new Decimator(m_blockSize, decimationFactor);
c@41 153 }
c@41 154
c@42 155 if (m_type == TypeMFCC) {
c@42 156
c@42 157 m_featureColumnSize = 20;
c@42 158
c@47 159 MFCCConfig config(m_processRate);
c@42 160 config.fftsize = 2048;
c@42 161 config.nceps = m_featureColumnSize - 1;
c@42 162 config.want_c0 = true;
c@45 163 config.logpower = 1;
c@42 164 m_mfcc = new MFCC(config);
c@42 165 m_fftSize = m_mfcc->getfftlength();
c@47 166 m_rhythmClipFrameSize = m_fftSize / 4;
c@42 167
c@43 168 std::cerr << "MFCC FS = " << config.FS << ", FFT size = " << m_fftSize<< std::endl;
c@43 169
c@42 170 } else if (m_type == TypeChroma) {
c@42 171
c@42 172 m_featureColumnSize = 12;
c@42 173
c@42 174 ChromaConfig config;
c@47 175 config.FS = m_processRate;
c@42 176 config.min = Pitch::getFrequencyForPitch(24, 0, 440);
c@42 177 config.max = Pitch::getFrequencyForPitch(96, 0, 440);
c@42 178 config.BPO = 12;
c@42 179 config.CQThresh = 0.0054;
c@42 180 config.isNormalised = true;
c@42 181 m_chromagram = new Chromagram(config);
c@42 182 m_fftSize = m_chromagram->getFrameSize();
c@42 183
c@47 184 std::cerr << "fftsize = " << m_fftSize << std::endl;
c@47 185
c@47 186 m_rhythmClipFrameSize = m_fftSize / 16;
c@47 187 while (m_rhythmClipFrameSize < 512) m_rhythmClipFrameSize *= 2;
c@47 188 std::cerr << "m_rhythmClipFrameSize = " << m_rhythmClipFrameSize << std::endl;
c@47 189
c@42 190 std::cerr << "min = "<< config.min << ", max = " << config.max << std::endl;
c@42 191
c@42 192 } else {
c@42 193
c@42 194 std::cerr << "SimilarityPlugin::initialise: internal error: unknown type " << m_type << std::endl;
c@42 195 return false;
c@42 196 }
c@41 197
c@47 198 if (needRhythm()) {
c@47 199 m_rhythmClipFrames =
c@47 200 int(ceil((m_rhythmClipDuration * m_processRate)
c@47 201 / m_rhythmClipFrameSize));
c@47 202 std::cerr << "SimilarityPlugin::initialise: rhythm clip is "
c@47 203 << m_rhythmClipFrames << " frames of size "
c@47 204 << m_rhythmClipFrameSize << " at process rate "
c@47 205 << m_processRate << " ( = "
c@47 206 << (float(m_rhythmClipFrames * m_rhythmClipFrameSize) / m_processRate) << " sec )"
c@47 207 << std::endl;
c@47 208
c@47 209 MFCCConfig config(m_processRate);
c@47 210 config.fftsize = m_rhythmClipFrameSize;
c@47 211 config.nceps = m_featureColumnSize - 1;
c@47 212 config.want_c0 = true;
c@47 213 config.logpower = 1;
c@47 214 config.window = RectangularWindow; // because no overlap
c@47 215 m_rhythmfcc = new MFCC(config);
c@47 216 }
c@47 217
c@41 218 for (int i = 0; i < m_channels; ++i) {
c@47 219
c@42 220 m_values.push_back(FeatureMatrix());
c@47 221
c@47 222 if (needRhythm()) {
c@47 223 m_rhythmValues.push_back(FeatureColumnQueue());
c@47 224 }
c@41 225 }
c@41 226
c@47 227 m_done = false;
c@47 228
c@41 229 return true;
c@41 230 }
c@41 231
c@41 232 void
c@41 233 SimilarityPlugin::reset()
c@41 234 {
c@41 235 //!!!
