annotate dsp/tempotracking/DownBeat.cpp @ 289:befe5aa6b450

* Refactor FFT a little bit so as to separate construction and processing rather than have a single static method -- will make it easier to use a different implementation * pull in KissFFT implementation (not hooked up yet)
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 13 May 2009 09:19:12 +0000
parents 5e125f030287
children c3cdb404f807
rev   line source
c@279 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@279 2
c@279 3 /*
c@279 4 QM DSP Library
c@279 5
c@279 6 Centre for Digital Music, Queen Mary, University of London.
c@279 7 This file copyright 2008-2009 Matthew Davies and QMUL.
c@279 8 All rights reserved.
c@279 9 */
c@279 10
c@279 11 #include "DownBeat.h"
c@279 12
c@279 13 #include "maths/MathAliases.h"
c@279 14 #include "maths/MathUtilities.h"
c@280 15 #include "maths/KLDivergence.h"
c@279 16 #include "dsp/transforms/FFT.h"
c@279 17
c@279 18 #include <iostream>
c@279 19 #include <cstdlib>
c@279 20
c@279 21 DownBeat::DownBeat(float originalSampleRate,
c@279 22 size_t decimationFactor,
c@279 23 size_t dfIncrement) :
c@280 24 m_bpb(0),
c@279 25 m_rate(originalSampleRate),
c@279 26 m_factor(decimationFactor),
c@279 27 m_increment(dfIncrement),
c@279 28 m_decimator1(0),
c@279 29 m_decimator2(0),
c@279 30 m_buffer(0),
c@283 31 m_decbuf(0),
c@279 32 m_bufsiz(0),
c@279 33 m_buffill(0),
c@279 34 m_beatframesize(0),
c@279 35 m_beatframe(0)
c@279 36 {
c@279 37 // beat frame size is next power of two up from 1.3 seconds at the
c@279 38 // downsampled rate (happens to produce 4096 for 44100 or 48000 at
c@279 39 // 16x decimation, which is our expected normal situation)
c@280 40 m_beatframesize = MathUtilities::nextPowerOfTwo
c@280 41 (int((m_rate / decimationFactor) * 1.3));
c@282 42 // std::cerr << "rate = " << m_rate << ", bfs = " << m_beatframesize << std::endl;
c@279 43 m_beatframe = new double[m_beatframesize];
c@279 44 m_fftRealOut = new double[m_beatframesize];
c@279 45 m_fftImagOut = new double[m_beatframesize];
c@289 46 m_fft = new FFTReal(m_beatframesize);
c@279 47 }
c@279 48
c@279 49 DownBeat::~DownBeat()
c@279 50 {
c@279 51 delete m_decimator1;
c@279 52 delete m_decimator2;
c@279 53 if (m_buffer) free(m_buffer);
c@279 54 delete[] m_decbuf;
c@279 55 delete[] m_beatframe;
c@279 56 delete[] m_fftRealOut;
c@279 57 delete[] m_fftImagOut;
c@289 58 delete m_fft;
c@279 59 }
c@279 60
c@279 61 void
c@280 62 DownBeat::setBeatsPerBar(int bpb)
c@280 63 {
c@280 64 m_bpb = bpb;
c@280 65 }
c@280 66
c@280 67 void
c@279 68 DownBeat::makeDecimators()
c@279 69 {
c@283 70 // std::cerr << "m_factor = " << m_factor << std::endl;
c@279 71 if (m_factor < 2) return;
c@279 72 int highest = Decimator::getHighestSupportedFactor();
c@279 73 if (m_factor <= highest) {
c@279 74 m_decimator1 = new Decimator(m_increment, m_factor);
c@282 75 // std::cerr << "DownBeat: decimator 1 factor " << m_factor << ", size " << m_increment << std::endl;
c@279 76 return;
c@279 77 }
c@279 78 m_decimator1 = new Decimator(m_increment, highest);
c@282 79 // std::cerr << "DownBeat: decimator 1 factor " << highest << ", size " << m_increment << std::endl;
c@279 80 m_decimator2 = new Decimator(m_increment / highest, m_factor / highest);
c@282 81 // std::cerr << "DownBeat: decimator 2 factor " << m_factor / highest << ", size " << m_increment / highest << std::endl;
c@280 82 m_decbuf = new float[m_increment / highest];
c@279 83 }
