annotate dsp/tempotracking/DownBeat.cpp @ 279:c8908cdc8c32

* First cut at Matthew's downbeat estimator -- untested so far
author Chris Cannam <c.cannam@qmul.ac.uk>
date Tue, 10 Feb 2009 12:52:43 +0000
parents
children 7fe29d8a7eaf
rev   line source
c@279 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@279 2
c@279 3 /*
c@279 4 QM DSP Library
c@279 5
c@279 6 Centre for Digital Music, Queen Mary, University of London.
c@279 7 This file copyright 2008-2009 Matthew Davies and QMUL.
c@279 8 All rights reserved.
c@279 9 */
c@279 10
c@279 11 #include "DownBeat.h"
c@279 12
c@279 13 #include "maths/MathAliases.h"
c@279 14 #include "maths/MathUtilities.h"
c@279 15 #include "dsp/transforms/FFT.h"
c@279 16
c@279 17 #include <iostream>
c@279 18 #include <cstdlib>
c@279 19
c@279 20 DownBeat::DownBeat(float originalSampleRate,
c@279 21 size_t decimationFactor,
c@279 22 size_t dfIncrement) :
c@279 23 m_rate(originalSampleRate),
c@279 24 m_factor(decimationFactor),
c@279 25 m_increment(dfIncrement),
c@279 26 m_decimator1(0),
c@279 27 m_decimator2(0),
c@279 28 m_buffer(0),
c@279 29 m_bufsiz(0),
c@279 30 m_buffill(0),
c@279 31 m_beatframesize(0),
c@279 32 m_beatframe(0)
c@279 33 {
c@279 34 // beat frame size is next power of two up from 1.3 seconds at the
c@279 35 // downsampled rate (happens to produce 4096 for 44100 or 48000 at
c@279 36 // 16x decimation, which is our expected normal situation)
c@279 37 int bfs = int((m_rate / decimationFactor) * 1.3);
c@279 38 m_beatframesize = 1;
c@279 39 while (bfs) { bfs >>= 1; m_beatframesize <<= 1; }
c@279 40 std::cerr << "rate = " << m_rate << ", bfs = " << m_beatframesize << std::endl;
c@279 41 m_beatframe = new double[m_beatframesize];
c@279 42 m_fftRealOut = new double[m_beatframesize];
c@279 43 m_fftImagOut = new double[m_beatframesize];
c@279 44 }
c@279 45
c@279 46 DownBeat::~DownBeat()
c@279 47 {
c@279 48 delete m_decimator1;
c@279 49 delete m_decimator2;
c@279 50 if (m_buffer) free(m_buffer);
c@279 51 delete[] m_decbuf;
c@279 52 delete[] m_beatframe;
c@279 53 delete[] m_fftRealOut;
c@279 54 delete[] m_fftImagOut;
c@279 55 }
c@279 56
c@279 57 void
c@279 58 DownBeat::makeDecimators()
c@279 59 {
c@279 60 if (m_factor < 2) return;
c@279 61 int highest = Decimator::getHighestSupportedFactor();
c@279 62 if (m_factor <= highest) {
c@279 63 m_decimator1 = new Decimator(m_increment, m_factor);
c@279 64 return;
c@279 65 }
c@279 66 m_decimator1 = new Decimator(m_increment, highest);
c@279 67 m_decimator2 = new Decimator(m_increment / highest, m_factor / highest);
c@279 68 m_decbuf = new double[m_factor / highest];
c@279 69 }
c@279 70
c@279 71 void
c@279 72 DownBeat::pushAudioBlock(const double *audio)
c@279 73 {
c@279 74 if (m_buffill + (m_increment / m_factor) > m_bufsiz) {
c@279 75 if (m_bufsiz == 0) m_bufsiz = m_increment * 16;
c@279 76 else m_bufsiz = m_bufsiz * 2;
c@279 77 if (!m_buffer) {
c@279 78 m_buffer = (double *)malloc(m_bufsiz * sizeof(double));
c@279 79 } else {
c@279 80 std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl;
c@279 81 m_buffer = (double *)realloc(m_buffer, m_bufsiz * sizeof(double));
c@279 82 }
c@279 83 }
c@279 84 if (!m_decimator1) makeDecimators();
c@279 85 if (m_decimator2) {
c@279 86 m_decimator1->process(audio, m_decbuf);
c@279 87 m_decimator2->process(m_decbuf, m_buffer + m_buffill);
c@279 88 } else {
c@279 89 m_decimator1->process(audio, m_buffer + m_buffill);
c@279 90 }
c@279 91 m_buffill += m_increment / m_factor;
c@279 92 }
c@279 93
c@279 94 const double *
c@279 95 DownBeat::getBufferedAudio(size_t &length) const
c@279 96 {
c@279 97 length = m_buffill;
c@279 98 return m_buffer;
c@279 99 }
c@279 100
c@279 101 void
c@279 102 DownBeat::findDownBeats(const double *audio,
c@279 103 size_t audioLength,
c@279 104 const d_vec_t &beats,
c@279 105 i_vec_t &downbeats)
c@279 106 {
c@279 107 // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS
c@279 108 // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz)
c@279 109 // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES
c@279 110
c@279 111 // IMPLEMENTATION (MOSTLY) FOLLOWS:
c@279 112 // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO"
c@279 113 // EUSIPCO 2006, FLORENCE, ITALY
c@279 114
c@279 115 d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat
c@279 116 d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat
c@279 117 d_vec_t specdiff;
c@279 118
c@279 119 if (audioLength == 0) return;
c@279 120
c@279 121 for (size_t i = 0; i + 1 < beats.size(); ++i) {
c@279 122
c@279 123 // Copy the extents of the current beat from downsampled array
c@279 124 // into beat frame buffer
c@279 125
c@279 126 size_t beatstart = (beats[i] * m_increment) / m_factor;
c@279 127 size_t beatend = (beats[i] * m_increment) / m_factor;
c@279 128 if (beatend >= audioLength) beatend = audioLength - 1;
c@279 129 if (beatend < beatstart) beatend = beatstart;
c@279 130 size_t beatlen = beatend - beatstart;
c@279 131
c@279 132 // Also apply a Hanning window to the beat frame buffer, sized
c@279 133 // to the beat extents rather than the frame size. (Because
c@279 134 // the size varies, it's easier to do this by hand than use
c@279 135 // our Window abstraction.)
