annotate dsp/tempotracking/DownBeat.cpp @ 339:9c8ee77db9de

Tidy real-to-complex FFT -- forward and inverse have different arguments, so make them separate functions; document
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 02 Oct 2013 15:04:38 +0100
parents d5014ab8b0e5
children a2b3fd07d862
rev   line source
c@279 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@279 2
c@279 3 /*
c@279 4 QM DSP Library
c@279 5
c@279 6 Centre for Digital Music, Queen Mary, University of London.
c@279 7 This file copyright 2008-2009 Matthew Davies and QMUL.
c@309 8
c@309 9 This program is free software; you can redistribute it and/or
c@309 10 modify it under the terms of the GNU General Public License as
c@309 11 published by the Free Software Foundation; either version 2 of the
c@309 12 License, or (at your option) any later version. See the file
c@309 13 COPYING included with this distribution for more information.
c@279 14 */
c@279 15
c@279 16 #include "DownBeat.h"
c@279 17
c@279 18 #include "maths/MathAliases.h"
c@279 19 #include "maths/MathUtilities.h"
c@280 20 #include "maths/KLDivergence.h"
c@279 21 #include "dsp/transforms/FFT.h"
c@279 22
c@279 23 #include <iostream>
c@279 24 #include <cstdlib>
c@279 25
c@279 26 DownBeat::DownBeat(float originalSampleRate,
c@279 27 size_t decimationFactor,
c@279 28 size_t dfIncrement) :
c@280 29 m_bpb(0),
c@279 30 m_rate(originalSampleRate),
c@279 31 m_factor(decimationFactor),
c@279 32 m_increment(dfIncrement),
c@279 33 m_decimator1(0),
c@279 34 m_decimator2(0),
c@279 35 m_buffer(0),
c@283 36 m_decbuf(0),
c@279 37 m_bufsiz(0),
c@279 38 m_buffill(0),
c@279 39 m_beatframesize(0),
c@279 40 m_beatframe(0)
c@279 41 {
c@279 42 // beat frame size is next power of two up from 1.3 seconds at the
c@279 43 // downsampled rate (happens to produce 4096 for 44100 or 48000 at
c@279 44 // 16x decimation, which is our expected normal situation)
c@280 45 m_beatframesize = MathUtilities::nextPowerOfTwo
c@280 46 (int((m_rate / decimationFactor) * 1.3));
c@282 47 // std::cerr << "rate = " << m_rate << ", bfs = " << m_beatframesize << std::endl;
c@279 48 m_beatframe = new double[m_beatframesize];
c@279 49 m_fftRealOut = new double[m_beatframesize];
c@279 50 m_fftImagOut = new double[m_beatframesize];
c@289 51 m_fft = new FFTReal(m_beatframesize);
c@279 52 }
c@279 53
c@279 54 DownBeat::~DownBeat()
c@279 55 {
c@279 56 delete m_decimator1;
c@279 57 delete m_decimator2;
c@279 58 if (m_buffer) free(m_buffer);
c@279 59 delete[] m_decbuf;
c@279 60 delete[] m_beatframe;
c@279 61 delete[] m_fftRealOut;
c@279 62 delete[] m_fftImagOut;
c@289 63 delete m_fft;
c@279 64 }
c@279 65
c@279 66 void
c@280 67 DownBeat::setBeatsPerBar(int bpb)
c@280 68 {
c@280 69 m_bpb = bpb;
c@280 70 }
c@280 71
c@280 72 void
c@279 73 DownBeat::makeDecimators()
c@279 74 {
c@283 75 // std::cerr << "m_factor = " << m_factor << std::endl;
c@279 76 if (m_factor < 2) return;
c@302 77 size_t highest = Decimator::getHighestSupportedFactor();
c@279 78 if (m_factor <= highest) {
c@279 79 m_decimator1 = new Decimator(m_increment, m_factor);
c@282 80 // std::cerr << "DownBeat: decimator 1 factor " << m_factor << ", size " << m_increment << std::endl;
c@279 81 return;
c@279 82 }
c@279 83 m_decimator1 = new Decimator(m_increment, highest);
c@282 84 // std::cerr << "DownBeat: decimator 1 factor " << highest << ", size " << m_increment << std::endl;
c@279 85 m_decimator2 = new Decimator(m_increment / highest, m_factor / highest);
c@282 86 // std::cerr << "DownBeat: decimator 2 factor " << m_factor / highest << ", size " << m_increment / highest << std::endl;
