c@279: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ c@279: c@279: /* c@279: QM DSP Library c@279: c@279: Centre for Digital Music, Queen Mary, University of London. c@279: This file copyright 2008-2009 Matthew Davies and QMUL. c@279: All rights reserved. c@279: */ c@279: c@279: #include "DownBeat.h" c@279: c@279: #include "maths/MathAliases.h" c@279: #include "maths/MathUtilities.h" c@279: #include "dsp/transforms/FFT.h" c@279: c@279: #include c@279: #include c@279: c@279: DownBeat::DownBeat(float originalSampleRate, c@279: size_t decimationFactor, c@279: size_t dfIncrement) : c@279: m_rate(originalSampleRate), c@279: m_factor(decimationFactor), c@279: m_increment(dfIncrement), c@279: m_decimator1(0), c@279: m_decimator2(0), c@279: m_buffer(0), c@279: m_bufsiz(0), c@279: m_buffill(0), c@279: m_beatframesize(0), c@279: m_beatframe(0) c@279: { c@279: // beat frame size is next power of two up from 1.3 seconds at the c@279: // downsampled rate (happens to produce 4096 for 44100 or 48000 at c@279: // 16x decimation, which is our expected normal situation) c@279: int bfs = int((m_rate / decimationFactor) * 1.3); c@279: m_beatframesize = 1; c@279: while (bfs) { bfs >>= 1; m_beatframesize <<= 1; } c@279: std::cerr << "rate = " << m_rate << ", bfs = " << m_beatframesize << std::endl; c@279: m_beatframe = new double[m_beatframesize]; c@279: m_fftRealOut = new double[m_beatframesize]; c@279: m_fftImagOut = new double[m_beatframesize]; c@279: } c@279: c@279: DownBeat::~DownBeat() c@279: { c@279: delete m_decimator1; c@279: delete m_decimator2; c@279: if (m_buffer) free(m_buffer); c@279: delete[] m_decbuf; c@279: delete[] m_beatframe; c@279: delete[] m_fftRealOut; c@279: delete[] m_fftImagOut; c@279: } c@279: c@279: void c@279: DownBeat::makeDecimators() c@279: { c@279: if (m_factor < 2) return; c@279: int highest = Decimator::getHighestSupportedFactor(); c@279: if (m_factor <= highest) { c@279: m_decimator1 = new Decimator(m_increment, m_factor); c@279: return; c@279: } c@279: m_decimator1 = new Decimator(m_increment, highest); c@279: m_decimator2 = new Decimator(m_increment / highest, m_factor / highest); c@279: m_decbuf = new double[m_factor / highest]; c@279: } c@279: c@279: void c@279: DownBeat::pushAudioBlock(const double *audio) c@279: { c@279: if (m_buffill + (m_increment / m_factor) > m_bufsiz) { c@279: if (m_bufsiz == 0) m_bufsiz = m_increment * 16; c@279: else m_bufsiz = m_bufsiz * 2; c@279: if (!m_buffer) { c@279: m_buffer = (double *)malloc(m_bufsiz * sizeof(double)); c@279: } else { c@279: std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl; c@279: m_buffer = (double *)realloc(m_buffer, m_bufsiz * sizeof(double)); c@279: } c@279: } c@279: if (!m_decimator1) makeDecimators(); c@279: if (m_decimator2) { c@279: m_decimator1->process(audio, m_decbuf); c@279: m_decimator2->process(m_decbuf, m_buffer + m_buffill); c@279: } else { c@279: m_decimator1->process(audio, m_buffer + m_buffill); c@279: } c@279: m_buffill += m_increment / m_factor; c@279: } c@279: c@279: const double * c@279: DownBeat::getBufferedAudio(size_t &length) const c@279: { c@279: length = m_buffill; c@279: return m_buffer; c@279: } c@279: c@279: void c@279: DownBeat::findDownBeats(const double *audio, c@279: size_t audioLength, c@279: const d_vec_t &beats, c@279: i_vec_t &downbeats) c@279: { c@279: // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS c@279: // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz) c@279: // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES c@279: c@279: // IMPLEMENTATION (MOSTLY) FOLLOWS: c@279: // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO" c@279: // EUSIPCO 2006, FLORENCE, ITALY c@279: c@279: d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat c@279: d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat c@279: d_vec_t specdiff; c@279: c@279: if (audioLength == 0) return; c@279: c@279: for (size_t i = 0; i + 1 < beats.size(); ++i) { c@279: c@279: // Copy the extents of the current beat from downsampled array c@279: // into beat frame buffer c@279: c@279: size_t beatstart = (beats[i] * m_increment) / m_factor; c@279: size_t beatend = (beats[i] * m_increment) / m_factor; c@279: if (beatend >= audioLength) beatend = audioLength - 1; c@279: if (beatend < beatstart) beatend = beatstart; c@279: size_t beatlen = beatend - beatstart; c@279: c@279: // Also apply a Hanning window to the beat frame buffer, sized c@279: // to the beat extents rather than the frame size. (Because c@279: // the size varies, it's easier to do this by hand than use c@279: // our Window abstraction.) c@279: c@279: for (size_t j = 0; j < beatlen; ++j) { c@279: double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen)))); c@279: m_beatframe[j] = audio[beatstart + j] * mul; c@279: } c@279: c@279: for (size_t j = beatlen; j < m_beatframesize; ++j) { c@279: m_beatframe[j] = 0.0; c@279: } c@279: c@279: // Now FFT beat frame c@279: c@279: FFT::process(m_beatframesize, false, c@279: m_beatframe, 0, m_fftRealOut, m_fftImagOut); c@279: c@279: // Calculate magnitudes c@279: c@279: for (size_t j = 0; j < m_beatframesize/2; ++j) { c@279: newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] + c@279: m_fftImagOut[j] * m_fftImagOut[j]); c@279: } c@279: c@279: // Preserve peaks by applying adaptive threshold c@279: c@279: MathUtilities::adaptiveThreshold(newspec); c@279: c@279: // Calculate JS divergence between new and old spectral frames c@279: c@279: specdiff.push_back(measureSpecDiff(oldspec, newspec)); c@279: c@279: // Copy newspec across to old c@279: c@279: for (size_t j = 0; j < m_beatframesize/2; ++j) { c@279: oldspec[j] = newspec[j]; c@279: } c@279: } c@279: c@279: // We now have all spectral difference measures in specdiff c@279: c@279: uint timesig = 4; // SHOULD REPLACE THIS WITH A FIND_METER FUNCTION - OR USER PARAMETER c@279: d_vec_t dbcand(timesig); // downbeat candidates c@279: c@279: // look for beat transition which leads to greatest spectral change c@279: for (int beat = 0; beat < timesig; ++beat) { c@279: for (int example = beat; example < specdiff.size(); ++example) { c@279: dbcand[beat] += (specdiff[example]) / timesig; c@279: } c@279: } c@279: c@279: // first downbeat is beat at index of maximum value of dbcand c@279: int dbind = MathUtilities::getMax(dbcand); c@279: c@279: // remaining downbeats are at timesig intervals from the first c@279: for (int i = dbind; i < beats.size(); i += timesig) { c@279: downbeats.push_back(i); c@279: } c@279: } c@279: c@279: double c@279: DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec) c@279: { c@279: // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES c@279: c@279: uint SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM. c@279: if (SPECSIZE > oldspec.size()/4) { c@279: SPECSIZE = oldspec.size()/4; c@279: } c@279: double SD = 0.; c@279: double sd1 = 0.; c@279: c@279: double sumnew = 0.; c@279: double sumold = 0.; c@279: c@279: for (uint i = 0;i < SPECSIZE;i++) c@279: { c@279: newspec[i] +=EPS; c@279: oldspec[i] +=EPS; c@279: c@279: sumnew+=newspec[i]; c@279: sumold+=oldspec[i]; c@279: } c@279: c@279: for (uint i = 0;i < SPECSIZE;i++) c@279: { c@279: newspec[i] /= (sumnew); c@279: oldspec[i] /= (sumold); c@279: c@279: // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1 c@279: if (newspec[i] == 0) c@279: { c@279: newspec[i] = 1.; c@279: } c@279: c@279: if (oldspec[i] == 0) c@279: { c@279: oldspec[i] = 1.; c@279: } c@279: c@279: // JENSEN-SHANNON CALCULATION c@279: sd1 = 0.5*oldspec[i] + 0.5*newspec[i]; c@279: SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i]))); c@279: } c@279: c@279: return SD; c@279: } c@279: