c@279
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@279
|
2
|
c@279
|
3 /*
|
c@279
|
4 QM DSP Library
|
c@279
|
5
|
c@279
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@279
|
7 This file copyright 2008-2009 Matthew Davies and QMUL.
|
c@279
|
8 All rights reserved.
|
c@279
|
9 */
|
c@279
|
10
|
c@279
|
11 #include "DownBeat.h"
|
c@279
|
12
|
c@279
|
13 #include "maths/MathAliases.h"
|
c@279
|
14 #include "maths/MathUtilities.h"
|
c@280
|
15 #include "maths/KLDivergence.h"
|
c@279
|
16 #include "dsp/transforms/FFT.h"
|
c@279
|
17
|
c@279
|
18 #include <iostream>
|
c@279
|
19 #include <cstdlib>
|
c@279
|
20
|
c@279
|
21 DownBeat::DownBeat(float originalSampleRate,
|
c@279
|
22 size_t decimationFactor,
|
c@279
|
23 size_t dfIncrement) :
|
c@280
|
24 m_bpb(0),
|
c@279
|
25 m_rate(originalSampleRate),
|
c@279
|
26 m_factor(decimationFactor),
|
c@279
|
27 m_increment(dfIncrement),
|
c@279
|
28 m_decimator1(0),
|
c@279
|
29 m_decimator2(0),
|
c@279
|
30 m_buffer(0),
|
c@283
|
31 m_decbuf(0),
|
c@279
|
32 m_bufsiz(0),
|
c@279
|
33 m_buffill(0),
|
c@279
|
34 m_beatframesize(0),
|
c@279
|
35 m_beatframe(0)
|
c@279
|
36 {
|
c@279
|
37 // beat frame size is next power of two up from 1.3 seconds at the
|
c@279
|
38 // downsampled rate (happens to produce 4096 for 44100 or 48000 at
|
c@279
|
39 // 16x decimation, which is our expected normal situation)
|
c@280
|
40 m_beatframesize = MathUtilities::nextPowerOfTwo
|
c@280
|
41 (int((m_rate / decimationFactor) * 1.3));
|
c@282
|
42 // std::cerr << "rate = " << m_rate << ", bfs = " << m_beatframesize << std::endl;
|
c@279
|
43 m_beatframe = new double[m_beatframesize];
|
c@279
|
44 m_fftRealOut = new double[m_beatframesize];
|
c@279
|
45 m_fftImagOut = new double[m_beatframesize];
|
c@279
|
46 }
|
c@279
|
47
|
c@279
|
48 DownBeat::~DownBeat()
|
c@279
|
49 {
|
c@279
|
50 delete m_decimator1;
|
c@279
|
51 delete m_decimator2;
|
c@279
|
52 if (m_buffer) free(m_buffer);
|
c@279
|
53 delete[] m_decbuf;
|
c@279
|
54 delete[] m_beatframe;
|
c@279
|
55 delete[] m_fftRealOut;
|
c@279
|
56 delete[] m_fftImagOut;
|
c@279
|
57 }
|
c@279
|
58
|
c@279
|
59 void
|
c@280
|
60 DownBeat::setBeatsPerBar(int bpb)
|
c@280
|
61 {
|
c@280
|
62 m_bpb = bpb;
|
c@280
|
63 }
|
c@280
|
64
|
c@280
|
65 void
|
c@279
|
66 DownBeat::makeDecimators()
|
c@279
|
67 {
|
c@283
|
68 // std::cerr << "m_factor = " << m_factor << std::endl;
|
c@279
|
69 if (m_factor < 2) return;
|
c@279
|
70 int highest = Decimator::getHighestSupportedFactor();
|
c@279
|
71 if (m_factor <= highest) {
|
c@279
|
72 m_decimator1 = new Decimator(m_increment, m_factor);
|
c@282
|
73 // std::cerr << "DownBeat: decimator 1 factor " << m_factor << ", size " << m_increment << std::endl;
|
c@279
|
74 return;
|
c@279
|
75 }
|
c@279
|
76 m_decimator1 = new Decimator(m_increment, highest);
|
c@282
|
77 // std::cerr << "DownBeat: decimator 1 factor " << highest << ", size " << m_increment << std::endl;
|
c@279
|
