c@41
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@41
|
2
|
c@41
|
3 /*
|
c@67
|
4 * SimilarityPlugin.cpp
|
c@41
|
5 *
|
c@118
|
6 * Copyright 2009 Centre for Digital Music, Queen Mary, University of London.
|
c@41
|
7 * All rights reserved.
|
c@41
|
8 */
|
c@41
|
9
|
c@41
|
10 #include <iostream>
|
c@44
|
11 #include <cstdio>
|
c@41
|
12
|
c@41
|
13 #include "SimilarityPlugin.h"
|
c@42
|
14 #include "base/Pitch.h"
|
c@41
|
15 #include "dsp/mfcc/MFCC.h"
|
c@42
|
16 #include "dsp/chromagram/Chromagram.h"
|
c@41
|
17 #include "dsp/rateconversion/Decimator.h"
|
c@47
|
18 #include "dsp/rhythm/BeatSpectrum.h"
|
c@47
|
19 #include "maths/KLDivergence.h"
|
c@47
|
20 #include "maths/CosineDistance.h"
|
c@49
|
21 #include "maths/MathUtilities.h"
|
c@41
|
22
|
c@41
|
23 using std::string;
|
c@41
|
24 using std::vector;
|
c@41
|
25 using std::cerr;
|
c@41
|
26 using std::endl;
|
c@41
|
27 using std::ostringstream;
|
c@41
|
28
|
c@47
|
29 const float
|
c@47
|
30 SimilarityPlugin::m_noRhythm = 0.009;
|
c@47
|
31
|
c@47
|
32 const float
|
c@47
|
33 SimilarityPlugin::m_allRhythm = 0.991;
|
c@47
|
34
|
c@41
|
35 SimilarityPlugin::SimilarityPlugin(float inputSampleRate) :
|
c@41
|
36 Plugin(inputSampleRate),
|
c@42
|
37 m_type(TypeMFCC),
|
c@41
|
38 m_mfcc(0),
|
c@47
|
39 m_rhythmfcc(0),
|
c@42
|
40 m_chromagram(0),
|
c@41
|
41 m_decimator(0),
|
c@42
|
42 m_featureColumnSize(20),
|
c@48
|
43 m_rhythmWeighting(0.5f),
|
c@47
|
44 m_rhythmClipDuration(4.f), // seconds
|
c@47
|
45 m_rhythmClipOrigin(40.f), // seconds
|
c@47
|
46 m_rhythmClipFrameSize(0),
|
c@47
|
47 m_rhythmClipFrames(0),
|
c@47
|
48 m_rhythmColumnSize(20),
|
c@41
|
49 m_blockSize(0),
|
c@47
|
50 m_channels(0),
|
c@47
|
51 m_processRate(0),
|
c@47
|
52 m_frameNo(0),
|
c@47
|
53 m_done(false)
|
c@41
|
54 {
|
c@47
|
55 int rate = lrintf(m_inputSampleRate);
|
c@47
|
56 int internalRate = 22050;
|
c@47
|
57 int decimationFactor = rate / internalRate;
|
c@47
|
58 if (decimationFactor < 1) decimationFactor = 1;
|
c@47
|
59
|
c@47
|
60 // must be a power of two
|
c@47
|
61 while (decimationFactor & (decimationFactor - 1)) ++decimationFactor;
|
c@47
|
62
|
c@47
|
63 m_processRate = rate / decimationFactor; // may be 22050, 24000 etc
|
c@41
|
64 }
|
c@41
|
65
|
c@41
|
66 SimilarityPlugin::~SimilarityPlugin()
|
c@41
|
67 {
|
c@41
|
68 delete m_mfcc;
|
c@47
|
69 delete m_rhythmfcc;
|
c@42
|
70 delete m_chromagram;
|
c@41
|
71 delete m_decimator;
|
c@41
|
72 }
|
c@41
|
73
|
c@41
|
74 string
|
c@41
|
75 SimilarityPlugin::getIdentifier() const
|
c@41
|
76 {
|
c@41
|
77 return "qm-similarity";
|
c@41
|
78 }
|
c@41
|
79
|
c@41
|
80 string
|
c@41
|
81 SimilarityPlugin::getName() const
|
c@41
|
82 {
|
c@41
|
83 return "Similarity";
|
c@41
|
84 }
|
c@41
|
85
|
c@41
|
86 string
|
c@41
|
87 SimilarityPlugin::getDescription() const
|
c@41
|
88 {
|
c@42
|
89 return "Return a distance matrix for similarity between the input audio channels";
|
c@41
|
90 }
|
c@41
|
91
|
c@41
|
92 string
|
c@41
|
93 SimilarityPlugin::getMaker() const
|
c@41
|
94 {
|
c@50
|
95 return "Queen Mary, University of London";
|
c@41
|
96 }
|
c@41
|
97
|
c@41
|
98 int
|
c@41
|
99 SimilarityPlugin::getPluginVersion() const
|
c@41
|
100 {
|
c@41
|
101 return 1;
|
c@41
|
102 }
|
c@41
|
103
|
c@41
|
104 string
|
c@41
|
105 SimilarityPlugin::getCopyright() const
|
c@41
|
106 {
|
c@118
|
107 return "Plugin by Mark Levy, Kurt Jacobson and Chris Cannam. Copyright (c) 2009 QMUL - All Rights Reserved";
|
c@41
|
108 }
|
c@41
|
109
|
c@41
|
110 size_t
|
c@41
|
111 SimilarityPlugin::getMinChannelCount() const
|
c@41
|
112 {
|
c@43
|
113 return 1;
|
c@41
|
114 }
|
c@41
|
115
|
c@41
|
116 size_t
|
c@41
|
117 SimilarityPlugin::getMaxChannelCount() const
|
c@41
|
118 {
|
c@41
|
119 return 1024;
|
c@41
|
120 }
|
c@41
|
121
|
c@41
|
122 int
|
c@41
|
123 SimilarityPlugin::getDecimationFactor() const
|
c@41
|
124 {
|
c@41
|
125 int rate = lrintf(m_inputSampleRate);
|
c@47
|
126 return rate / m_processRate;
|
c@41
|
127 }
|
c@41
|
128
|
c@41
|
129 size_t
|
c@41
|
130 SimilarityPlugin::getPreferredStepSize() const
|
c@41
|
131 {
|
c@42
|
132 if (m_blockSize == 0) calculateBlockSize();
|
c@47
|
133
|
c@47
|
134 // there is also an assumption to this effect in process()
|
c@47
|
135 // (referring to m_fftSize/2 instead of a literal post-decimation
|
c@47
|
136 // step size):
|
c@45
|
137 return m_blockSize/2;
|
c@41
|
138 }
|
c@41
|
139
|
c@41
|
140 size_t
|
c@41
|
141 SimilarityPlugin::getPreferredBlockSize() const
|
c@41
|
142 {
|
c@42
|
143 if (m_blockSize == 0) calculateBlockSize();
|
c@42
|
144 return m_blockSize;
|
c@42
|
145 }
|
c@42
|
146
|
c@42
|
147 void
|