c@280 87 m_decbuf = new float[m_increment / highest];
c@279 88 }
c@279 89
c@279 90 void
c@280 91 DownBeat::pushAudioBlock(const float *audio)
c@279 92 {
c@279 93 if (m_buffill + (m_increment / m_factor) > m_bufsiz) {
c@279 94 if (m_bufsiz == 0) m_bufsiz = m_increment * 16;
c@279 95 else m_bufsiz = m_bufsiz * 2;
c@279 96 if (!m_buffer) {
c@280 97 m_buffer = (float *)malloc(m_bufsiz * sizeof(float));
c@279 98 } else {
c@282 99 // std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl;
c@280 100 m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float));
c@279 101 }
c@279 102 }
c@283 103 if (!m_decimator1 && m_factor > 1) makeDecimators();
c@283 104 // float rmsin = 0, rmsout = 0;
c@283 105 // for (int i = 0; i < m_increment; ++i) {
c@283 106 // rmsin += audio[i] * audio[i];
c@283 107 // }
c@279 108 if (m_decimator2) {
c@279 109 m_decimator1->process(audio, m_decbuf);
c@279 110 m_decimator2->process(m_decbuf, m_buffer + m_buffill);
c@283 111 } else if (m_decimator1) {
c@283 112 m_decimator1->process(audio, m_buffer + m_buffill);
c@279 113 } else {
c@283 114 // just copy across (m_factor is presumably 1)
c@302 115 for (size_t i = 0; i < m_increment; ++i) {
c@283 116 (m_buffer + m_buffill)[i] = audio[i];
c@283 117 }
c@279 118 }
c@283 119 // for (int i = 0; i < m_increment / m_factor; ++i) {
c@283 120 // rmsout += m_buffer[m_buffill + i] * m_buffer[m_buffill + i];
c@283 121 // }
c@282 122 // std::cerr << "pushAudioBlock: rms in " << sqrt(rmsin) << ", out " << sqrt(rmsout) << std::endl;
c@279 123 m_buffill += m_increment / m_factor;
c@279 124 }
c@279 125
c@280 126 const float *
c@279 127 DownBeat::getBufferedAudio(size_t &length) const
c@279 128 {
c@279 129 length = m_buffill;
c@279 130 return m_buffer;
c@279 131 }
c@279 132
c@279 133 void
c@280 134 DownBeat::resetAudioBuffer()
c@280 135 {
c@280 136 if (m_buffer) free(m_buffer);
c@283 137 m_buffer = 0;
c@280 138 m_buffill = 0;
c@280 139 m_bufsiz = 0;
c@280 140 }
c@280 141
c@280 142 void
c@280 143 DownBeat::findDownBeats(const float *audio,
c@279 144 size_t audioLength,
c@279 145 const d_vec_t &beats,
c@279 146 i_vec_t &downbeats)
c@279 147 {
c@279 148 // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS
c@279 149 // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz)
c@279 150 // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES
c@279 151
c@279 152 // IMPLEMENTATION (MOSTLY) FOLLOWS:
c@279 153 // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO"
c@279 154 // EUSIPCO 2006, FLORENCE, ITALY
c@279 155
c@279 156 d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat
c@279 157 d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat
c@281 158
c@281 159 m_beatsd.clear();
c@279 160
c@279 161 if (audioLength == 0) return;
c@279 162
c@279 163 for (size_t i = 0; i + 1 < beats.size(); ++i) {
c@279 164
c@279 165 // Copy the extents of the current beat from downsampled array
c@279 166 // into beat frame buffer
c@279 167
c@279 168 size_t beatstart = (beats[i] * m_increment) / m_factor;
c@280 169 size_t beatend = (beats[i+1] * m_increment) / m_factor;
c@279 170 if (beatend >= audioLength) beatend = audioLength - 1;
c@279 171 if (beatend < beatstart) beatend = beatstart;
c@279 172 size_t beatlen = beatend - beatstart;
c@279 173
c@279 174 // Also apply a Hanning window to the beat frame buffer, sized
c@279 175 // to the beat extents rather than the frame size. (Because
c@279 176 // the size varies, it's easier to do this by hand than use
c@279 177 // our Window abstraction.)