78 m_decimator2 = new Decimator(m_increment / highest, m_factor / highest);
|
c@282
|
79 // std::cerr << "DownBeat: decimator 2 factor " << m_factor / highest << ", size " << m_increment / highest << std::endl;
|
c@280
|
80 m_decbuf = new float[m_increment / highest];
|
c@279
|
81 }
|
c@279
|
82
|
c@279
|
83 void
|
c@280
|
84 DownBeat::pushAudioBlock(const float *audio)
|
c@279
|
85 {
|
c@279
|
86 if (m_buffill + (m_increment / m_factor) > m_bufsiz) {
|
c@279
|
87 if (m_bufsiz == 0) m_bufsiz = m_increment * 16;
|
c@279
|
88 else m_bufsiz = m_bufsiz * 2;
|
c@279
|
89 if (!m_buffer) {
|
c@280
|
90 m_buffer = (float *)malloc(m_bufsiz * sizeof(float));
|
c@279
|
91 } else {
|
c@282
|
92 // std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl;
|
c@280
|
93 m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float));
|
c@279
|
94 }
|
c@279
|
95 }
|
c@283
|
96 if (!m_decimator1 && m_factor > 1) makeDecimators();
|
c@283
|
97 // float rmsin = 0, rmsout = 0;
|
c@283
|
98 // for (int i = 0; i < m_increment; ++i) {
|
c@283
|
99 // rmsin += audio[i] * audio[i];
|
c@283
|
100 // }
|
c@279
|
101 if (m_decimator2) {
|
c@279
|
102 m_decimator1->process(audio, m_decbuf);
|
c@279
|
103 m_decimator2->process(m_decbuf, m_buffer + m_buffill);
|
c@283
|
104 } else if (m_decimator1) {
|
c@283
|
105 m_decimator1->process(audio, m_buffer + m_buffill);
|
c@279
|
106 } else {
|
c@283
|
107 // just copy across (m_factor is presumably 1)
|
c@283
|
108 for (int i = 0; i < m_increment; ++i) {
|
c@283
|
109 (m_buffer + m_buffill)[i] = audio[i];
|
c@283
|
110 }
|
c@279
|
111 }
|
c@283
|
112 // for (int i = 0; i < m_increment / m_factor; ++i) {
|
c@283
|
113 // rmsout += m_buffer[m_buffill + i] * m_buffer[m_buffill + i];
|
c@283
|
114 // }
|
c@282
|
115 // std::cerr << "pushAudioBlock: rms in " << sqrt(rmsin) << ", out " << sqrt(rmsout) << std::endl;
|
c@279
|
116 m_buffill += m_increment / m_factor;
|
c@279
|
117 }
|
c@279
|
118
|
c@280
|
119 const float *
|
c@279
|
120 DownBeat::getBufferedAudio(size_t &length) const
|
c@279
|
121 {
|
c@279
|
122 length = m_buffill;
|
c@279
|
123 return m_buffer;
|
c@279
|
124 }
|
c@279
|
125
|
c@279
|
126 void
|
c@280
|
127 DownBeat::resetAudioBuffer()
|
c@280
|
128 {
|
c@280
|
129 if (m_buffer) free(m_buffer);
|
c@283
|
130 m_buffer = 0;
|
c@280
|
131 m_buffill = 0;
|
c@280
|
132 m_bufsiz = 0;
|
c@280
|
133 }
|
c@280
|
134
|
c@280
|
135 void
|
c@280
|
136 DownBeat::findDownBeats(const float *audio,
|
c@279
|
137 size_t audioLength,
|
c@279
|
138 const d_vec_t &beats,
|
c@279
|
139 i_vec_t &downbeats)
|
c@279
|
140 {
|
c@279
|
141 // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS
|
c@279
|
142 // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz)
|
c@279
|
143 // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES
|
c@279
|
144
|
c@279
|
145 // IMPLEMENTATION (MOSTLY) FOLLOWS:
|
c@279
|
146 // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO"
|
c@279
|
147 // EUSIPCO 2006, FLORENCE, ITALY
|
c@279
|
148
|