c@42
|
148 SimilarityPlugin::calculateBlockSize() const
|
c@42
|
149 {
|
c@42
|
150 if (m_blockSize != 0) return;
|
c@42
|
151 int decimationFactor = getDecimationFactor();
|
c@66
|
152 m_blockSize = 2048 * decimationFactor;
|
c@41
|
153 }
|
c@41
|
154
|
c@41
|
155 SimilarityPlugin::ParameterList SimilarityPlugin::getParameterDescriptors() const
|
c@41
|
156 {
|
c@41
|
157 ParameterList list;
|
c@42
|
158
|
c@42
|
159 ParameterDescriptor desc;
|
c@42
|
160 desc.identifier = "featureType";
|
c@42
|
161 desc.name = "Feature Type";
|
c@48
|
162 desc.description = "Audio feature used for similarity measure. Timbral: use the first 20 MFCCs (19 plus C0). Chromatic: use 12 bin-per-octave chroma. Rhythmic: compare beat spectra of short regions.";
|
c@42
|
163 desc.unit = "";
|
c@42
|
164 desc.minValue = 0;
|
c@48
|
165 desc.maxValue = 4;
|
c@48
|
166 desc.defaultValue = 1;
|
c@42
|
167 desc.isQuantized = true;
|
c@42
|
168 desc.quantizeStep = 1;
|
c@48
|
169 desc.valueNames.push_back("Timbre");
|
c@48
|
170 desc.valueNames.push_back("Timbre and Rhythm");
|
c@48
|
171 desc.valueNames.push_back("Chroma");
|
c@48
|
172 desc.valueNames.push_back("Chroma and Rhythm");
|
c@48
|
173 desc.valueNames.push_back("Rhythm only");
|
c@42
|
174 list.push_back(desc);
|
c@48
|
175 /*
|
c@47
|
176 desc.identifier = "rhythmWeighting";
|
c@47
|
177 desc.name = "Influence of Rhythm";
|
c@47
|
178 desc.description = "Proportion of similarity measure made up from rhythmic similarity component, from 0 (entirely timbral or chromatic) to 100 (entirely rhythmic).";
|
c@47
|
179 desc.unit = "%";
|
c@47
|
180 desc.minValue = 0;
|
c@47
|
181 desc.maxValue = 100;
|
c@47
|
182 desc.defaultValue = 0;
|
c@48
|
183 desc.isQuantized = false;
|
c@47
|
184 desc.valueNames.clear();
|
c@47
|
185 list.push_back(desc);
|
c@48
|
186 */
|
c@41
|
187 return list;
|
c@41
|
188 }
|
c@41
|
189
|
c@41
|
190 float
|
c@41
|
191 SimilarityPlugin::getParameter(std::string param) const
|
c@41
|
192 {
|
c@42
|
193 if (param == "featureType") {
|
c@48
|
194
|
c@48
|
195 if (m_rhythmWeighting > m_allRhythm) {
|
c@48
|
196 return 4;
|
c@48
|
197 }
|
c@48
|
198
|
c@48
|
199 switch (m_type) {
|
c@48
|
200
|
c@48
|
201 case TypeMFCC:
|
c@48
|
202 if (m_rhythmWeighting < m_noRhythm) return 0;
|
c@48
|
203 else return 1;
|
c@48
|
204 break;
|
c@48
|
205
|
c@48
|
206 case TypeChroma:
|
c@48
|
207 if (m_rhythmWeighting < m_noRhythm) return 2;
|
c@48
|
208 else return 3;
|
c@48
|
209 break;
|
c@48
|
210 }
|
c@48
|
211
|
c@48
|
212 return 1;
|
c@48
|
213
|
c@48
|
214 // } else if (param == "rhythmWeighting") {
|
c@48
|
215 // return nearbyint(m_rhythmWeighting * 100.0);
|
c@42
|
216 }
|
c@42
|
217
|
c@41
|
218 std::cerr << "WARNING: SimilarityPlugin::getParameter: unknown parameter \""
|
c@41
|
219 << param << "\"" << std::endl;
|
c@41
|
220 return 0.0;
|
c@41
|
221 }
|
c@41
|
222
|
c@41
|
223 void
|
c@41
|
224 SimilarityPlugin::setParameter(std::string param, float value)
|
c@41
|
225 {
|
c@42
|
226 if (param == "featureType") {
|
c@48
|
227
|
c@42
|
228 int v = int(value + 0.1);
|
c@48
|
229
|
c@48
|
230 Type newType = m_type;
|
c@48
|
231
|
c@48
|
232 switch (v) {
|
c@48
|
233 case 0: newType = TypeMFCC; m_rhythmWeighting = 0.0f; break;
|
c@48
|
234 case 1: newType = TypeMFCC; m_rhythmWeighting = 0.5f; break;
|
c@48
|
235 case 2: newType = TypeChroma; m_rhythmWeighting = 0.0f; break;
|
c@48
|
236 case 3: newType = TypeChroma; m_rhythmWeighting = 0.5f; break;
|
c@48
|
237 case 4: newType = TypeMFCC; m_rhythmWeighting = 1.f; break;
|
c@48
|
238 }
|
c@48
|
239
|
c@48
|
240 if (newType != m_type) m_blockSize = 0;
|
c@48
|
241
|
c@48
|
242 m_type = newType;
|
c@42
|
243 return;
|
c@48
|
244
|
c@48
|
245 // } else if (param == "rhythmWeighting") {
|
c@48
|
246 // m_rhythmWeighting = value / 100;
|
c@48
|
247 // return;
|
c@42
|
248 }
|
c@42
|
249
|
c@41
|
250 std::cerr << "WARNING: SimilarityPlugin::setParameter: unknown parameter \""
|
c@41
|
251 << param << "\"" << std::endl;
|
c@41
|
252 }
|
c@41
|
253
|
c@41
|
254 SimilarityPlugin::OutputList
|
c@41
|
255 SimilarityPlugin::getOutputDescriptors() const
|
c@41
|
256 {
|
c@41
|
257 OutputList list;
|
c@41
|
258
|
c@41
|
259 OutputDescriptor similarity;
|
c@43
|
260 similarity.identifier = "distancematrix";
|
c@43
|
261 similarity.name = "Distance Matrix";
|
c@43
|
262 similarity.description = "Distance matrix for similarity metric. Smaller = more similar. Should be symmetrical.";
|
c@41
|
263 similarity.unit = "";
|
c@41
|
264 similarity.hasFixedBinCount = true;
|
c@41
|
265 similarity.binCount = m_channels;
|
c@41
|
266 similarity.hasKnownExtents = false;
|
c@41
|