c@47 236 m_done = false;
c@41 237 }
c@41 238
c@41 239 int
c@41 240 SimilarityPlugin::getDecimationFactor() const
c@41 241 {
c@41 242 int rate = lrintf(m_inputSampleRate);
c@47 243 return rate / m_processRate;
c@41 244 }
c@41 245
c@41 246 size_t
c@41 247 SimilarityPlugin::getPreferredStepSize() const
c@41 248 {
c@42 249 if (m_blockSize == 0) calculateBlockSize();
c@47 250
c@47 251 // there is also an assumption to this effect in process()
c@47 252 // (referring to m_fftSize/2 instead of a literal post-decimation
c@47 253 // step size):
c@45 254 return m_blockSize/2;
c@41 255 }
c@41 256
c@41 257 size_t
c@41 258 SimilarityPlugin::getPreferredBlockSize() const
c@41 259 {
c@42 260 if (m_blockSize == 0) calculateBlockSize();
c@42 261 return m_blockSize;
c@42 262 }
c@42 263
c@42 264 void
c@42 265 SimilarityPlugin::calculateBlockSize() const
c@42 266 {
c@42 267 if (m_blockSize != 0) return;
c@42 268 int decimationFactor = getDecimationFactor();
c@42 269 if (m_type == TypeChroma) {
c@42 270 ChromaConfig config;
c@47 271 config.FS = m_processRate;
c@42 272 config.min = Pitch::getFrequencyForPitch(24, 0, 440);
c@42 273 config.max = Pitch::getFrequencyForPitch(96, 0, 440);
c@42 274 config.BPO = 12;
c@42 275 config.CQThresh = 0.0054;
c@42 276 config.isNormalised = false;
c@42 277 Chromagram *c = new Chromagram(config);
c@42 278 size_t sz = c->getFrameSize();
c@42 279 delete c;
c@42 280 m_blockSize = sz * decimationFactor;
c@42 281 } else {
c@42 282 m_blockSize = 2048 * decimationFactor;
c@42 283 }
c@41 284 }
c@41 285
c@41 286 SimilarityPlugin::ParameterList SimilarityPlugin::getParameterDescriptors() const
c@41 287 {
c@41 288 ParameterList list;
c@42 289
c@42 290 ParameterDescriptor desc;
c@42 291 desc.identifier = "featureType";
c@42 292 desc.name = "Feature Type";
c@48 293 desc.description = "Audio feature used for similarity measure. Timbral: use the first 20 MFCCs (19 plus C0). Chromatic: use 12 bin-per-octave chroma. Rhythmic: compare beat spectra of short regions.";
c@42 294 desc.unit = "";
c@42 295 desc.minValue = 0;
c@48 296 desc.maxValue = 4;
c@48 297 desc.defaultValue = 1;
c@42 298 desc.isQuantized = true;
c@42 299 desc.quantizeStep = 1;
c@48 300 desc.valueNames.push_back("Timbre");
c@48 301 desc.valueNames.push_back("Timbre and Rhythm");
c@48 302 desc.valueNames.push_back("Chroma");
c@48 303 desc.valueNames.push_back("Chroma and Rhythm");
c@48 304 desc.valueNames.push_back("Rhythm only");
c@42 305 list.push_back(desc);
c@48 306 /*
c@47 307 desc.identifier = "rhythmWeighting";
c@47 308 desc.name = "Influence of Rhythm";
c@47 309 desc.description = "Proportion of similarity measure made up from rhythmic similarity component, from 0 (entirely timbral or chromatic) to 100 (entirely rhythmic).";
c@47 310 desc.unit = "%";
c@47 311 desc.minValue = 0;
c@47 312 desc.maxValue = 100;
c@47 313 desc.defaultValue = 0;
c@48 314 desc.isQuantized = false;
c@47 315 desc.valueNames.clear();
c@47 316 list.push_back(desc);
c@48 317 */
c@41 318 return list;
c@41 319 }
c@41 320
c@41 321 float
c@41 322 SimilarityPlugin::getParameter(std::string param) const
c@41 323 {