c@279 84
c@279 85 void
c@280 86 DownBeat::pushAudioBlock(const float *audio)
c@279 87 {
c@279 88 if (m_buffill + (m_increment / m_factor) > m_bufsiz) {
c@279 89 if (m_bufsiz == 0) m_bufsiz = m_increment * 16;
c@279 90 else m_bufsiz = m_bufsiz * 2;
c@279 91 if (!m_buffer) {
c@280 92 m_buffer = (float *)malloc(m_bufsiz * sizeof(float));
c@279 93 } else {
c@282 94 // std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl;
c@280 95 m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float));
c@279 96 }
c@279 97 }
c@283 98 if (!m_decimator1 && m_factor > 1) makeDecimators();
c@283 99 // float rmsin = 0, rmsout = 0;
c@283 100 // for (int i = 0; i < m_increment; ++i) {
c@283 101 // rmsin += audio[i] * audio[i];
c@283 102 // }
c@279 103 if (m_decimator2) {
c@279 104 m_decimator1->process(audio, m_decbuf);
c@279 105 m_decimator2->process(m_decbuf, m_buffer + m_buffill);
c@283 106 } else if (m_decimator1) {
c@283 107 m_decimator1->process(audio, m_buffer + m_buffill);
c@279 108 } else {
c@283 109 // just copy across (m_factor is presumably 1)
c@283 110 for (int i = 0; i < m_increment; ++i) {
c@283 111 (m_buffer + m_buffill)[i] = audio[i];
c@283 112 }
c@279 113 }
c@283 114 // for (int i = 0; i < m_increment / m_factor; ++i) {
c@283 115 // rmsout += m_buffer[m_buffill + i] * m_buffer[m_buffill + i];
c@283 116 // }
c@282 117 // std::cerr << "pushAudioBlock: rms in " << sqrt(rmsin) << ", out " << sqrt(rmsout) << std::endl;
c@279 118 m_buffill += m_increment / m_factor;
c@279 119 }
c@279 120
c@280 121 const float *
c@279 122 DownBeat::getBufferedAudio(size_t &length) const
c@279 123 {
c@279 124 length = m_buffill;
c@279 125 return m_buffer;
c@279 126 }
c@279 127
c@279 128 void
c@280 129 DownBeat::resetAudioBuffer()
c@280 130 {
c@280 131 if (m_buffer) free(m_buffer);
c@283 132 m_buffer = 0;
c@280 133 m_buffill = 0;
c@280 134 m_bufsiz = 0;
c@280 135 }
c@280 136
c@280 137 void
c@280 138 DownBeat::findDownBeats(const float *audio,
c@279 139 size_t audioLength,
c@279 140 const d_vec_t &beats,
c@279 141 i_vec_t &downbeats)
c@279 142 {
c@279 143 // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS
c@279 144 // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz)
c@279 145 // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES
c@279 146
c@279 147 // IMPLEMENTATION (MOSTLY) FOLLOWS:
c@279 148 // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO"
c@279 149 // EUSIPCO 2006, FLORENCE, ITALY
c@279 150
c@279 151 d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat
c@279 152 d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat
c@281 153
c@281 154 m_beatsd.clear();
c@279 155
c@279 156 if (audioLength == 0) return;
c@279 157
c@279 158 for (size_t i = 0; i + 1 < beats.size(); ++i) {
c@279 159
c@279 160 // Copy the extents of the current beat from downsampled array
c@279 161 // into beat frame buffer
c@279 162
c@279 163 size_t beatstart = (beats[i] * m_increment) / m_factor;
c@280 164 size_t beatend = (beats[i+1] * m_increment) / m_factor;
c@279 165 if (beatend >= audioLength) beatend = audioLength - 1;
c@279 166 if (beatend < beatstart) beatend = beatstart;
c@279 167 size_t beatlen = beatend - beatstart;
c@279 168
c@279 169 // Also apply a Hanning window to the beat frame buffer, sized
c@279 170 // to the beat extents rather than the frame size. (Because
c@279 171 // the size varies, it's easier to do this by hand than use
c@279 172 // our Window abstraction.)