267 similarity.isQuantized = false;
|
c@41
|
268 similarity.sampleType = OutputDescriptor::FixedSampleRate;
|
c@41
|
269 similarity.sampleRate = 1;
|
c@41
|
270
|
c@43
|
271 m_distanceMatrixOutput = list.size();
|
c@41
|
272 list.push_back(similarity);
|
c@41
|
273
|
c@43
|
274 OutputDescriptor simvec;
|
c@43
|
275 simvec.identifier = "distancevector";
|
c@43
|
276 simvec.name = "Distance from First Channel";
|
c@43
|
277 simvec.description = "Distance vector for similarity of each channel to the first channel. Smaller = more similar.";
|
c@43
|
278 simvec.unit = "";
|
c@43
|
279 simvec.hasFixedBinCount = true;
|
c@43
|
280 simvec.binCount = m_channels;
|
c@43
|
281 simvec.hasKnownExtents = false;
|
c@43
|
282 simvec.isQuantized = false;
|
c@43
|
283 simvec.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
284 simvec.sampleRate = 1;
|
c@43
|
285
|
c@43
|
286 m_distanceVectorOutput = list.size();
|
c@43
|
287 list.push_back(simvec);
|
c@43
|
288
|
c@44
|
289 OutputDescriptor sortvec;
|
c@44
|
290 sortvec.identifier = "sorteddistancevector";
|
c@44
|
291 sortvec.name = "Ordered Distances from First Channel";
|
c@44
|
292 sortvec.description = "Vector of the order of other channels in similarity to the first, followed by distance vector for similarity of each to the first. Smaller = more similar.";
|
c@44
|
293 sortvec.unit = "";
|
c@44
|
294 sortvec.hasFixedBinCount = true;
|
c@44
|
295 sortvec.binCount = m_channels;
|
c@44
|
296 sortvec.hasKnownExtents = false;
|
c@44
|
297 sortvec.isQuantized = false;
|
c@44
|
298 sortvec.sampleType = OutputDescriptor::FixedSampleRate;
|
c@44
|
299 sortvec.sampleRate = 1;
|
c@44
|
300
|
c@44
|
301 m_sortedVectorOutput = list.size();
|
c@44
|
302 list.push_back(sortvec);
|
c@44
|
303
|
c@41
|
304 OutputDescriptor means;
|
c@41
|
305 means.identifier = "means";
|
c@42
|
306 means.name = "Feature Means";
|
c@43
|
307 means.description = "Means of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
|
c@41
|
308 means.unit = "";
|
c@41
|
309 means.hasFixedBinCount = true;
|
c@43
|
310 means.binCount = m_featureColumnSize;
|
c@41
|
311 means.hasKnownExtents = false;
|
c@41
|
312 means.isQuantized = false;
|
c@43
|
313 means.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
314 means.sampleRate = 1;
|
c@41
|
315
|
c@43
|
316 m_meansOutput = list.size();
|
c@41
|
317 list.push_back(means);
|
c@41
|
318
|
c@41
|
319 OutputDescriptor variances;
|
c@41
|
320 variances.identifier = "variances";
|
c@42
|
321 variances.name = "Feature Variances";
|
c@43
|
322 variances.description = "Variances of the feature bins. Feature time (sec) corresponds to input channel. Number of bins depends on selected feature type.";
|
c@41
|
323 variances.unit = "";
|
c@41
|
324 variances.hasFixedBinCount = true;
|
c@43
|
325 variances.binCount = m_featureColumnSize;
|
c@41
|
326 variances.hasKnownExtents = false;
|
c@41
|
327 variances.isQuantized = false;
|
c@43
|
328 variances.sampleType = OutputDescriptor::FixedSampleRate;
|
c@43
|
329 variances.sampleRate = 1;
|
c@41
|
330
|
c@43
|
331 m_variancesOutput = list.size();
|
c@41
|
332 list.push_back(variances);
|
c@41
|
333
|
c@47
|
334 OutputDescriptor beatspectrum;
|
c@47
|
335 beatspectrum.identifier = "beatspectrum";
|
c@47
|
336 beatspectrum.name = "Beat Spectra";
|
c@47
|
337 beatspectrum.description = "Rhythmic self-similarity vectors (beat spectra) for the input channels. Feature time (sec) corresponds to input channel. Not returned if rhythm weighting is zero.";
|
c@47
|
338 beatspectrum.unit = "";
|
c@47
|
339 if (m_rhythmClipFrames > 0) {
|
c@47
|
340 beatspectrum.hasFixedBinCount = true;
|
c@47
|
341 beatspectrum.binCount = m_rhythmClipFrames / 2;
|
c@47
|
342 } else {
|
c@47
|
343 beatspectrum.hasFixedBinCount = false;
|
c@47
|
344 }
|
c@47
|
345 beatspectrum.hasKnownExtents = false;
|
c@47
|
346 beatspectrum.isQuantized = false;
|
c@47
|
347 beatspectrum.sampleType = OutputDescriptor::FixedSampleRate;
|
c@47
|
348 beatspectrum.sampleRate = 1;
|
c@47
|
349
|
c@47
|
350 m_beatSpectraOutput = list.size();
|
c@47
|
351 list.push_back(beatspectrum);
|
c@47
|
352
|
c@41
|
353 return list;
|
c@41
|
354 }
|
c@41
|
355
|
c@68
|
356 bool
|
c@68
|
357 SimilarityPlugin::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@68
|
358 {
|
c@68
|
359 if (channels < getMinChannelCount()) return false;
|
c@68
|
360
|
c@68
|
361 // Using more than getMaxChannelCount is not actually a problem
|
c@68
|
362 // for us. Using "incorrect" step and block sizes would be fine
|
c@68
|
363 // for timbral or chroma similarity, but will break rhythmic
|
c@68
|
364 // similarity, so we'd better enforce these.