c@42 324 if (param == "featureType") {
c@48 325
c@48 326 if (m_rhythmWeighting > m_allRhythm) {
c@48 327 return 4;
c@48 328 }
c@48 329
c@48 330 switch (m_type) {
c@48 331
c@48 332 case TypeMFCC:
c@48 333 if (m_rhythmWeighting < m_noRhythm) return 0;
c@48 334 else return 1;
c@48 335 break;
c@48 336
c@48 337 case TypeChroma:
c@48 338 if (m_rhythmWeighting < m_noRhythm) return 2;
c@48 339 else return 3;
c@48 340 break;
c@48 341 }
c@48 342
c@48 343 return 1;
c@48 344
c@48 345 // } else if (param == "rhythmWeighting") {
c@48 346 // return nearbyint(m_rhythmWeighting * 100.0);
c@42 347 }
c@42 348
c@41 349 std::cerr << "WARNING: SimilarityPlugin::getParameter: unknown parameter \""
c@41 350 << param << "\"" << std::endl;
c@41 351 return 0.0;
c@41 352 }
c@41 353
c@41 354 void
c@41 355 SimilarityPlugin::setParameter(std::string param, float value)
c@41 356 {
c@42 357 if (param == "featureType") {
c@48 358
c@42 359 int v = int(value + 0.1);
c@48 360
c@48 361 Type newType = m_type;
c@48 362
c@48 363 switch (v) {
c@48 364 case 0: newType = TypeMFCC; m_rhythmWeighting = 0.0f; break;
c@48 365 case 1: newType = TypeMFCC; m_rhythmWeighting = 0.5f; break;
c@48 366 case 2: newType = TypeChroma; m_rhythmWeighting = 0.0f; break;
c@48 367 case 3: newType = TypeChroma; m_rhythmWeighting = 0.5f; break;
c@48 368 case 4: newType = TypeMFCC; m_rhythmWeighting = 1.f; break;
c@48 369 }
c@48 370
c@48 371 if (newType != m_type) m_blockSize = 0;
c@48 372
c@48 373 m_type = newType;
c@42 374 return;
c@48 375
c@48 376 // } else if (param == "rhythmWeighting") {
c@48 377 // m_rhythmWeighting = value / 100;
c@48 378 // return;
c@42 379 }
c@42 380
c@41 381 std::cerr << "WARNING: SimilarityPlugin::setParameter: unknown parameter \""
c@41 382 << param << "\"" << std::endl;
c@41 383 }
c@41 384
c@41 385 SimilarityPlugin::OutputList
c@41 386 SimilarityPlugin::getOutputDescriptors() const
c@41 387 {
c@41 388 OutputList list;
c@41 389
c@41 390 OutputDescriptor similarity;
c@43 391 similarity.identifier = "distancematrix";
c@43 392 similarity.name = "Distance Matrix";
c@43 393 similarity.description = "Distance matrix for similarity metric. Smaller = more similar. Should be symmetrical.";
c@41 394 similarity.unit = "";
c@41 395 similarity.hasFixedBinCount = true;
c@41 396 similarity.binCount = m_channels;
c@41 397 similarity.hasKnownExtents = false;
c@41 398 similarity.isQuantized = false;
c@41 399 similarity.sampleType = OutputDescriptor::FixedSampleRate;
c@41 400 similarity.sampleRate = 1;
c@41 401
c@43 402 m_distanceMatrixOutput = list.size();
c@41 403 list.push_back(similarity);
c@41 404
c@43 405 OutputDescriptor simvec;
c@43 406 simvec.identifier = "distancevector";
c@43 407 simvec.name = "Distance from First Channel";
c@43 408 simvec.description = "Distance vector for similarity of each channel to the first channel. Smaller = more similar.";
c@43 409 simvec.unit = "";
c@43 410 simvec.hasFixedBinCount = true;
c@43 411 simvec.binCount = m_channels;
c@43 412 simvec.hasKnownExtents = false;
c@43 413 simvec.isQuantized = false;
c@43 414 simvec.sampleType = OutputDescriptor::FixedSampleRate;