c@279 173
c@283 174 // std::cerr << "beatlen = " << beatlen << std::endl;
c@283 175
c@283 176 // float rms = 0;
c@283 177 for (size_t j = 0; j < beatlen && j < m_beatframesize; ++j) {
c@279 178 double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen))));
c@279 179 m_beatframe[j] = audio[beatstart + j] * mul;
c@283 180 // rms += m_beatframe[j] * m_beatframe[j];
c@279 181 }
c@283 182 // rms = sqrt(rms);
c@282 183 // std::cerr << "beat " << i << ": audio rms " << rms << std::endl;
c@279 184
c@279 185 for (size_t j = beatlen; j < m_beatframesize; ++j) {
c@279 186 m_beatframe[j] = 0.0;
c@279 187 }
c@279 188
c@279 189 // Now FFT beat frame
c@279 190
c@289 191 m_fft->process(false, m_beatframe, m_fftRealOut, m_fftImagOut);
c@279 192
c@279 193 // Calculate magnitudes
c@279 194
c@279 195 for (size_t j = 0; j < m_beatframesize/2; ++j) {
c@279 196 newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] +
c@279 197 m_fftImagOut[j] * m_fftImagOut[j]);
c@279 198 }
c@279 199
c@279 200 // Preserve peaks by applying adaptive threshold
c@279 201
c@279 202 MathUtilities::adaptiveThreshold(newspec);
c@279 203
c@279 204 // Calculate JS divergence between new and old spectral frames
c@279 205
c@281 206 if (i > 0) { // otherwise we have no previous frame
c@281 207 m_beatsd.push_back(measureSpecDiff(oldspec, newspec));
c@282 208 // std::cerr << "specdiff: " << m_beatsd[m_beatsd.size()-1] << std::endl;
c@281 209 }
c@279 210
c@279 211 // Copy newspec across to old
c@279 212
c@279 213 for (size_t j = 0; j < m_beatframesize/2; ++j) {
c@279 214 oldspec[j] = newspec[j];
c@279 215 }
c@279 216 }
c@279 217
c@279 218 // We now have all spectral difference measures in specdiff
c@279 219
c@280 220 uint timesig = m_bpb;
c@280 221 if (timesig == 0) timesig = 4;
c@280 222
c@279 223 d_vec_t dbcand(timesig); // downbeat candidates
c@279 224
c@280 225 for (int beat = 0; beat < timesig; ++beat) {
c@280 226 dbcand[beat] = 0;
c@280 227 }
c@280 228
c@279 229 // look for beat transition which leads to greatest spectral change
c@279 230 for (int beat = 0; beat < timesig; ++beat) {
c@281 231 int count = 0;
c@281 232 for (int example = beat - 1; example < m_beatsd.size(); example += timesig) {
c@281 233 if (example < 0) continue;
c@281 234 dbcand[beat] += (m_beatsd[example]) / timesig;
c@281 235 ++count;
c@279 236 }
c@281 237 if (count > 0) m_beatsd[beat] /= count;
c@282 238 // std::cerr << "dbcand[" << beat << "] = " << dbcand[beat] << std::endl;
c@279 239 }
c@279 240
c@280 241
c@279 242 // first downbeat is beat at index of maximum value of dbcand
c@279 243 int dbind = MathUtilities::getMax(dbcand);
c@279 244
c@279 245 // remaining downbeats are at timesig intervals from the first
c@279 246 for (int i = dbind; i < beats.size(); i += timesig) {
c@279 247 downbeats.push_back(i);
c@279 248 }
c@279 249 }
c@279 250
c@279 251 double
c@279 252 DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec)
c@279 253 {
c@279 254 // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES
c@279 255
c@279 256 uint SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM.
c@279 257 if (SPECSIZE > oldspec.size()/4) {
c@279 258 SPECSIZE = oldspec.size()/4;
c@279 259 }
c@279 260 double SD = 0.;
c@279 261 double sd1 = 0.;
c@279 262
c@279 263 double sumnew = 0.;
c@279 264 double sumold = 0.;
c@279 265
c@279 266 for (uint i = 0;i < SPECSIZE;i++)
c@279 267 {
c@279 268 newspec[i] +=EPS;
c@279 269 oldspec[i] +=EPS;
c@279 270
c@279 271 sumnew+=newspec[i];
c@279 272 sumold+=oldspec[i];
c@279 273 }
c@279 274
c@279 275 for (uint i = 0;i < SPECSIZE;i++)
c@279 276 {
c@279 277 newspec[i] /= (sumnew);
c@279 278 oldspec[i] /= (sumold);
c@279 279
c@279 280 // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1
c@279 281 if (newspec[i] == 0)
c@279 282 {
c@279 283 newspec[i] = 1.;
c@279 284 }
c@279 285
c@279 286 if (oldspec[i] == 0)
c@279 287 {
c@279 288 oldspec[i] = 1.;
c@279 289 }
c@279 290
c@279 291 // JENSEN-SHANNON CALCULATION
c@279 292 sd1 = 0.5*oldspec[i] + 0.5*newspec[i];
c@279 293 SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i])));
c@279 294 }
c@279 295
c@279 296 return SD;
c@279 297 }
c@279 298
c@281 299 void
c@281 300 DownBeat::getBeatSD(vector<double> &beatsd) const
c@281 301 {
c@281 302 for (int i = 0; i < m_beatsd.size(); ++i) beatsd.push_back(m_beatsd[i]);
c@281 303 }
c@281 304