|
c@68
|
365
|
c@68
|
366 if (stepSize != getPreferredStepSize()) {
|
c@68
|
367 std::cerr << "SimilarityPlugin::initialise: supplied step size "
|
c@68
|
368 << stepSize << " differs from required step size "
|
c@68
|
369 << getPreferredStepSize() << std::endl;
|
c@68
|
370 return false;
|
c@68
|
371 }
|
c@68
|
372
|
c@68
|
373 if (blockSize != getPreferredBlockSize()) {
|
c@68
|
374 std::cerr << "SimilarityPlugin::initialise: supplied block size "
|
c@68
|
375 << blockSize << " differs from required block size "
|
c@68
|
376 << getPreferredBlockSize() << std::endl;
|
c@68
|
377 return false;
|
c@68
|
378 }
|
c@68
|
379
|
c@68
|
380 m_blockSize = blockSize;
|
c@68
|
381 m_channels = channels;
|
c@68
|
382
|
c@68
|
383 m_lastNonEmptyFrame = std::vector<int>(m_channels);
|
c@68
|
384 for (int i = 0; i < m_channels; ++i) m_lastNonEmptyFrame[i] = -1;
|
c@68
|
385
|
c@68
|
386 m_emptyFrameCount = std::vector<int>(m_channels);
|
c@68
|
387 for (int i = 0; i < m_channels; ++i) m_emptyFrameCount[i] = 0;
|
c@68
|
388
|
c@68
|
389 m_frameNo = 0;
|
c@68
|
390
|
c@68
|
391 int decimationFactor = getDecimationFactor();
|
c@68
|
392 if (decimationFactor > 1) {
|
c@68
|
393 m_decimator = new Decimator(m_blockSize, decimationFactor);
|
c@68
|
394 }
|
c@68
|
395
|
c@68
|
396 if (m_type == TypeMFCC) {
|
c@68
|
397
|
c@68
|
398 m_featureColumnSize = 20;
|
c@68
|
399
|
c@68
|
400 MFCCConfig config(m_processRate);
|
c@68
|
401 config.fftsize = 2048;
|
c@68
|
402 config.nceps = m_featureColumnSize - 1;
|
c@68
|
403 config.want_c0 = true;
|
c@68
|
404 config.logpower = 1;
|
c@68
|
405 m_mfcc = new MFCC(config);
|
c@68
|
406 m_fftSize = m_mfcc->getfftlength();
|
c@68
|
407 m_rhythmClipFrameSize = m_fftSize / 4;
|
c@68
|
408
|
c@68
|
409 // std::cerr << "MFCC FS = " << config.FS << ", FFT size = " << m_fftSize<< std::endl;
|
c@68
|
410
|
c@68
|
411 } else if (m_type == TypeChroma) {
|
c@68
|
412
|
c@68
|
413 m_featureColumnSize = 12;
|
c@68
|
414
|
c@68
|
415 // For simplicity, aim to have the chroma fft size equal to
|
c@68
|
416 // 2048, the same as the mfcc fft size (so the input block
|
c@68
|
417 // size does not depend on the feature type and we can use the
|
c@68
|
418 // same processing parameters for rhythm etc). This is also
|
c@68
|
419 // why getPreferredBlockSize can confidently return 2048 * the
|
c@68
|
420 // decimation factor.
|
c@68
|
421
|
c@68
|
422 // The fft size for a chromagram is the filterbank Q value
|
c@68
|
423 // times the sample rate, divided by the minimum frequency,
|
c@68
|
424 // rounded up to the nearest power of two.
|
c@68
|
425
|
c@68
|
426 double q = 1.0 / (pow(2.0, (1.0 / 12.0)) - 1.0);
|
c@68
|
427 double fmin = (q * m_processRate) / 2048.0;
|
c@68
|
428
|
c@68
|
429 // Round fmin up to the nearest MIDI pitch multiple of 12.
|
c@68
|
430 // So long as fmin is greater than 12 to start with, this
|
c@68
|
431 // should not change the resulting fft size.