c@43 415 simvec.sampleRate = 1;
c@43 416
c@43 417 m_distanceVectorOutput = list.size();
c@43 418 list.push_back(simvec);
c@43 419
c@44 420 OutputDescriptor sortvec;
c@44 421 sortvec.identifier = "sorteddistancevector";
c@44 422 sortvec.name = "Ordered Distances from First Channel";
c@44 423 sortvec.description = "Vector of the order of other channels in similarity to the first, followed by distance vector for similarity of each to the first. Smaller = more similar.";
c@44 424 sortvec.unit = "";
c@44 425 sortvec.hasFixedBinCount = true;
c@44 426 sortvec.binCount = m_channels;
c@44 427 sortvec.hasKnownExtents = false;
c@44 428 sortvec.isQuantized = false;
c@44 429 sortvec.sampleType = OutputDescriptor::FixedSampleRate;
c@44 430 sortvec.sampleRate = 1;
c@44 431
c@44 432 m_sortedVectorOutput = list.size();
c@44 433 list.push_back(sortvec);
c@44 434
c@41 435 OutputDescriptor means;
c@41 436 means.identifier = "means";
c@42 437 means.name = "Feature Means";
c@43 438 means.description = "Means of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
c@41 439 means.unit = "";
c@41 440 means.hasFixedBinCount = true;
c@43 441 means.binCount = m_featureColumnSize;
c@41 442 means.hasKnownExtents = false;
c@41 443 means.isQuantized = false;
c@43 444 means.sampleType = OutputDescriptor::FixedSampleRate;
c@43 445 means.sampleRate = 1;
c@41 446
c@43 447 m_meansOutput = list.size();
c@41 448 list.push_back(means);
c@41 449
c@41 450 OutputDescriptor variances;
c@41 451 variances.identifier = "variances";
c@42 452 variances.name = "Feature Variances";
c@43 453 variances.description = "Variances of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
c@41 454 variances.unit = "";
c@41 455 variances.hasFixedBinCount = true;
c@43 456 variances.binCount = m_featureColumnSize;
c@41 457 variances.hasKnownExtents = false;
c@41 458 variances.isQuantized = false;
c@43 459 variances.sampleType = OutputDescriptor::FixedSampleRate;
c@43 460 variances.sampleRate = 1;
c@41 461
c@43 462 m_variancesOutput = list.size();
c@41 463 list.push_back(variances);
c@41 464
c@47 465 OutputDescriptor beatspectrum;
c@47 466 beatspectrum.identifier = "beatspectrum";
c@47 467 beatspectrum.name = "Beat Spectra";
c@47 468 beatspectrum.description = "Rhythmic self-similarity vectors (beat spectra) for the input channels. Feature time (sec) corresponds to input channel. Not returned if rhythm weighting is zero.";
c@47 469 beatspectrum.unit = "";
c@47 470 if (m_rhythmClipFrames > 0) {
c@47 471 beatspectrum.hasFixedBinCount = true;
c@47 472 beatspectrum.binCount = m_rhythmClipFrames / 2;
c@47 473 } else {
c@47 474 beatspectrum.hasFixedBinCount = false;
c@47 475 }
c@47 476 beatspectrum.hasKnownExtents = false;
c@47 477 beatspectrum.isQuantized = false;
c@47 478 beatspectrum.sampleType = OutputDescriptor::FixedSampleRate;
c@47 479 beatspectrum.sampleRate = 1;
c@47 480
c@47 481 m_beatSpectraOutput = list.size();
c@47 482 list.push_back(beatspectrum);
c@47 483
c@41 484 return list;
c@41 485 }
c@41 486
c@41 487 SimilarityPlugin::FeatureSet
c@41 488 SimilarityPlugin::process(const float *const *inputBuffers, Vamp::RealTime /* timestamp */)
