Mercurial > hg > qm-dsp
changeset 501:12b5a9244bb0
Style fixes: avoid unsigned, fix formatting
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 05 Jun 2019 10:21:48 +0100 |
parents | 8a8693f38b91 |
children | 162673c8f9de |
files | dsp/rateconversion/Decimator.cpp dsp/tempotracking/DownBeat.cpp dsp/tempotracking/TempoTrackV2.cpp |
diffstat | 3 files changed, 100 insertions(+), 83 deletions(-) [+] |
line wrap: on
line diff
--- a/dsp/rateconversion/Decimator.cpp Mon Jun 03 14:32:24 2019 +0100 +++ b/dsp/rateconversion/Decimator.cpp Wed Jun 05 10:21:48 2019 +0100 @@ -203,7 +203,7 @@ doAntiAlias( src, decBuffer, m_inputLength ); - unsigned idx = 0; + int idx = 0; for (int i = 0; i < m_outputLength; i++ ) { dst[ idx++ ] = decBuffer[ m_decFactor * i ];
--- a/dsp/tempotracking/DownBeat.cpp Mon Jun 03 14:32:24 2019 +0100 +++ b/dsp/tempotracking/DownBeat.cpp Wed Jun 05 10:21:48 2019 +0100 @@ -246,9 +246,9 @@ { // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES - unsigned int SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM. - if (SPECSIZE > oldspec.size()/4) { - SPECSIZE = oldspec.size()/4; + int SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM. + if (SPECSIZE > int(oldspec.size())/4) { + SPECSIZE = int(oldspec.size())/4; } double SD = 0.; double sd1 = 0.; @@ -256,7 +256,7 @@ double sumnew = 0.; double sumold = 0.; - for (unsigned int i = 0;i < SPECSIZE;i++) { + for (int i = 0;i < SPECSIZE;i++) { newspec[i] +=EPS; oldspec[i] +=EPS; @@ -265,7 +265,7 @@ sumold+=oldspec[i]; } - for (unsigned int i = 0;i < SPECSIZE;i++) { + for (int i = 0;i < SPECSIZE;i++) { newspec[i] /= (sumnew); oldspec[i] /= (sumold);
--- a/dsp/tempotracking/TempoTrackV2.cpp Mon Jun 03 14:32:24 2019 +0100 +++ b/dsp/tempotracking/TempoTrackV2.cpp Wed Jun 05 10:21:48 2019 +0100 @@ -34,9 +34,11 @@ void TempoTrackV2::filter_df(d_vec_t &df) { + int df_len = int(df.size()); + d_vec_t a(3); d_vec_t b(3); - d_vec_t lp_df(df.size()); + d_vec_t lp_df(df_len); //equivalent in matlab to [b,a] = butter(2,0.4); a[0] = 1.0000; @@ -53,7 +55,7 @@ // forwards filtering - for (unsigned int i = 0;i < df.size();i++) { + for (int i = 0; i < df_len; i++) { lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; inp2 = inp1; inp1 = df[i]; @@ -63,11 +65,11 @@ // copy forwards filtering to df... // but, time-reversed, ready for backwards filtering - for (unsigned int i = 0;i < df.size();i++) { - df[i] = lp_df[df.size()-i-1]; + for (int i = 0; i < df_len; i++) { + df[i] = lp_df[df_len - i - 1]; } - for (unsigned int i = 0;i < df.size();i++) { + for (int i = 0; i < df_len; i++) { lp_df[i] = 0.; } @@ -75,7 +77,7 @@ out1 = 0.; out2 = 0.; // backwards filetering on time-reversed df - for (unsigned int i = 0;i < df.size();i++) { + for (int i = 0; i < df_len; i++) { lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; inp2 = inp1; inp1 = df[i]; @@ -84,8 +86,8 @@ } // write the re-reversed (i.e. forward) version back to df - for (unsigned int i = 0;i < df.size();i++) { - df[i] = lp_df[df.size()-i-1]; + for (int i = 0; i < df_len; i++) { + df[i] = lp_df[df_len - i - 1]; } } @@ -108,7 +110,7 @@ // then call viterbi decoding with weight vector and transition matrix // and get best path - unsigned int wv_len = 128; + int wv_len = 128; // MEPD 28/11/12 // the default value of inputtempo in the beat tracking plugin is 120 @@ -124,33 +126,34 @@ // check whether or not to use rayleigh weighting (if constraintempo is false) // or use gaussian weighting it (constraintempo is true) if (constraintempo) { - for (unsigned int i=0; i<wv.size(); i++) { + for (int i = 0; i < wv_len; i++) { // MEPD 28/11/12 // do a gaussian weighting instead of rayleigh - wv[i] = exp( (-1.