|
c@68
|
432
|
c@68
|
433 int pmin = Pitch::getPitchForFrequency(float(fmin));
|
c@68
|
434 pmin = ((pmin / 12) + 1) * 12;
|
c@68
|
435 fmin = Pitch::getFrequencyForPitch(pmin);
|
c@68
|
436
|
c@68
|
437 float fmax = Pitch::getFrequencyForPitch(pmin + 36);
|
c@68
|
438
|
c@68
|
439 ChromaConfig config;
|
c@68
|
440 config.FS = m_processRate;
|
c@68
|
441 config.min = fmin;
|
c@68
|
442 config.max = fmax;
|
c@68
|
443 config.BPO = 12;
|
c@68
|
444 config.CQThresh = 0.0054;
|
c@68
|
445 // We don't normalise the chromagram's columns individually;
|
c@68
|
446 // we normalise the mean at the end instead
|
c@68
|
447 config.normalise = MathUtilities::NormaliseNone;
|
c@68
|
448 m_chromagram = new Chromagram(config);
|
c@68
|
449 m_fftSize = m_chromagram->getFrameSize();
|
c@68
|
450
|
c@68
|
451 if (m_fftSize != 2048) {
|
c@68
|
452 std::cerr << "WARNING: SimilarityPlugin::initialise: Internal processing FFT size " << m_fftSize << " != expected size 2048 in chroma mode" << std::endl;
|
c@68
|
453 }
|
c@68
|
454
|
c@68
|
455 // std::cerr << "fftsize = " << m_fftSize << std::endl;
|
c@68
|
456
|
c@68
|
457 m_rhythmClipFrameSize = m_fftSize / 4;
|
c@68
|
458
|
c@68
|
459 // std::cerr << "m_rhythmClipFrameSize = " << m_rhythmClipFrameSize << std::endl;
|
c@68
|
460 // std::cerr << "min = "<< config.min << ", max = " << config.max << std::endl;
|
c@68
|
461
|
c@68
|
462 } else {
|
c@68
|
463
|
c@68
|
464 std::cerr << "SimilarityPlugin::initialise: internal error: unknown type " << m_type << std::endl;
|
c@68
|
465 return false;
|
c@68
|
466 }
|
c@68
|
467
|
c@68
|
468 if (needRhythm()) {
|
c@68
|
469 m_rhythmClipFrames =
|
c@68
|
470 int(ceil((m_rhythmClipDuration * m_processRate)
|
c@68
|
471 / m_rhythmClipFrameSize));
|
c@68
|
472 // std::cerr << "SimilarityPlugin::initialise: rhythm clip requires "
|
c@68
|
473 // << m_rhythmClipFrames << " frames of size "
|
c@68
|
474 // << m_rhythmClipFrameSize << " at process rate "
|
c@68
|
475 // << m_processRate << " ( = "
|
c@68
|
476 // << (float(m_rhythmClipFrames * m_rhythmClipFrameSize) / m_processRate) << " sec )"
|
c@68
|
477 // << std::endl;
|
c@68
|
478
|
c@68
|
479 MFCCConfig config(m_processRate);
|
c@68
|
480 config.fftsize = m_rhythmClipFrameSize;
|
c@68
|
481 config.nceps = m_rhythmColumnSize - 1;
|
c@68
|
482 config.want_c0 = true;
|
c@68
|
483 config.logpower = 1;
|
c@68
|
484 config.window = RectangularWindow; // because no overlap
|
c@68
|
485 m_rhythmfcc = new MFCC(config);
|
c@68
|
486 }
|
c@68
|
487
|
c@68
|
488 for (int i = 0; i < m_channels; ++i) {
|
c@68
|
489
|
c@68
|
490 m_values.push_back(FeatureMatrix());
|
c@68
|
491
|
c@68
|
492 if (needRhythm()) {
|
c@68
|
493 m_rhythmValues.push_back(FeatureColumnQueue());
|
c@68
|
494 }
|
c@68
|
495 }
|
c@68
|
496
|
c@68
|
497 m_done = false;
|
c@68
|
498
|
c@68
|
499 return true;
|
c@68
|
500 }
|
c@68
|
501
|
c@68
|
502 void
|
c@68
|
503 SimilarityPlugin::reset()
|
c@68
|
504 {
|
c@68
|
505 for (int i = 0; i < m_values.size(); ++i) {
|
c@68
|
506 m_values[i].clear();
|
c@68
|
507 }
|
c@68
|
508
|
c@68
|
509 for (int i = 0; i < m_rhythmValues.size(); ++i) {
|
c@68
|
510 m_rhythmValues[i].clear();
|
c@68
|
511 }
|
c@68
|
512
|
c@68
|
513 for (int i = 0; i < m_lastNonEmptyFrame.size(); ++i) {
|
c@68
|
514 m_lastNonEmptyFrame[i] = -1;
|
c@68
|
515 }
|
c@68
|
516
|
c@68
|
517 for (int i = 0; i < m_emptyFrameCount.size(); ++i) {
|
c@68
|
518 m_emptyFrameCount[i] = 0;
|
c@68
|
519 }
|
c@68
|
520
|
c@68
|
521 m_done = false;
|
c@68
|
522 }
|
c@68
|
523
|
c@41
|
524 SimilarityPlugin::FeatureSet
|
c@41
|
525 SimilarityPlugin::process(const float *const *inputBuffers, Vamp::RealTime /* timestamp */)
|
c@41
|
526 {
|
c@47
|
527 if (m_done) {
|
c@47
|
528 return FeatureSet();
|
c@47
|
529 }
|
c@47
|
530
|
c@41
|
531 double *dblbuf = new double[m_blockSize];
|
c@41
|
532 double *decbuf = dblbuf;
|
c@42
|
533 if (m_decimator) decbuf = new double[m_fftSize];
|
c@42
|
534
|
c@47
|
535 double *raw = new double[std::max(m_featureColumnSize,
|
c@47
|
536 m_rhythmColumnSize)];
|
c@41
|
537
|
c@43
|
538 float threshold = 1e-10;
|
c@43
|
539
|
c@47
|
540 bool someRhythmFrameNeeded = false;
|
c@47
|
541
|
c@41
|
542 for (size_t c = 0; c < m_channels; ++c) {
|
c@41
|
543
|
c@43
|
544 bool empty = true;
|
c@43
|
545
|
c@41
|
546 for (int i = 0; i < m_blockSize; ++i) {
|
c@43
|
547 float val = inputBuffers[c][i];
|
c@43
|
548 if (fabs(val) > threshold) empty = false;
|
c@43
|
549 dblbuf[i] = val;
|
c@41
|
550 }
|
c@41
|
551
|
c@47
|
552 if (empty) {
|
c@47