c@41 489 {
c@47 490 if (m_done) {
c@47 491 return FeatureSet();
c@47 492 }
c@47 493
c@41 494 double *dblbuf = new double[m_blockSize];
c@41 495 double *decbuf = dblbuf;
c@42 496 if (m_decimator) decbuf = new double[m_fftSize];
c@42 497
c@47 498 double *raw = new double[std::max(m_featureColumnSize,
c@47 499 m_rhythmColumnSize)];
c@41 500
c@43 501 float threshold = 1e-10;
c@43 502
c@47 503 bool someRhythmFrameNeeded = false;
c@47 504
c@41 505 for (size_t c = 0; c < m_channels; ++c) {
c@41 506
c@43 507 bool empty = true;
c@43 508
c@41 509 for (int i = 0; i < m_blockSize; ++i) {
c@43 510 float val = inputBuffers[c][i];
c@43 511 if (fabs(val) > threshold) empty = false;
c@43 512 dblbuf[i] = val;
c@41 513 }
c@41 514
c@47 515 if (empty) {
c@47 516 if (needRhythm() && ((m_frameNo % 2) == 0)) {
c@47 517 for (int i = 0; i < m_fftSize / m_rhythmClipFrameSize; ++i) {
c@47 518 if (m_rhythmValues[c].size() < m_rhythmClipFrames) {
c@47 519 FeatureColumn mf(m_rhythmColumnSize);
c@47 520 for (int i = 0; i < m_rhythmColumnSize; ++i) {
c@47 521 mf[i] = 0.0;
c@47 522 }
c@47 523 m_rhythmValues[c].push_back(mf);
c@47 524 }
c@47 525 }
c@47 526 }
c@47 527 continue;
c@47 528 }
c@47 529
c@44 530 m_lastNonEmptyFrame[c] = m_frameNo;
c@43 531
c@41 532 if (m_decimator) {
c@41 533 m_decimator->process(dblbuf, decbuf);
c@41 534 }
c@42 535
c@47 536 if (needTimbre()) {
c@47 537
c@47 538 if (m_type == TypeMFCC) {
c@47 539 m_mfcc->process(decbuf, raw);
c@47 540 } else if (m_type == TypeChroma) {
c@47 541 raw = m_chromagram->process(decbuf);
c@47 542 }
c@41 543
c@47 544 FeatureColumn mf(m_featureColumnSize);
c@47 545 for (int i = 0; i < m_featureColumnSize; ++i) {
c@47 546 mf[i] = raw[i];
c@47 547 }
c@47 548
c@47 549 m_values[c].push_back(mf);
c@44 550 }
c@41 551
c@47 552 // std::cerr << "needRhythm = " << needRhythm() << ", frame = " << m_frameNo << std::endl;
c@47 553
c@47 554 if (needRhythm() && ((m_frameNo % 2) == 0)) {
c@47 555
c@47 556 // The incoming frames are overlapping; we only use every
c@47 557 // other one, because we don't want the overlap (it would
c@47 558 // screw up the rhythm)
c@47 559
c@47 560 int frameOffset = 0;
c@47 561
c@47 562 while (frameOffset + m_rhythmClipFrameSize <= m_fftSize) {
c@47 563
c@47 564 bool needRhythmFrame = true;
c@47 565
c@47 566 if (m_rhythmValues[c].size() >= m_rhythmClipFrames) {
c@47 567
c@47 568 needRhythmFrame = false;
c@47 569
c@47 570 // assumes hopsize = framesize/2
c@47 571 float current = m_frameNo * (m_fftSize/2) + frameOffset;
c@47 572 current = current / m_processRate;
c@47 573 if (current - m_rhythmClipDuration < m_rhythmClipOrigin) {
c@47 574 needRhythmFrame = true;
c@47 575 m_rhythmValues[c].pop_front();
c@47 576 }
c@47 577
c@47 578 if (needRhythmFrame) {
c@47 579 std::cerr << "at current = " <<current << " (frame = " << m_frameNo << "), have " << m_rhythmValues[c].size() << ", need rhythm = " << needRhythmFrame << std::endl;
c@47 580 }
c@47 581
c@47 582 }
c@47 583
c@47 584 if (needRhythmFrame) {
c@47 585
c@47 586 someRhythmFrameNeeded = true;
c@47 587
c@47 588 m_rhythmfcc->process(decbuf + frameOffset, raw);