*pow((static_cast<double> (i)-rayparam),2.)) / (2.*pow(rayparam/4.,2.)) ); + wv[i] = exp( (-1.*pow((double(i)-rayparam),2.)) / (2.*pow(rayparam/4.,2.)) ); } } else { - for (unsigned int i=0; i<wv.size(); i++) { + for (int i = 0; i < wv_len; i++) { // MEPD 28/11/12 // standard rayleigh weighting over periodicities - wv[i] = (static_cast<double> (i) / pow(rayparam,2.)) * exp((-1.*pow(-static_cast<double> (i),2.)) / (2.*pow(rayparam,2.))); + wv[i] = (double(i) / pow(rayparam,2.)) * exp((-1.*pow(-double(i),2.)) / (2.*pow(rayparam,2.))); } } // beat tracking frame size (roughly 6 seconds) and hop (1.5 seconds) - unsigned int winlen = 512; - unsigned int step = 128; + int winlen = 512; + int step = 128; // matrix to store output of comb filter bank, increment column of matrix at each frame d_mat_t rcfmat; int col_counter = -1; + int df_len = int(df.size()); // main loop for beat period calculation - for (unsigned int i=0; i+winlen<df.size(); i+=step) { + for (int i = 0; i+winlen < df_len; i+=step) { // get dfframe d_vec_t dfframe(winlen); - for (unsigned int k=0; k<winlen; k++) { + for (int k=0; k < winlen; k++) { dfframe[k] = df[i+k]; } // get rcf vector for current frame @@ -159,7 +162,7 @@ rcfmat.push_back( d_vec_t() ); // adds a new column col_counter++; - for (unsigned int j=0; j<rcf.size(); j++) { + for (int j = 0; j < wv_len; j++) { rcfmat[col_counter].push_back( rcf[j] ); } } @@ -182,25 +185,28 @@ MathUtilities::adaptiveThreshold(dfframe); - d_vec_t acf(dfframe.size()); + int dfframe_len = int(dfframe.size()); + int rcf_len = int(rcf.size()); + + d_vec_t acf(dfframe_len); - for (unsigned int lag=0; lag<dfframe.size(); lag++) { + for (int lag = 0; lag < dfframe_len; lag++) { double sum = 0.; double tmp = 0.; - for (unsigned int n=0; n<(dfframe.size()-lag); n++) { - tmp = dfframe[n] * dfframe[n+lag]; + for (int n = 0; n < (dfframe_len - lag); n++) { + tmp = dfframe[n] * dfframe[n + lag]; sum += tmp; } - acf[lag] = static_cast<double> (sum/ (dfframe.size()-lag)); + acf[lag] = double(sum/ (dfframe_len - lag)); } // now apply comb filtering int numelem = 4; - for (unsigned int i = 2;i < rcf.size();i++) { // max beat period - for (int a = 1;a <= numelem;a++) { // number of comb elements - for (int b = 1-a;b <= a-1;b++) { // general state using normalisation of comb elements + for (int i = 2; i < rcf_len; i++) { // max beat period + for (int a = 1; a <= numelem; a++) { // number of comb elements + for (int b = 1-a; b <= a-1; b++) { // general state using normalisation of comb elements rcf[i-1] += ( acf[(a*i+b)-1]*wv[i-1] ) / (2.*a-1.); // calculate value for comb filter row } } @@ -210,13 +216,13 @@ MathUtilities::adaptiveThreshold(rcf); double rcfsum =0.; - for (unsigned int i=0; i<rcf.size(); i++) { + for (int i = 0; i < rcf_len; i++) { rcf[i] += EPS ; rcfsum += rcf[i]; } // normalise rcf to sum to unity - for (unsigned int i=0; i<rcf.size(); i++) { + for (int i = 0; i < rcf_len; i++) { rcf[i] /= (rcfsum + EPS); } } @@ -226,12 +232,14 @@ { // following Kevin Murphy's Viterbi decoding to get best path of // beat periods through rfcmat - + + int wv_len = int(wv.size()); + // make transition matrix d_mat_t tmat; - for (unsigned int i=0;i<wv.size();i++) { + for (int i = 0; i < wv_len; i++) { tmat.push_back ( d_vec_t() ); // adds a new column - for (unsigned int j=0; j<wv.size(); j++) { + for (int j = 0; j < wv_len; j++) { tmat[i].push_back(0.); // fill with zeros initially } } @@ -240,9 +248,9 @@ // formed of Gaussians on diagonal - implies slow tempo change double sigma = 8.; // don't want really short beat periods, or really long ones - for (unsigned int i=20;i <wv.size()-20; i++) { - for (unsigned int j=20; j<wv.size()-20; j++) { - double mu = static_cast<double>(i); + for (int i = 20; i < wv_len - 20; i++) { + for (int j = 20; j < wv_len - 20; j++) { + double mu = double(i); tmat[i][j] = exp( (-1.*pow((j-mu),2.)) / (2.*pow(sigma,2.)) ); } } @@ -252,41 +260,41 @@ d_mat_t delta; i_mat_t psi; - for (unsigned int i=0;i <rcfmat.size(); i++) { - delta.push_back( d_vec_t()); - psi.push_back( i_vec_t()); - for (unsigned int j=0; j<rcfmat[i].size(); j++) { + for (int i = 0; i < int(rcfmat.size()); i++) { + delta.push_back(d_vec_t()); + psi.push_back(i_vec_t()); + for (int j = 0; j < int(rcfmat[i].size()); j++) { delta[i].push_back(0.); // fill with zeros initially psi[i].push_back(0); // fill with zeros initially } } - unsigned int T = delta.size(); + int T = delta.size(); if (T < 2) return; // can't do anything at all meaningful - unsigned int Q = delta[0].size(); + int Q = delta[0].size(); // initialize first column of delta - for (unsigned int j=0; j<Q; j++) { + for (int j = 0; j < Q; j++) { delta[0][j] = wv[j] * rcfmat[0][j]; psi[0][j] = 0; } double deltasum = 0.; - for (unsigned int i=0; i<Q; i++) { + for (int i = 0; i < Q; i++) { deltasum += delta[0][i]; } - for (unsigned int i=0; i<Q; i++) { + for (int i = 0; i < Q; i++) { delta[0][i] /= (deltasum + EPS); } - for (unsigned int t=1; t<T; t++) + for (int t=1; t < T; t++) { d_vec_t tmp_vec(Q); - for (unsigned int j=0; j<Q; j++) { - for (unsigned int i=0; i<Q; i++) { + for (int j = 0; j < Q; j++) { + for (int i = 0; i < Q; i++) { tmp_vec[i] = delta[t-1][i] * tmat[j][i]; } @@ -299,17 +307,17 @@ // normalise current delta column double deltasum = 0.; - for (unsigned int i=0; i<Q; i++) { + for (int i = 0; i < Q; i++) { deltasum += delta[t][i]; } - for (unsigned int i=0; i<Q; i++) { + for (int i = 0; i < Q; i++) { delta[t][i] /= (deltasum + EPS); } } i_vec_t bestpath(T); d_vec_t tmp_vec(Q); - for (unsigned int i=0; i<Q; i++) { + for (int i = 0; i < Q; i++) { tmp_vec[i] = delta[T-1][i]; } @@ -317,29 +325,29 @@ bestpath[T-1] = get_max_ind(tmp_vec); // backtrace through index of maximum values in psi - for (unsigned int t=T-2; t>0 ;t--) { + for (int t=T-2; t>0 ;t--) { bestpath[t] = psi[t+1][bestpath[t+1]]; } // weird but necessary hack -- couldn't get above loop to terminate at t >= 0 bestpath[0] = psi[1][bestpath[1]]; - unsigned int lastind = 0; - for (unsigned int i=0; i<T; i++) { - unsigned int step = 128; - for (unsigned int j=0; j<step; j++) { + int lastind = 0; + for (int i = 0; i < T; i++) { + int step = 128; + for (int j = 0; j < step; j++) { lastind = i*step+j; beat_period[lastind] = bestpath[i]; } // std::cerr << "bestpath[" << i << "] = " << bestpath[i] << " (used for beat_periods " << i*step << " to " << i*step+step-1 << ")" << std::endl; } - //fill in the last values... - for (unsigned int i=lastind; i<beat_period.size(); i++) { + // fill in the last values... + for (int i = lastind; i < int(beat_period.size()); i++) { beat_period[i] = beat_period[lastind]; } - for (unsigned int i = 0; i < beat_period.size(); i++) { + for (int i = 0; i < int(beat_period.size()); i++) { tempi.push_back((60. * m_rate / m_increment)/beat_period[i]); } } @@ -348,7 +356,9 @@ TempoTrackV2::get_max_val(const d_vec_t &df) { double maxval = 0.; - for (unsigned int i=0; i<df.size(); i++) { + int df_len = int(df.size()); + + for (int i = 0; i < df_len; i++) { if (maxval < df[i]) { maxval = df[i]; } @@ -362,7 +372,9 @@ { double maxval = 0.; int ind = 0; - for (unsigned int i=0; i<df.size(); i++) { + int df_len = int(df.size()); + + for (int i = 0; i < df_len; i++) { if (maxval < df[i]) { maxval = df[i]; ind = i; @@ -376,11 +388,13 @@ TempoTrackV2::normalise_vec(d_vec_t &df) { double sum = 0.; - for (unsigned int i=0; i<df.size(); i++) { + int df_len = int(df.size()); + + for (int i = 0; i < df_len; i++) { sum += df[i]; } - for (unsigned int i=0; i<df.size(); i++) { + for (int i = 0; i < df_len; i++) { df[i]/= (sum + EPS); } } @@ -396,11 +410,13 @@ { if (df.empty() || beat_period.empty()) return; - d_vec_t cumscore(df.size()); // store cumulative score - i_vec_t backlink(df.size()); // backlink (stores best beat locations at each time instant) - d_vec_t localscore(df.size()); // localscore, for now this is the same as the detection function + int df_len = int(df.size()); - for (unsigned int i=0; i<df.size(); i++) { + d_vec_t cumscore(df_len); // store cumulative score + i_vec_t backlink(df_len); // backlink (stores best beat locations at each time instant) + d_vec_t localscore(df_len); // localscore, for now this is the same as the detection function + + for (int i = 0; i < df_len; i++) { localscore[i] = df[i]; backlink[i] = -1; } @@ -413,24 +429,25 @@ // std::cerr << "tightness" << tightness << std::endl; // main loop - for (unsigned int i=0; i<localscore.size(); i++) { + for (int i = 0; i < df_len; i++) { int prange_min = -2*beat_period[i]; int prange_max = round(-0.5*beat_period[i]); // transition range - d_vec_t txwt (prange_max - prange_min + 1); - d_vec_t scorecands (txwt.size()); + int txwt_len = prange_max - prange_min + 1; + d_vec_t txwt (txwt_len); + d_vec_t scorecands (txwt_len); - for (unsigned int j=0;j<txwt.size();j++) { + for (int j = 0; j < txwt_len; j++) { - double mu = static_cast<double> (beat_period[i]); + double mu = double(beat_period[i]); txwt[j] = exp( -0.5*pow(tightness * log((round(2*mu)-j)/mu),2)); // IF IN THE ALLOWED RANGE, THEN LOOK AT CUMSCORE[I+PRANGE_MIN+J // ELSE LEAVE AT DEFAULT VALUE FROM INITIALISATION: D_VEC_T SCORECANDS (TXWT.SIZE()); - int cscore_ind = i+prange_min+j; + int cscore_ind = i + prange_min + j; if (cscore_ind >= 0) { scorecands[j] = txwt[j] * cumscore[cscore_ind]; } @@ -448,16 +465,16 @@ // STARTING POINT, I.E. LAST BEAT.. PICK A STRONG POINT IN cumscore VECTOR d_vec_t tmp_vec; - for (unsigned int i=cumscore.size() - beat_period[beat_period.size()-1] ; i<cumscore.size(); i++) { + for (int i = df_len - beat_period[beat_period.size()-1] ; i < df_len; i++) { tmp_vec.push_back(cumscore[i]); } int startpoint = get_max_ind(tmp_vec) + - cumscore.size() - beat_period[beat_period.size()-1] ; + df_len - beat_period[beat_period.size()-1] ; // can happen if no results obtained earlier (e.g. input too short) - if (startpoint >= (int)backlink.size()) { - startpoint = backlink.size()-1; + if (startpoint >= int(backlink.size())) { + startpoint = int(backlink.size()) - 1; } // USE BACKLINK TO GET EACH NEW BEAT (TOWARDS THE BEGINNING OF THE FILE) @@ -473,8 +490,8 @@ } // REVERSE SEQUENCE OF IBEATS AND STORE AS BEATS - for (unsigned int i=0; i<ibeats.size(); i++) { - beats.push_back( static_cast<double>(ibeats[ibeats.size()-i-1]) ); + for (int i = 0; i < int(ibeats.size()); i++) { + beats.push_back(double(ibeats[ibeats.size() - i - 1])); } }