|
553 if (needRhythm() && ((m_frameNo % 2) == 0)) {
|
c@47
|
554 for (int i = 0; i < m_fftSize / m_rhythmClipFrameSize; ++i) {
|
c@47
|
555 if (m_rhythmValues[c].size() < m_rhythmClipFrames) {
|
c@47
|
556 FeatureColumn mf(m_rhythmColumnSize);
|
c@47
|
557 for (int i = 0; i < m_rhythmColumnSize; ++i) {
|
c@47
|
558 mf[i] = 0.0;
|
c@47
|
559 }
|
c@47
|
560 m_rhythmValues[c].push_back(mf);
|
c@47
|
561 }
|
c@47
|
562 }
|
c@47
|
563 }
|
c@60
|
564 m_emptyFrameCount[c]++;
|
c@47
|
565 continue;
|
c@47
|
566 }
|
c@47
|
567
|
c@44
|
568 m_lastNonEmptyFrame[c] = m_frameNo;
|
c@43
|
569
|
c@41
|
570 if (m_decimator) {
|
c@41
|
571 m_decimator->process(dblbuf, decbuf);
|
c@41
|
572 }
|
c@42
|
573
|
c@47
|
574 if (needTimbre()) {
|
c@47
|
575
|
c@66
|
576 FeatureColumn mf(m_featureColumnSize);
|
c@66
|
577
|
c@47
|
578 if (m_type == TypeMFCC) {
|
c@47
|
579 m_mfcc->process(decbuf, raw);
|
c@66
|
580 for (int i = 0; i < m_featureColumnSize; ++i) {
|
c@66
|
581 mf[i] = raw[i];
|
c@66
|
582 }
|
c@47
|
583 } else if (m_type == TypeChroma) {
|
c@66
|
584 double *chroma = m_chromagram->process(decbuf);
|
c@66
|
585 for (int i = 0; i < m_featureColumnSize; ++i) {
|
c@66
|
586 mf[i] = chroma[i];
|
c@66
|
587 }
|
c@47
|
588 }
|
c@41
|
589
|
c@47
|
590 m_values[c].push_back(mf);
|
c@44
|
591 }
|
c@41
|
592
|
c@47
|
593 // std::cerr << "needRhythm = " << needRhythm() << ", frame = " << m_frameNo << std::endl;
|
c@47
|
594
|
c@47
|
595 if (needRhythm() && ((m_frameNo % 2) == 0)) {
|
c@47
|
596
|
c@47
|
597 // The incoming frames are overlapping; we only use every
|
c@47
|
598 // other one, because we don't want the overlap (it would
|
c@47
|
599 // screw up the rhythm)
|
c@47
|
600
|
c@47
|
601 int frameOffset = 0;
|
c@47
|
602
|
c@47
|
603 while (frameOffset + m_rhythmClipFrameSize <= m_fftSize) {
|
c@47
|
604
|
c@47
|
605 bool needRhythmFrame = true;
|
c@47
|
606
|
c@47
|
607 if (m_rhythmValues[c].size() >= m_rhythmClipFrames) {
|
c@47
|
608
|
c@47
|
609 needRhythmFrame = false;
|
c@47
|
610
|
c@47
|
611 // assumes hopsize = framesize/2
|
c@47
|
612 float current = m_frameNo * (m_fftSize/2) + frameOffset;
|
c@47
|
613 current = current / m_processRate;
|
c@47
|
614 if (current - m_rhythmClipDuration < m_rhythmClipOrigin) {
|
c@47
|
615 needRhythmFrame = true;
|
c@47
|
616 m_rhythmValues[c].pop_front();
|
c@47
|
617 }
|
c@47
|
618
|
c@53
|
619 // if (needRhythmFrame) {
|
c@53
|
620 // std::cerr << "at current = " <<current << " (frame = " << m_frameNo << "), have " << m_rhythmValues[c].size() << ", need rhythm = " << needRhythmFrame << std::endl;
|
c@53
|
621 // }
|
c@47
|
622
|
c@47
|
623 }
|
c@47
|
624
|
c@47
|
625 if (needRhythmFrame) {
|
c@47
|
626
|
c@47
|
627 someRhythmFrameNeeded = true;
|
c@47
|
628
|
c@47
|
629 m_rhythmfcc->process(decbuf + frameOffset, raw);
|
c@47
|
630
|
c@47
|
631 FeatureColumn mf(m_rhythmColumnSize);
|
c@47
|
632 for (int i = 0; i < m_rhythmColumnSize; ++i) {
|
c@47
|
633 mf[i] = raw[i];
|
c@47
|
634 }
|
c@47
|
635
|
c@47
|
636 m_rhythmValues[c].push_back(mf);
|
c@47
|
637 }
|
c@47
|
638
|
c@47
|
639 frameOffset += m_rhythmClipFrameSize;
|
c@47
|
640 }
|
c@47
|
641 }
|
c@47
|
642 }
|
c@47
|
643
|
c@47
|
644 if (!needTimbre() && !someRhythmFrameNeeded && ((m_frameNo % 2) == 0)) {
|
c@53
|
645 // std::cerr << "done!" << std::endl;
|
c@47
|
646 m_done = true;
|
c@41
|
647 }
|
c@41
|
648
|
c@41
|
649 if (m_decimator) delete[] decbuf;
|
c@41
|
650 delete[] dblbuf;
|
c@47
|
651 delete[] raw;
|
c@41
|
652
|
c@44
|
653 ++m_frameNo;
|
c@44
|
654
|
c@41
|
655 return FeatureSet();
|
c@41
|
656 }
|
c@41
|
657
|
c@47
|
658 SimilarityPlugin::FeatureMatrix
|
c@47
|
659 SimilarityPlugin::calculateTimbral(FeatureSet &returnFeatures)
|
c@41
|
660 {
|
c@47
|
661 FeatureMatrix m(m_channels); // means
|
c@47
|
662 FeatureMatrix v(m_channels); // variances
|
c@41
|
663
|
c@41
|
664 for (int i = 0; i < m_channels; ++i) {
|
c@41
|
665
|
c@42
|
666 FeatureColumn mean(m_featureColumnSize), variance(m_featureColumnSize);
|
c@41
|
667
|
c@42
|
668 for (int j = 0; j < m_featureColumnSize; ++j) {
|
c@41
|
669
|
c@43
|
670 mean[j] = 0.0;
|
c@43
|
671 variance[j] = 0.0;
|
c@41
|
672 int count;
|
c@41
|
673
|
c@44
|
674 // We want to take values up to, but not including, the
|
c@44
|
675 // last non-empty frame (which may be partial)
|
c@43
|
676
|
c@60
|
677 int sz = m_lastNonEmptyFrame[i] - m_emptyFrameCount[i];
|
c@44
|
678 if (sz < 0) sz = 0;
|
c@60
|
679 if (sz >= m_values[i].size()) sz = m_values[i].size()-1;
|
c@43
|
680
|
c@41
|
681 count = 0;