c@47 589
c@47 590 FeatureColumn mf(m_rhythmColumnSize);
c@47 591 for (int i = 0; i < m_rhythmColumnSize; ++i) {
c@47 592 mf[i] = raw[i];
c@47 593 }
c@47 594
c@47 595 m_rhythmValues[c].push_back(mf);
c@47 596 }
c@47 597
c@47 598 frameOffset += m_rhythmClipFrameSize;
c@47 599 }
c@47 600 }
c@47 601 }
c@47 602
c@47 603 if (!needTimbre() && !someRhythmFrameNeeded && ((m_frameNo % 2) == 0)) {
c@47 604 std::cerr << "done!" << std::endl;
c@47 605 m_done = true;
c@41 606 }
c@41 607
c@41 608 if (m_decimator) delete[] decbuf;
c@41 609 delete[] dblbuf;
c@47 610 delete[] raw;
c@41 611
c@44 612 ++m_frameNo;
c@44 613
c@41 614 return FeatureSet();
c@41 615 }
c@41 616
c@47 617 SimilarityPlugin::FeatureMatrix
c@47 618 SimilarityPlugin::calculateTimbral(FeatureSet &returnFeatures)
c@41 619 {
c@47 620 FeatureMatrix m(m_channels); // means
c@47 621 FeatureMatrix v(m_channels); // variances
c@41 622
c@41 623 for (int i = 0; i < m_channels; ++i) {
c@41 624
c@42 625 FeatureColumn mean(m_featureColumnSize), variance(m_featureColumnSize);
c@41 626
c@42 627 for (int j = 0; j < m_featureColumnSize; ++j) {
c@41 628
c@43 629 mean[j] = 0.0;
c@43 630 variance[j] = 0.0;
c@41 631 int count;
c@41 632
c@44 633 // We want to take values up to, but not including, the
c@44 634 // last non-empty frame (which may be partial)
c@43 635
c@44 636 int sz = m_lastNonEmptyFrame[i];
c@44 637 if (sz < 0) sz = 0;
c@43 638
c@41 639 count = 0;
c@43 640 for (int k = 0; k < sz; ++k) {
c@42 641 double val = m_values[i][k][j];
c@41 642 if (isnan(val) || isinf(val)) continue;
c@41 643 mean[j] += val;
c@41 644 ++count;
c@41 645 }
c@41 646 if (count > 0) mean[j] /= count;
c@41 647
c@41 648 count = 0;
c@43 649 for (int k = 0; k < sz; ++k) {
c@42 650 double val = ((m_values[i][k][j] - mean[j]) *
c@42 651 (m_values[i][k][j] - mean[j]));
c@41 652 if (isnan(val) || isinf(val)) continue;
c@41 653 variance[j] += val;
c@41 654 ++count;
c@41 655 }
c@41 656 if (count > 0) variance[j] /= count;
c@41 657 }
c@41 658
c@41 659 m[i] = mean;
c@41 660 v[i] = variance;
c@41 661 }
c@41 662
c@47 663 FeatureMatrix distances(m_channels);
c@42 664
c@48 665 if (m_type == TypeMFCC) {
c@48 666
c@48 667 // "Despite the fact that MFCCs extracted from music are
c@48 668 // clearly not Gaussian, [14] showed, somewhat surprisingly,
c@48 669 // that a similarity function comparing single Gaussians
c@48 670 // modelling MFCCs for each track can perform as well as
c@48 671 // mixture models. A great advantage of using single
c@48 672 // Gaussians is that a simple closed form exists for the KL
c@48 673 // divergence." -- Mark Levy, "Lightweight measures for
c@48 674 // timbral similarity of musical audio"
c@48 675 // (http://www.elec.qmul.ac.uk/easaier/papers/mlevytimbralsimilarity.pdf)
c@48 676
c@48 677 KLDivergence kld;
c@48 678
c@48 679 for (int i = 0; i < m_channels; ++i) {
c@48 680 for (int j = 0; j < m_channels; ++j) {
c@48 681 double d = kld.distanceGaussian(m[i], v[i], m[j], v[j]);
c@48 682 distances[i].push_back(d);
c@48 683 }
c@48 684 }
c@48 685
c@48 686 } else {
c@48 687
c@48 688 // Chroma are histograms already