c@279 178
c@283 179 // std::cerr << "beatlen = " << beatlen << std::endl;
c@283 180
c@283 181 // float rms = 0;
c@283 182 for (size_t j = 0; j < beatlen && j < m_beatframesize; ++j) {
c@279 183 double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen))));
c@279 184 m_beatframe[j] = audio[beatstart + j] * mul;
c@283 185 // rms += m_beatframe[j] * m_beatframe[j];
c@279 186 }
c@283 187 // rms = sqrt(rms);
c@282 188 // std::cerr << "beat " << i << ": audio rms " << rms << std::endl;
c@279 189
c@279 190 for (size_t j = beatlen; j < m_beatframesize; ++j) {
c@279 191 m_beatframe[j] = 0.0;
c@279 192 }
c@279 193
c@279 194 // Now FFT beat frame
c@279 195
c@339 196 m_fft->forward(m_beatframe, m_fftRealOut, m_fftImagOut);
c@279 197
c@279 198 // Calculate magnitudes
c@279 199
c@279 200 for (size_t j = 0; j < m_beatframesize/2; ++j) {
c@279 201 newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] +
c@279 202 m_fftImagOut[j] * m_fftImagOut[j]);
c@279 203 }
c@279 204
c@279 205 // Preserve peaks by applying adaptive threshold
c@279 206
c@279 207 MathUtilities::adaptiveThreshold(newspec);
c@279 208
c@279 209 // Calculate JS divergence between new and old spectral frames
c@279 210
c@281 211 if (i > 0) { // otherwise we have no previous frame
c@281 212 m_beatsd.push_back(measureSpecDiff(oldspec, newspec));
c@282 213 // std::cerr << "specdiff: " << m_beatsd[m_beatsd.size()-1] << std::endl;
c@281 214 }
c@279 215
c@279 216 // Copy newspec across to old
c@279 217
c@279 218 for (size_t j = 0; j < m_beatframesize/2; ++j) {
c@279 219 oldspec[j] = newspec[j];
c@279 220 }
c@279 221 }
c@279 222
c@279 223 // We now have all spectral difference measures in specdiff
c@279 224
c@302 225 int timesig = m_bpb;
c@280 226 if (timesig == 0) timesig = 4;
c@280 227
c@279 228 d_vec_t dbcand(timesig); // downbeat candidates
c@279 229
c@280 230 for (int beat = 0; beat < timesig; ++beat) {
c@280 231 dbcand[beat] = 0;
c@280 232 }
c@280 233
c@301 234 // look for beat transition which leads to greatest spectral change
c@301 235 for (int beat = 0; beat < timesig; ++beat) {
c@301 236 int count = 0;
c@302 237 for (int example = beat-1; example < (int)m_beatsd.size(); example += timesig) {
c@301 238 if (example < 0) continue;
c@301 239 dbcand[beat] += (m_beatsd[example]) / timesig;
c@301 240 ++count;
c@301 241 }
c@301 242 if (count > 0) dbcand[beat] /= count;
c@282 243 // std::cerr << "dbcand[" << beat << "] = " << dbcand[beat] << std::endl;
c@301 244 }
c@280 245
c@279 246 // first downbeat is beat at index of maximum value of dbcand
c@279 247 int dbind = MathUtilities::getMax(dbcand);
c@279 248
c@279 249 // remaining downbeats are at timesig intervals from the first
c@302 250 for (int i = dbind; i < (int)beats.size(); i += timesig) {
c@279 251 downbeats.push_back(i);
c@279 252 }
c@279 253 }
c@279 254
c@279 255 double
c@279 256 DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec)
c@279 257 {
c@279 258 // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES
c@279 259
c@295 260 unsigned int SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM.
c@279 261 if (SPECSIZE > oldspec.size()/4) {
c@279 262 SPECSIZE = oldspec.size()/4;
c@279 263 }
c@279 264 double SD = 0.;
c@279 265 double sd1 = 0.;
c@279 266
c@279 267 double sumnew = 0.;
c@279 268 double sumold = 0.;
c@279 269
c@295 270 for (unsigned int i = 0;i < SPECSIZE;i++)
c@279 271 {
c@279 272 newspec[i] +=EPS;
c@279 273 oldspec[i] +=EPS;
c@279 274
c@279 275 sumnew+=newspec[i];
c@279 276 sumold+=oldspec[i];
c@279 277 }
c@279 278
c@295 279 for (unsigned int i = 0;i < SPECSIZE;i++)
c@279 280 {
c@279 281 newspec[i] /= (sumnew);
c@279 282 oldspec[i] /= (sumold);
c@279 283
c@279 284 // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1
c@279 285 if (newspec[i] == 0)
c@279 286 {
c@279 287 newspec[i] = 1.;
c@279 288 }
c@279 289
c@279 290 if (oldspec[i] == 0)
c@279 291 {
c@279 292 oldspec[i] = 1.;
c@279 293 }
c@279 294
c@279 295 // JENSEN-SHANNON CALCULATION
c@279 296 sd1 = 0.5*oldspec[i] + 0.5*newspec[i];
c@279 297 SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i])));
c@279 298 }
c@279 299
c@279 300 return SD;
c@279 301 }
c@279 302
c@281 303 void
c@281 304 DownBeat::getBeatSD(vector<double> &beatsd) const
c@281 305 {
c@302 306 for (int i = 0; i < (int)m_beatsd.size(); ++i) beatsd.push_back(m_beatsd[i]);
c@281 307 }
c@281 308