c@279
|
149 d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat
|
c@279
|
150 d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat
|
c@281
|
151
|
c@281
|
152 m_beatsd.clear();
|
c@279
|
153
|
c@279
|
154 if (audioLength == 0) return;
|
c@279
|
155
|
c@279
|
156 for (size_t i = 0; i + 1 < beats.size(); ++i) {
|
c@279
|
157
|
c@279
|
158 // Copy the extents of the current beat from downsampled array
|
c@279
|
159 // into beat frame buffer
|
c@279
|
160
|
c@279
|
161 size_t beatstart = (beats[i] * m_increment) / m_factor;
|
c@280
|
162 size_t beatend = (beats[i+1] * m_increment) / m_factor;
|
c@279
|
163 if (beatend >= audioLength) beatend = audioLength - 1;
|
c@279
|
164 if (beatend < beatstart) beatend = beatstart;
|
c@279
|
165 size_t beatlen = beatend - beatstart;
|
c@279
|
166
|
c@279
|
167 // Also apply a Hanning window to the beat frame buffer, sized
|
c@279
|
168 // to the beat extents rather than the frame size. (Because
|
c@279
|
169 // the size varies, it's easier to do this by hand than use
|
c@279
|
170 // our Window abstraction.)
|
c@279
|
171
|
c@283
|
172 // std::cerr << "beatlen = " << beatlen << std::endl;
|
c@283
|
173
|
c@283
|
174 // float rms = 0;
|
c@283
|
175 for (size_t j = 0; j < beatlen && j < m_beatframesize; ++j) {
|
c@279
|
176 double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen))));
|
c@279
|
177 m_beatframe[j] = audio[beatstart + j] * mul;
|
c@283
|
178 // rms += m_beatframe[j] * m_beatframe[j];
|
c@279
|
179 }
|
c@283
|
180 // rms = sqrt(rms);
|
c@282
|
181 // std::cerr << "beat " << i << ": audio rms " << rms << std::endl;
|
c@279
|
182
|
c@279
|
183 for (size_t j = beatlen; j < m_beatframesize; ++j) {
|
c@279
|
184 m_beatframe[j] = 0.0;
|
c@279
|
185 }
|
c@279
|
186
|
c@279
|
187 // Now FFT beat frame
|
c@279
|
188
|
c@279
|
189 FFT::process(m_beatframesize, false,
|
c@279
|
190 m_beatframe, 0, m_fftRealOut, m_fftImagOut);
|
c@279
|
191
|
c@279
|
192 // Calculate magnitudes
|
c@279
|
193
|
c@279
|
194 for (size_t j = 0; j < m_beatframesize/2; ++j) {
|
c@279
|
195 newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] +
|
c@279
|
196 m_fftImagOut[j] * m_fftImagOut[j]);
|
c@279
|
197 }
|
c@279
|
198
|
c@279
|
199 // Preserve peaks by applying adaptive threshold
|
c@279
|
200
|
c@279
|
201 MathUtilities::adaptiveThreshold(newspec);
|
c@279
|
202
|
c@279
|
203 // Calculate JS divergence between new and old spectral frames
|
c@279
|
204
|
c@281
|
205 if (i > 0) { // otherwise we have no previous frame
|
c@281
|
206 m_beatsd.push_back(measureSpecDiff(oldspec, newspec));
|
c@282
|
207 // std::cerr << "specdiff: " << m_beatsd[m_beatsd.size()-1] << std::endl;
|
c@281
|
208 }
|
c@279
|
209
|
c@279
|
210 // Copy newspec across to old
|
c@279
|
211
|
c@279
|
212 for (size_t j = 0; j < m_beatframesize/2; ++j) {
|
c@279
|
213 oldspec[j] = newspec[j];
|
c@279
|
214 }
|
c@279
|
215 }
|
c@279
|
216
|
c@279
|
217 // We now have all spectral difference measures in specdiff
|