c@48 689
c@48 690 KLDivergence kld;
c@48 691
c@48 692 for (int i = 0; i < m_channels; ++i) {
c@48 693 for (int j = 0; j < m_channels; ++j) {
c@48 694 double d = kld.distanceDistribution(m[i], m[j], true);
c@48 695 distances[i].push_back(d);
c@48 696 }
c@41 697 }
c@41 698 }
c@47 699
c@44 700 Feature feature;
c@44 701 feature.hasTimestamp = true;
c@44 702
c@44 703 char labelBuffer[100];
c@43 704
c@41 705 for (int i = 0; i < m_channels; ++i) {
c@41 706
c@41 707 feature.timestamp = Vamp::RealTime(i, 0);
c@41 708
c@44 709 sprintf(labelBuffer, "Means for channel %d", i+1);
c@44 710 feature.label = labelBuffer;
c@44 711
c@41 712 feature.values.clear();
c@42 713 for (int k = 0; k < m_featureColumnSize; ++k) {
c@41 714 feature.values.push_back(m[i][k]);
c@41 715 }
c@41 716
c@43 717 returnFeatures[m_meansOutput].push_back(feature);
c@41 718
c@44 719 sprintf(labelBuffer, "Variances for channel %d", i+1);
c@44 720 feature.label = labelBuffer;
c@44 721
c@41 722 feature.values.clear();
c@42 723 for (int k = 0; k < m_featureColumnSize; ++k) {
c@41 724 feature.values.push_back(v[i][k]);
c@41 725 }
c@41 726
c@43 727 returnFeatures[m_variancesOutput].push_back(feature);
c@47 728 }
c@47 729
c@47 730 return distances;
c@47 731 }
c@47 732
c@47 733 SimilarityPlugin::FeatureMatrix
c@47 734 SimilarityPlugin::calculateRhythmic(FeatureSet &returnFeatures)
c@47 735 {
c@47 736 if (!needRhythm()) return FeatureMatrix();
c@47 737
c@47 738 BeatSpectrum bscalc;
c@47 739 CosineDistance cd;
c@47 740
c@47 741 // Our rhythm feature matrix is a deque of vectors for practical
c@47 742 // reasons, but BeatSpectrum::process wants a vector of vectors
c@47 743 // (which is what FeatureMatrix happens to be).
c@47 744
c@47 745 FeatureMatrixSet bsinput(m_channels);
c@47 746 for (int i = 0; i < m_channels; ++i) {
c@47 747 for (int j = 0; j < m_rhythmValues[i].size(); ++j) {
c@47 748 bsinput[i].push_back(m_rhythmValues[i][j]);
c@47 749 }
c@47 750 }
c@47 751
c@47 752 FeatureMatrix bs(m_channels);
c@47 753 for (int i = 0; i < m_channels; ++i) {
c@47 754 bs[i] = bscalc.process(bsinput[i]);
c@47 755 }
c@47 756
c@47 757 FeatureMatrix distances(m_channels);
c@47 758 for (int i = 0; i < m_channels; ++i) {
c@47 759 for (int j = 0; j < m_channels; ++j) {
c@47 760 double d = cd.distance(bs[i], bs[j]);
c@47 761 distances[i].push_back(d);
c@47 762 }
c@47 763 }
c@47 764
c@47 765 Feature feature;
c@47 766 feature.hasTimestamp = true;
c@47 767
c@47 768 char labelBuffer[100];
c@47 769
c@47 770 for (int i = 0; i < m_channels; ++i) {
c@47 771
c@47 772 feature.timestamp = Vamp::RealTime(i, 0);
c@47 773
c@47 774 sprintf(labelBuffer, "Beat spectrum for channel %d", i+1);
c@47 775 feature.label = labelBuffer;
c@47 776
c@47 777 feature.values.clear();
c@47 778 for (int j = 0; j < bs[i].size(); ++j) {
c@47 779 feature.values.push_back(bs[i][j]);
c@47 780 }
c@47 781
c@47 782 returnFeatures[m_beatSpectraOutput].push_back(feature);
c@47 783 }
c@47 784
c@47 785 return distances;
c@47 786 }
c@47 787
c@47 788 double
c@47 789 SimilarityPlugin::getDistance(const FeatureMatrix &timbral,
c@47 790 const FeatureMatrix &rhythmic,