|
c@43
|
682 for (int k = 0; k < sz; ++k) {
|
c@42
|
683 double val = m_values[i][k][j];
|
c@41
|
684 if (isnan(val) || isinf(val)) continue;
|
c@41
|
685 mean[j] += val;
|
c@41
|
686 ++count;
|
c@41
|
687 }
|
c@41
|
688 if (count > 0) mean[j] /= count;
|
c@41
|
689
|
c@41
|
690 count = 0;
|
c@43
|
691 for (int k = 0; k < sz; ++k) {
|
c@42
|
692 double val = ((m_values[i][k][j] - mean[j]) *
|
c@42
|
693 (m_values[i][k][j] - mean[j]));
|
c@41
|
694 if (isnan(val) || isinf(val)) continue;
|
c@41
|
695 variance[j] += val;
|
c@41
|
696 ++count;
|
c@41
|
697 }
|
c@41
|
698 if (count > 0) variance[j] /= count;
|
c@41
|
699 }
|
c@41
|
700
|
c@41
|
701 m[i] = mean;
|
c@41
|
702 v[i] = variance;
|
c@41
|
703 }
|
c@41
|
704
|
c@47
|
705 FeatureMatrix distances(m_channels);
|
c@42
|
706
|
c@48
|
707 if (m_type == TypeMFCC) {
|
c@48
|
708
|
c@48
|
709 // "Despite the fact that MFCCs extracted from music are
|
c@48
|
710 // clearly not Gaussian, [14] showed, somewhat surprisingly,
|
c@48
|
711 // that a similarity function comparing single Gaussians
|
c@48
|
712 // modelling MFCCs for each track can perform as well as
|
c@48
|
713 // mixture models. A great advantage of using single
|
c@48
|
714 // Gaussians is that a simple closed form exists for the KL
|
c@48
|
715 // divergence." -- Mark Levy, "Lightweight measures for
|
c@48
|
716 // timbral similarity of musical audio"
|
c@48
|
717 // (http://www.elec.qmul.ac.uk/easaier/papers/mlevytimbralsimilarity.pdf)
|
c@48
|
718
|
c@48
|
719 KLDivergence kld;
|
c@48
|
720
|
c@48
|
721 for (int i = 0; i < m_channels; ++i) {
|
c@48
|
722 for (int j = 0; j < m_channels; ++j) {
|
c@48
|
723 double d = kld.distanceGaussian(m[i], v[i], m[j], v[j]);
|
c@48
|
724 distances[i].push_back(d);
|
c@48
|
725 }
|
c@48
|
726 }
|
c@48
|
727
|
c@48
|
728 } else {
|
c@48
|
729
|
c@49
|
730 // We use the KL divergence for distributions of discrete
|
c@49
|
731 // variables, as chroma are histograms already. Or at least,
|
c@49
|
732 // they will be when we've normalised them like this:
|
c@49
|
733 for (int i = 0; i < m_channels; ++i) {
|
c@49
|
734 MathUtilities::normalise(m[i], MathUtilities::NormaliseUnitSum);
|
c@49
|
735 }
|
c@48
|
736
|
c@48
|
737 KLDivergence kld;
|
c@48
|
738
|
c@48
|
739 for (int i = 0; i < m_channels; ++i) {
|
c@48
|
740 for (int j = 0; j < m_channels; ++j) {
|
c@48
|
741 double d = kld.distanceDistribution(m[i], m[j], true);
|
c@48
|
742 distances[i].push_back(d);
|
c@48
|
743 }
|
c@41
|
744 }
|
c@41
|
745 }
|
c@47
|
746
|
c@44
|
747 Feature feature;
|
c@44
|
748 feature.hasTimestamp = true;
|
c@44
|
749
|
c@44
|
750 char labelBuffer[100];
|
c@43
|
751
|
c@41
|
752 for (int i = 0; i < m_channels; ++i) {
|
c@41
|
753
|
c@41
|
754 feature.timestamp = Vamp::RealTime(i, 0);
|
c@41
|
755
|
c@44
|
756 sprintf(labelBuffer, "Means for channel %d", i+1);
|
c@44
|
757 feature.label = labelBuffer;
|
c@44
|
758
|
c@41
|
759 feature.values.clear();
|
c@42
|
760 for (int k = 0; k < m_featureColumnSize; ++k) {
|
c@41
|
761 feature.values.push_back(m[i][k]);
|
c@41
|
762 }
|
c@41
|
763
|
c@43
|
764 returnFeatures[m_meansOutput].push_back(feature);
|
c@41
|
765
|
c@44
|
766 sprintf(labelBuffer, "Variances for channel %d", i+1);
|
c@44
|
767 feature.label = labelBuffer;
|
c@44
|
768
|
c@41
|
769 feature.values.clear();
|
c@42
|
770 for (int k = 0; k < m_featureColumnSize; ++k) {
|
c@41
|
771 feature.values.push_back(v[i][k]);
|
c@41
|
772 }
|
c@41
|
773
|
c@43
|
774 returnFeatures[m_variancesOutput].push_back(feature);
|
c@47
|
775 }
|
c@47
|
776
|
c@47
|
777 return distances;
|
c@47
|
778 }
|
c@47
|
779
|
c@47
|
780 SimilarityPlugin::FeatureMatrix
|
c@47
|
781 SimilarityPlugin::calculateRhythmic(FeatureSet &returnFeatures)
|
c@47
|
782 {
|
c@47
|
783 if (!needRhythm()) return FeatureMatrix();
|
c@47
|
784
|
c@60
|
785 // std::cerr << "SimilarityPlugin::initialise: rhythm clip for channel 0 contains "
|
c@60
|
786 // << m_rhythmValues[0].size() << " frames of size "
|
c@60
|
787 // << m_rhythmClipFrameSize << " at process rate "
|
c@60
|
788 // << m_processRate << " ( = "
|
c@60
|
789 // << (float(m_rhythmValues[0].size() * m_rhythmClipFrameSize) / m_processRate) << " sec )"
|
c@60
|
790 // << std::endl;
|
c@60
|
791
|
c@47
|
792 BeatSpectrum bscalc;
|
c@47
|
793 CosineDistance cd;
|
c@47
|
794
|
c@47
|
795 // Our rhythm feature matrix is a deque of vectors for practical
|
c@47
|
796 // reasons, but BeatSpectrum::process wants a vector of vectors
|
c@47
|
797 // (which is what FeatureMatrix happens to be).