c@279 136
c@279 137 for (size_t j = 0; j < beatlen; ++j) {
c@279 138 double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen))));
c@279 139 m_beatframe[j] = audio[beatstart + j] * mul;
c@279 140 }
c@279 141
c@279 142 for (size_t j = beatlen; j < m_beatframesize; ++j) {
c@279 143 m_beatframe[j] = 0.0;
c@279 144 }
c@279 145
c@279 146 // Now FFT beat frame
c@279 147
c@279 148 FFT::process(m_beatframesize, false,
c@279 149 m_beatframe, 0, m_fftRealOut, m_fftImagOut);
c@279 150
c@279 151 // Calculate magnitudes
c@279 152
c@279 153 for (size_t j = 0; j < m_beatframesize/2; ++j) {
c@279 154 newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] +
c@279 155 m_fftImagOut[j] * m_fftImagOut[j]);
c@279 156 }
c@279 157
c@279 158 // Preserve peaks by applying adaptive threshold
c@279 159
c@279 160 MathUtilities::adaptiveThreshold(newspec);
c@279 161
c@279 162 // Calculate JS divergence between new and old spectral frames
c@279 163
c@279 164 specdiff.push_back(measureSpecDiff(oldspec, newspec));
c@279 165
c@279 166 // Copy newspec across to old
c@279 167
c@279 168 for (size_t j = 0; j < m_beatframesize/2; ++j) {
c@279 169 oldspec[j] = newspec[j];
c@279 170 }
c@279 171 }
c@279 172
c@279 173 // We now have all spectral difference measures in specdiff
c@279 174
c@279 175 uint timesig = 4; // SHOULD REPLACE THIS WITH A FIND_METER FUNCTION - OR USER PARAMETER
c@279 176 d_vec_t dbcand(timesig); // downbeat candidates
c@279 177
c@279 178 // look for beat transition which leads to greatest spectral change
c@279 179 for (int beat = 0; beat < timesig; ++beat) {
c@279 180 for (int example = beat; example < specdiff.size(); ++example) {
c@279 181 dbcand[beat] += (specdiff[example]) / timesig;
c@279 182 }
c@279 183 }
c@279 184
c@279 185 // first downbeat is beat at index of maximum value of dbcand
c@279 186 int dbind = MathUtilities::getMax(dbcand);
c@279 187
c@279 188 // remaining downbeats are at timesig intervals from the first
c@279 189 for (int i = dbind; i < beats.size(); i += timesig) {
c@279 190 downbeats.push_back(i);
c@279 191 }
c@279 192 }
c@279 193
c@279 194 double
c@279 195 DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec)
c@279 196 {
c@279 197 // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES
c@279 198
c@279 199 uint SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM.
c@279 200 if (SPECSIZE > oldspec.size()/4) {
c@279 201 SPECSIZE = oldspec.size()/4;
c@279 202 }
c@279 203 double SD = 0.;
c@279 204 double sd1 = 0.;
c@279 205
c@279 206 double sumnew = 0.;
c@279 207 double sumold = 0.;
c@279 208
c@279 209 for (uint i = 0;i < SPECSIZE;i++)
c@279 210 {
c@279 211 newspec[i] +=EPS;
c@279 212 oldspec[i] +=EPS;
c@279 213
c@279 214 sumnew+=newspec[i];
c@279 215 sumold+=oldspec[i];
c@279 216 }
c@279 217
c@279 218 for (uint i = 0;i < SPECSIZE;i++)
c@279 219 {
c@279 220 newspec[i] /= (sumnew);
c@279 221 oldspec[i] /= (sumold);
c@279 222
c@279 223 // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1
c@279 224 if (newspec[i] == 0)
c@279 225 {
c@279 226 newspec[i] = 1.;
c@279 227 }
c@279 228
c@279 229 if (oldspec[i] == 0)
c@279 230 {
c@279 231 oldspec[i] = 1.;
c@279 232 }
c@279 233
c@279 234 // JENSEN-SHANNON CALCULATION
c@279 235 sd1 = 0.5*oldspec[i] + 0.5*newspec[i];
c@279 236 SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i])));
c@279 237 }
c@279 238
c@279 239 return SD;
c@279 240 }
c@279 241