c@47 791 int i, int j)
c@47 792 {
c@47 793 double distance = 1.0;
c@47 794 if (needTimbre()) distance *= timbral[i][j];
c@47 795 if (needRhythm()) distance *= rhythmic[i][j];
c@47 796 return distance;
c@47 797 }
c@47 798
c@47 799 SimilarityPlugin::FeatureSet
c@47 800 SimilarityPlugin::getRemainingFeatures()
c@47 801 {
c@47 802 FeatureSet returnFeatures;
c@47 803
c@47 804 // We want to return a matrix of the distances between channels,
c@47 805 // but Vamp doesn't have a matrix return type so we will actually
c@47 806 // return a series of vectors
c@47 807
c@47 808 FeatureMatrix timbralDistances, rhythmicDistances;
c@47 809
c@47 810 if (needTimbre()) {
c@47 811 timbralDistances = calculateTimbral(returnFeatures);
c@47 812 }
c@47 813
c@47 814 if (needRhythm()) {
c@47 815 rhythmicDistances = calculateRhythmic(returnFeatures);
c@47 816 }
c@47 817
c@47 818 // We give all features a timestamp, otherwise hosts will tend to
c@47 819 // stamp them at the end of the file, which is annoying
c@47 820
c@47 821 Feature feature;
c@47 822 feature.hasTimestamp = true;
c@47 823
c@47 824 Feature distanceVectorFeature;
c@47 825 distanceVectorFeature.label = "Distance from first channel";
c@47 826 distanceVectorFeature.hasTimestamp = true;
c@47 827 distanceVectorFeature.timestamp = Vamp::RealTime::zeroTime;
c@47 828
c@47 829 std::map<double, int> sorted;
c@47 830
c@47 831 char labelBuffer[100];
c@47 832
c@47 833 for (int i = 0; i < m_channels; ++i) {
c@47 834
c@47 835 feature.timestamp = Vamp::RealTime(i, 0);
c@41 836
c@41 837 feature.values.clear();
c@41 838 for (int j = 0; j < m_channels; ++j) {
c@47 839 double dist = getDistance(timbralDistances, rhythmicDistances, i, j);
c@47 840 feature.values.push_back(dist);
c@41 841 }
c@43 842
c@44 843 sprintf(labelBuffer, "Distances from channel %d", i+1);
c@44 844 feature.label = labelBuffer;
c@41 845
c@43 846 returnFeatures[m_distanceMatrixOutput].push_back(feature);
c@43 847
c@47 848 double fromFirst =
c@47 849 getDistance(timbralDistances, rhythmicDistances, 0, i);
c@44 850
c@47 851 distanceVectorFeature.values.push_back(fromFirst);
c@47 852 sorted[fromFirst] = i;
c@41 853 }
c@41 854
c@43 855 returnFeatures[m_distanceVectorOutput].push_back(distanceVectorFeature);
c@43 856
c@44 857 feature.label = "Order of channels by similarity to first channel";
c@44 858 feature.values.clear();
c@44 859 feature.timestamp = Vamp::RealTime(0, 0);
c@44 860
c@44 861 for (std::map<double, int>::iterator i = sorted.begin();
c@44 862 i != sorted.end(); ++i) {
c@45 863 feature.values.push_back(i->second + 1);
c@44 864 }
c@44 865
c@44 866 returnFeatures[m_sortedVectorOutput].push_back(feature);
c@44 867
c@44 868 feature.label = "Ordered distances of channels from first channel";
c@44 869 feature.values.clear();
c@44 870 feature.timestamp = Vamp::RealTime(1, 0);
c@44 871
c@44 872 for (std::map<double, int>::iterator i = sorted.begin();
c@44 873 i != sorted.end(); ++i) {
c@44 874 feature.values.push_back(i->first);
c@44 875 }
c@44 876
c@44 877 returnFeatures[m_sortedVectorOutput].push_back(feature);
c@44 878
c@41 879 return returnFeatures;
c@41 880 }