annotate dsp/tempotracking/DownBeat.cpp @ 501:12b5a9244bb0

Style fixes: avoid unsigned, fix formatting
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 05 Jun 2019 10:21:48 +0100
parents bb78ca3fe7de
children
rev   line source
c@279 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@279 2
c@279 3 /*
c@279 4 QM DSP Library
c@279 5
c@279 6 Centre for Digital Music, Queen Mary, University of London.
c@279 7 This file copyright 2008-2009 Matthew Davies and QMUL.
c@309 8
c@309 9 This program is free software; you can redistribute it and/or
c@309 10 modify it under the terms of the GNU General Public License as
c@309 11 published by the Free Software Foundation; either version 2 of the
c@309 12 License, or (at your option) any later version. See the file
c@309 13 COPYING included with this distribution for more information.
c@279 14 */
c@279 15
c@279 16 #include "DownBeat.h"
c@279 17
c@279 18 #include "maths/MathAliases.h"
c@279 19 #include "maths/MathUtilities.h"
c@280 20 #include "maths/KLDivergence.h"
c@279 21 #include "dsp/transforms/FFT.h"
c@279 22
c@279 23 #include <iostream>
c@279 24 #include <cstdlib>
c@279 25
cannam@493 26 using std::vector;
cannam@493 27
c@279 28 DownBeat::DownBeat(float originalSampleRate,
c@279 29 size_t decimationFactor,
c@279 30 size_t dfIncrement) :
c@280 31 m_bpb(0),
c@279 32 m_rate(originalSampleRate),
c@279 33 m_factor(decimationFactor),
c@279 34 m_increment(dfIncrement),
c@279 35 m_decimator1(0),
c@279 36 m_decimator2(0),
c@279 37 m_buffer(0),
c@283 38 m_decbuf(0),
c@279 39 m_bufsiz(0),
c@279 40 m_buffill(0),
c@279 41 m_beatframesize(0),
c@279 42 m_beatframe(0)
c@279 43 {
c@279 44 // beat frame size is next power of two up from 1.3 seconds at the
c@279 45 // downsampled rate (happens to produce 4096 for 44100 or 48000 at
c@279 46 // 16x decimation, which is our expected normal situation)
c@280 47 m_beatframesize = MathUtilities::nextPowerOfTwo
c@280 48 (int((m_rate / decimationFactor) * 1.3));
c@387 49 if (m_beatframesize < 2) {
c@387 50 m_beatframesize = 2;
c@387 51 }
c@279 52 m_beatframe = new double[m_beatframesize];
c@279 53 m_fftRealOut = new double[m_beatframesize];
c@279 54 m_fftImagOut = new double[m_beatframesize];
c@289 55 m_fft = new FFTReal(m_beatframesize);
c@279 56 }
c@279 57
c@279 58 DownBeat::~DownBeat()
c@279 59 {
c@279 60 delete m_decimator1;
c@279 61 delete m_decimator2;
c@279 62 if (m_buffer) free(m_buffer);
c@279 63 delete[] m_decbuf;
c@279 64 delete[] m_beatframe;
c@279 65 delete[] m_fftRealOut;
c@279 66 delete[] m_fftImagOut;
c@289 67 delete m_fft;
c@279 68 }
c@279 69
c@279 70 void
c@280 71 DownBeat::setBeatsPerBar(int bpb)
c@280 72 {
c@280 73 m_bpb = bpb;
c@280 74 }
c@280 75
c@280 76 void
c@279 77 DownBeat::makeDecimators()
c@279 78 {
c@279 79 if (m_factor < 2) return;
c@302 80 size_t highest = Decimator::getHighestSupportedFactor();
c@279 81 if (m_factor <= highest) {
c@279 82 m_decimator1 = new Decimator(m_increment, m_factor);
c@279 83 return;
c@279 84 }
c@279 85 m_decimator1 = new Decimator(m_increment, highest);
c@279 86 m_decimator2 = new Decimator(m_increment / highest, m_factor / highest);