c@279
|
218
|
c@280
|
219 uint timesig = m_bpb;
|
c@280
|
220 if (timesig == 0) timesig = 4;
|
c@280
|
221
|
c@279
|
222 d_vec_t dbcand(timesig); // downbeat candidates
|
c@279
|
223
|
c@280
|
224 for (int beat = 0; beat < timesig; ++beat) {
|
c@280
|
225 dbcand[beat] = 0;
|
c@280
|
226 }
|
c@280
|
227
|
c@279
|
228 // look for beat transition which leads to greatest spectral change
|
c@279
|
229 for (int beat = 0; beat < timesig; ++beat) {
|
c@281
|
230 int count = 0;
|
c@281
|
231 for (int example = beat - 1; example < m_beatsd.size(); example += timesig) {
|
c@281
|
232 if (example < 0) continue;
|
c@281
|
233 dbcand[beat] += (m_beatsd[example]) / timesig;
|
c@281
|
234 ++count;
|
c@279
|
235 }
|
c@281
|
236 if (count > 0) m_beatsd[beat] /= count;
|
c@282
|
237 // std::cerr << "dbcand[" << beat << "] = " << dbcand[beat] << std::endl;
|
c@279
|
238 }
|
c@279
|
239
|
c@280
|
240
|
c@279
|
241 // first downbeat is beat at index of maximum value of dbcand
|
c@279
|
242 int dbind = MathUtilities::getMax(dbcand);
|
c@279
|
243
|
c@279
|
244 // remaining downbeats are at timesig intervals from the first
|
c@279
|
245 for (int i = dbind; i < beats.size(); i += timesig) {
|
c@279
|
246 downbeats.push_back(i);
|
c@279
|
247 }
|
c@279
|
248 }
|
c@279
|
249
|
c@279
|
250 double
|
c@279
|
251 DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec)
|
c@279
|
252 {
|
c@279
|
253 // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES
|
c@279
|
254
|
c@279
|
255 uint SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM.
|
c@279
|
256 if (SPECSIZE > oldspec.size()/4) {
|
c@279
|
257 SPECSIZE = oldspec.size()/4;
|
c@279
|
258 }
|
c@279
|
259 double SD = 0.;
|
c@279
|
260 double sd1 = 0.;
|
c@279
|
261
|
c@279
|
262 double sumnew = 0.;
|
c@279
|
263 double sumold = 0.;
|
c@279
|
264
|
c@279
|
265 for (uint i = 0;i < SPECSIZE;i++)
|
c@279
|
266 {
|
c@279
|
267 newspec[i] +=EPS;
|
c@279
|
268 oldspec[i] +=EPS;
|
c@279
|
269
|
c@279
|
270 sumnew+=newspec[i];
|
c@279
|
271 sumold+=oldspec[i];
|
c@279
|
272 }
|
c@279
|
273
|
c@279
|
274 for (uint i = 0;i < SPECSIZE;i++)
|
c@279
|
275 {
|
c@279
|
276 newspec[i] /= (sumnew);
|
c@279
|
277 oldspec[i] /= (sumold);
|
c@279
|
278
|
c@279
|
279 // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1
|
c@279
|
280 if (newspec[i] == 0)
|
c@279
|
281 {
|
c@279
|
282 newspec[i] = 1.;
|
c@279
|
283 }
|
c@279
|
284
|
c@279
|
285 if (oldspec[i] == 0)
|
c@279
|
286 {
|
c@279
|
287 oldspec[i] = 1.;
|
c@279
|
288 }
|
c@279
|
289
|
c@279
|
290 // JENSEN-SHANNON CALCULATION
|
c@279
|
291 sd1 = 0.5*oldspec[i] + 0.5*newspec[i];
|
c@279
|
292 SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i])));
|
c@279
|
293 }
|
c@279
|
294
|
c@279
|
295 return SD;
|
c@279
|
296 }
|
c@279
|
297
|
c@281
|
298 void
|
c@281
|
299 DownBeat::getBeatSD(vector<double> &beatsd) const
|
c@281
|
300 {
|
c@281
|
301 for (int i = 0; i < m_beatsd.size(); ++i) beatsd.push_back(m_beatsd[i]);
|
c@281
|
302 }
|
c@281
|
303
|