|
c@47
|
798
|
c@47
|
799 FeatureMatrixSet bsinput(m_channels);
|
c@47
|
800 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
801 for (int j = 0; j < m_rhythmValues[i].size(); ++j) {
|
c@47
|
802 bsinput[i].push_back(m_rhythmValues[i][j]);
|
c@47
|
803 }
|
c@47
|
804 }
|
c@47
|
805
|
c@47
|
806 FeatureMatrix bs(m_channels);
|
c@47
|
807 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
808 bs[i] = bscalc.process(bsinput[i]);
|
c@47
|
809 }
|
c@47
|
810
|
c@47
|
811 FeatureMatrix distances(m_channels);
|
c@47
|
812 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
813 for (int j = 0; j < m_channels; ++j) {
|
c@47
|
814 double d = cd.distance(bs[i], bs[j]);
|
c@47
|
815 distances[i].push_back(d);
|
c@47
|
816 }
|
c@47
|
817 }
|
c@47
|
818
|
c@47
|
819 Feature feature;
|
c@47
|
820 feature.hasTimestamp = true;
|
c@47
|
821
|
c@47
|
822 char labelBuffer[100];
|
c@47
|
823
|
c@47
|
824 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
825
|
c@47
|
826 feature.timestamp = Vamp::RealTime(i, 0);
|
c@47
|
827
|
c@47
|
828 sprintf(labelBuffer, "Beat spectrum for channel %d", i+1);
|
c@47
|
829 feature.label = labelBuffer;
|
c@47
|
830
|
c@47
|
831 feature.values.clear();
|
c@47
|
832 for (int j = 0; j < bs[i].size(); ++j) {
|
c@47
|
833 feature.values.push_back(bs[i][j]);
|
c@47
|
834 }
|
c@47
|
835
|
c@47
|
836 returnFeatures[m_beatSpectraOutput].push_back(feature);
|
c@47
|
837 }
|
c@47
|
838
|
c@47
|
839 return distances;
|
c@47
|
840 }
|
c@47
|
841
|
c@47
|
842 double
|
c@47
|
843 SimilarityPlugin::getDistance(const FeatureMatrix &timbral,
|
c@47
|
844 const FeatureMatrix &rhythmic,
|
c@47
|
845 int i, int j)
|
c@47
|
846 {
|
c@47
|
847 double distance = 1.0;
|
c@47
|
848 if (needTimbre()) distance *= timbral[i][j];
|
c@47
|
849 if (needRhythm()) distance *= rhythmic[i][j];
|
c@47
|
850 return distance;
|
c@47
|
851 }
|
c@47
|
852
|
c@47
|
853 SimilarityPlugin::FeatureSet
|
c@47
|
854 SimilarityPlugin::getRemainingFeatures()
|
c@47
|
855 {
|
c@47
|
856 FeatureSet returnFeatures;
|
c@47
|
857
|
c@47
|
858 // We want to return a matrix of the distances between channels,
|
c@47
|
859 // but Vamp doesn't have a matrix return type so we will actually
|
c@47
|
860 // return a series of vectors
|
c@47
|
861
|
c@47
|
862 FeatureMatrix timbralDistances, rhythmicDistances;
|
c@47
|
863
|
c@47
|
864 if (needTimbre()) {
|
c@47
|
865 timbralDistances = calculateTimbral(returnFeatures);
|
c@47
|
866 }
|
c@47
|
867
|
c@47
|
868 if (needRhythm()) {
|
c@47
|
869 rhythmicDistances = calculateRhythmic(returnFeatures);
|
c@47
|
870 }
|
c@47
|
871
|
c@47
|
872 // We give all features a timestamp, otherwise hosts will tend to
|
c@47
|
873 // stamp them at the end of the file, which is annoying
|
c@47
|
874
|
c@47
|
875 Feature feature;
|
c@47
|
876 feature.hasTimestamp = true;
|
c@47
|
877
|
c@47
|
878 Feature distanceVectorFeature;
|
c@47
|
879 distanceVectorFeature.label = "Distance from first channel";
|
c@47
|
880 distanceVectorFeature.hasTimestamp = true;
|
c@47
|
881 distanceVectorFeature.timestamp = Vamp::RealTime::zeroTime;
|
c@47
|
882
|
c@47
|
883 std::map<double, int> sorted;
|
c@47
|
884
|
c@47
|
885 char labelBuffer[100];
|
c@47
|
886
|
c@47
|
887 for (int i = 0; i < m_channels; ++i) {
|
c@47
|
888
|
c@47
|
889 feature.timestamp = Vamp::RealTime(i, 0);
|
c@41
|
890
|
c@41
|
891 feature.values.clear();
|
c@41
|
892 for (int j = 0; j < m_channels; ++j) {
|
c@47
|
893 double dist = getDistance(timbralDistances, rhythmicDistances, i, j);
|
c@47
|
894 feature.values.push_back(dist);
|
c@41
|
895 }
|
c@43
|
896
|
c@44
|
897 sprintf(labelBuffer, "Distances from channel %d", i+1);
|
c@44
|
898 feature.label = labelBuffer;
|
c@41
|
899
|
c@43
|
900 returnFeatures[m_distanceMatrixOutput].push_back(feature);
|
c@43
|
901
|
c@47
|
902 double fromFirst =
|
c@47
|
903 getDistance(timbralDistances, rhythmicDistances, 0, i);
|
c@44
|
904
|
c@47
|
905 distanceVectorFeature.values.push_back(fromFirst);
|
c@47
|
906 sorted[fromFirst] = i;
|
c@41
|
907 }
|
c@41
|
908
|
c@43
|
909 returnFeatures[m_distanceVectorOutput].push_back(distanceVectorFeature);
|
c@43
|
910
|
c@44
|
911 feature.label = "Order of channels by similarity to first channel";
|
c@44
|
912 feature.values.clear();
|
c@44
|
913 feature.timestamp = Vamp::RealTime(0, 0);
|
c@44
|
914
|
c@44
|
915 for (std::map<double, int>::iterator i = sorted.begin();
|
c@44
|
916 i != sorted.end(); ++i) {
|
c@45
|
917 feature.values.push_back(i->second + 1);
|
c@44
|
918 }
|
c@44
|
919
|
c@44
|
920 returnFeatures[m_sortedVectorOutput].push_back(feature);
|
c@44
|
921
|
c@44
|
922 feature.label = "Ordered distances of channels from first channel";
|
c@44
|
923 feature.values.clear();
|
c@44
|
924 feature.timestamp = Vamp::RealTime(1, 0);
|
c@44
|
925
|
c@44
|
926 for (std::map<double, int>::iterator i = sorted.begin();
|
c@44
|
927 i != sorted.end(); ++i) {
|
c@44
|
928 feature.values.push_back(i->first);
|
c@44
|
929 }
|
c@44
|
930
|
c@44
|
931 returnFeatures[m_sortedVectorOutput].push_back(feature);
|
c@44
|
932
|
c@41
|
933 return returnFeatures;
|
c@41
|
934 }
|