c@280 87 m_decbuf = new float[m_increment / highest];
c@279 88 }
c@279 89
c@279 90 void
c@280 91 DownBeat::pushAudioBlock(const float *audio)
c@279 92 {
c@279 93 if (m_buffill + (m_increment / m_factor) > m_bufsiz) {
c@279 94 if (m_bufsiz == 0) m_bufsiz = m_increment * 16;
c@279 95 else m_bufsiz = m_bufsiz * 2;
c@279 96 if (!m_buffer) {
c@280 97 m_buffer = (float *)malloc(m_bufsiz * sizeof(float));
c@279 98 } else {
c@280 99 m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float));
c@279 100 }
c@279 101 }
cannam@479 102 if (!m_decimator1 && m_factor > 1) {
cannam@479 103 makeDecimators();
cannam@479 104 }
c@279 105 if (m_decimator2) {
c@279 106 m_decimator1->process(audio, m_decbuf);
c@279 107 m_decimator2->process(m_decbuf, m_buffer + m_buffill);
c@283 108 } else if (m_decimator1) {
c@283 109 m_decimator1->process(audio, m_buffer + m_buffill);
c@279 110 } else {
c@283 111 // just copy across (m_factor is presumably 1)
c@302 112 for (size_t i = 0; i < m_increment; ++i) {
c@283 113 (m_buffer + m_buffill)[i] = audio[i];
c@283 114 }
c@279 115 }
c@279 116 m_buffill += m_increment / m_factor;
c@279 117 }
c@279 118
c@280 119 const float *
c@279 120 DownBeat::getBufferedAudio(size_t &length) const
c@279 121 {
c@279 122 length = m_buffill;
c@279 123 return m_buffer;
c@279 124 }
c@279 125
c@279 126 void
c@280 127 DownBeat::resetAudioBuffer()
c@280 128 {
cannam@479 129 if (m_buffer) {
cannam@479 130 free(m_buffer);
cannam@479 131 }
c@283 132 m_buffer = 0;
c@280 133 m_buffill = 0;
c@280 134 m_bufsiz = 0;
c@280 135 }
c@280 136
c@280 137 void
c@280 138 DownBeat::findDownBeats(const float *audio,
c@279 139 size_t audioLength,
c@279 140 const d_vec_t &beats,
c@279 141 i_vec_t &downbeats)
c@279 142 {
c@279 143 // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS
c@279 144 // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz)
c@279 145 // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES
c@279 146
c@279 147 // IMPLEMENTATION (MOSTLY) FOLLOWS:
c@279 148 // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO"
c@279 149 // EUSIPCO 2006, FLORENCE, ITALY
c@279 150
c@279 151 d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat
c@279 152 d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat
c@281 153
c@281 154 m_beatsd.clear();
c@279 155
c@279 156 if (audioLength == 0) return;
c@279 157
c@279 158 for (size_t i = 0; i + 1 < beats.size(); ++i) {
c@279 159
c@279 160 // Copy the extents of the current beat from downsampled array
c@279 161 // into beat frame buffer
c@279 162
c@279 163 size_t beatstart = (beats[i] * m_increment) / m_factor;
c@280 164 size_t beatend = (beats[i+1] * m_increment) / m_factor;
c@279 165 if (beatend >= audioLength) beatend = audioLength - 1;
c@279 166 if (beatend < beatstart) beatend = beatstart;
c@279 167 size_t beatlen = beatend - beatstart;
c@279 168
c@279 169 // Also apply a Hanning window to the beat frame buffer, sized
c@279 170 // to the beat extents rather than the frame size. (Because
c@279 171 // the size varies, it's easier to do this by hand than use
c@279 172 // our Window abstraction.)
c@279 173
c@283 174 for (size_t j = 0; j < beatlen && j < m_beatframesize; ++j) {
c@279 175 double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen))));
c@279 176 m_beatframe[j] = audio[beatstart + j] * mul;
c@279 177 }
c@279 178
c@279 179 for (size_t j = beatlen; j < m_beatframesize; ++j) {
c@279 180 m_beatframe[j] = 0.0;
c@279 181 }
c@279 182
c@279 183 // Now FFT beat frame
c@279 184
c@339 185 m_fft->forward(m_beatframe, m_fftRealOut, m_fftImagOut);
c@279 186
c@279 187 // Calculate magnitudes
c@279 188
c@279 189 for (size_t j = 0; j < m_beatframesize/2; ++j) {
c@279 190 newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] +
c@279 191 m_fftImagOut[j] * m_fftImagOut[j]);
c@279 192 }
c@279 193
c@279 194 // Preserve peaks by applying adaptive threshold
c@279 195
c@279 196 MathUtilities::adaptiveThreshold(newspec);
c@279 197
c@279 198 // Calculate JS divergence between new and old spectral frames
c@279 199
c@281 200 if (i > 0) { // otherwise we have no previous frame
c@281 201 m_beatsd.push_back(measureSpecDiff(oldspec, newspec));
c@281 202 }
c@279 203
c@279 204 // Copy newspec across to old
c@279 205
c@279 206 for (size_t j = 0; j < m_beatframesize/2; ++j) {
c@279 207 oldspec[j] = newspec[j];
c@279 208 }
c@279 209 }
c@279 210
c@279 211 // We now have all spectral difference measures in specdiff
c@279 212
c@302 213 int timesig = m_bpb;
c@280 214 if (timesig == 0) timesig = 4;
c@280 215
c@279 216 d_vec_t dbcand(timesig); // downbeat candidates
c@279 217
c@280 218 for (int beat = 0; beat < timesig; ++beat) {
c@280 219 dbcand[beat] = 0;
c@280 220 }
c@280 221
c@301 222 // look for beat transition which leads to greatest spectral change
c@301 223 for (int beat = 0; beat < timesig; ++beat) {
c@301 224 int count = 0;
c@302 225 for (int example = beat-1; example < (int)m_beatsd.size(); example += timesig) {
c@301 226 if (example < 0) continue;
c@301 227 dbcand[beat] += (m_beatsd[example]) / timesig;
c@301 228 ++count;
c@301 229 }
cannam@479 230 if (count > 0) {
cannam@479 231 dbcand[beat] /= count;
cannam@479 232 }
c@301 233 }
c@280 234
c@279 235 // first downbeat is beat at index of maximum value of dbcand
c@279 236 int dbind = MathUtilities::getMax(dbcand);
c@279 237
c@279 238 // remaining downbeats are at timesig intervals from the first
c@302 239 for (int i = dbind; i < (int)beats.size(); i += timesig) {
c@279 240 downbeats.push_back(i);
c@279 241 }
c@279 242 }
c@279 243
c@279 244 double
c@279 245 DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec)
c@279 246 {
c@279 247 // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES
c@279 248
cannam@501 249 int SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM.
cannam@501 250 if (SPECSIZE > int(oldspec.size())/4) {
cannam@501 251 SPECSIZE = int(oldspec.size())/4;
c@279 252 }
c@279 253 double SD = 0.;
c@279 254 double sd1 = 0.;
c@279 255
c@279 256 double sumnew = 0.;
c@279 257 double sumold = 0.;
c@279 258
cannam@501 259 for (int i = 0;i < SPECSIZE;i++) {
cannam@479 260
c@279 261 newspec[i] +=EPS;
c@279 262 oldspec[i] +=EPS;
c@279 263
c@279 264 sumnew+=newspec[i];
c@279 265 sumold+=oldspec[i];
c@279 266 }
c@279 267
cannam@501 268 for (int i = 0;i < SPECSIZE;i++) {
cannam@479 269
c@279 270 newspec[i] /= (sumnew);
c@279 271 oldspec[i] /= (sumold);
c@279 272
c@279 273 // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1
cannam@479 274 if (newspec[i] == 0) {
c@279 275 newspec[i] = 1.;
c@279 276 }
c@279 277
cannam@479 278 if (oldspec[i] == 0) {
c@279 279 oldspec[i] = 1.;
c@279 280 }
c@279 281
c@279 282 // JENSEN-SHANNON CALCULATION
cannam@479 283 sd1 = 0.5*oldspec[i] + 0.5*newspec[i];
cannam@479 284 SD = SD + (-sd1*log(sd1)) +
cannam@479 285 (0.5*(oldspec[i]*log(oldspec[i]))) +
cannam@479 286 (0.5*(newspec[i]*log(newspec[i])));
c@279 287 }
c@279 288
c@279 289 return SD;
c@279 290 }
c@279 291
c@281 292 void
c@281 293 DownBeat::getBeatSD(vector<double> &beatsd) const
c@281 294 {
cannam@479 295 for (int i = 0; i < (int)m_beatsd.size(); ++i) {
cannam@479 296 beatsd.push_back(m_beatsd[i]);
cannam@479 297 }
c@281 298 }
c@281 299