c@279
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@279
|
2
|
c@279
|
3 /*
|
c@279
|
4 QM DSP Library
|
c@279
|
5
|
c@279
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@279
|
7 This file copyright 2008-2009 Matthew Davies and QMUL.
|
c@309
|
8
|
c@309
|
9 This program is free software; you can redistribute it and/or
|
c@309
|
10 modify it under the terms of the GNU General Public License as
|
c@309
|
11 published by the Free Software Foundation; either version 2 of the
|
c@309
|
12 License, or (at your option) any later version. See the file
|
c@309
|
13 COPYING included with this distribution for more information.
|
c@279
|
14 */
|
c@279
|
15
|
c@279
|
16 #include "DownBeat.h"
|
c@279
|
17
|
c@279
|
18 #include "maths/MathAliases.h"
|
c@279
|
19 #include "maths/MathUtilities.h"
|
c@280
|
20 #include "maths/KLDivergence.h"
|
c@279
|
21 #include "dsp/transforms/FFT.h"
|
c@279
|
22
|
c@279
|
23 #include <iostream>
|
c@279
|
24 #include <cstdlib>
|
c@279
|
25
|
cannam@493
|
26 using std::vector;
|
cannam@493
|
27
|
c@279
|
28 DownBeat::DownBeat(float originalSampleRate,
|
c@279
|
29 size_t decimationFactor,
|
c@279
|
30 size_t dfIncrement) :
|
c@280
|
31 m_bpb(0),
|
c@279
|
32 m_rate(originalSampleRate),
|
c@279
|
33 m_factor(decimationFactor),
|
c@279
|
34 m_increment(dfIncrement),
|
c@279
|
35 m_decimator1(0),
|
c@279
|
36 m_decimator2(0),
|
c@279
|
37 m_buffer(0),
|
c@283
|
38 m_decbuf(0),
|
c@279
|
39 m_bufsiz(0),
|
c@279
|
40 m_buffill(0),
|
c@279
|
41 m_beatframesize(0),
|
c@279
|
42 m_beatframe(0)
|
c@279
|
43 {
|
c@279
|
44 // beat frame size is next power of two up from 1.3 seconds at the
|
c@279
|
45 // downsampled rate (happens to produce 4096 for 44100 or 48000 at
|
c@279
|
46 // 16x decimation, which is our expected normal situation)
|
c@280
|
47 m_beatframesize = MathUtilities::nextPowerOfTwo
|
c@280
|
48 (int((m_rate / decimationFactor) * 1.3));
|
c@387
|
49 if (m_beatframesize < 2) {
|
c@387
|
50 m_beatframesize = 2;
|
c@387
|
51 }
|
c@279
|
52 m_beatframe = new double[m_beatframesize];
|
c@279
|
53 m_fftRealOut = new double[m_beatframesize];
|
c@279
|
54 m_fftImagOut = new double[m_beatframesize];
|
c@289
|
55 m_fft = new FFTReal(m_beatframesize);
|
c@279
|
56 }
|
c@279
|
57
|
c@279
|
58 DownBeat::~DownBeat()
|
c@279
|
59 {
|
c@279
|
60 delete m_decimator1;
|
c@279
|
61 delete m_decimator2;
|
c@279
|
62 if (m_buffer) free(m_buffer);
|
c@279
|
63 delete[] m_decbuf;
|
c@279
|
64 delete[] m_beatframe;
|
c@279
|
65 delete[] m_fftRealOut;
|
c@279
|
66 delete[] m_fftImagOut;
|
c@289
|
67 delete m_fft;
|
c@279
|
68 }
|
c@279
|
69
|
c@279
|
70 void
|
c@280
|
71 DownBeat::setBeatsPerBar(int bpb)
|
c@280
|
72 {
|
c@280
|
73 m_bpb = bpb;
|
c@280
|
74 }
|
c@280
|
75
|
c@280
|
76 void
|
c@279
|
77 DownBeat::makeDecimators()
|
c@279
|
78 {
|
c@279
|
79 if (m_factor < 2) return;
|
c@302
|
80 size_t highest = Decimator::getHighestSupportedFactor();
|
c@279
|
81 if (m_factor <= highest) {
|
c@279
|
82 m_decimator1 = new Decimator(m_increment, m_factor);
|
c@279
|
83 return;
|
c@279
|
84 }
|
c@279
|
85 m_decimator1 = new Decimator(m_increment, highest);
|
c@279
|
86 m_decimator2 = new Decimator(m_increment / highest, m_factor / highest);
|
c@280
|
87 m_decbuf = new float[m_increment / highest];
|
c@279
|
88 }
|
c@279
|
89
|
c@279
|
90 void
|
c@280
|
91 DownBeat::pushAudioBlock(const float *audio)
|
c@279
|
92 {
|
c@279
|
93 if (m_buffill + (m_increment / m_factor) > m_bufsiz) {
|
c@279
|
94 if (m_bufsiz == 0) m_bufsiz = m_increment * 16;
|
c@279
|
95 else m_bufsiz = m_bufsiz * 2;
|
c@279
|
96 if (!m_buffer) {
|
c@280
|
97 m_buffer = (float *)malloc(m_bufsiz * sizeof(float));
|
c@279
|
98 } else {
|
c@280
|
99 m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float));
|
c@279
|
100 }
|
c@279
|
101 }
|
cannam@479
|
102 if (!m_decimator1 && m_factor > 1) {
|
cannam@479
|
103 makeDecimators();
|
cannam@479
|
104 }
|
c@279
|
105 if (m_decimator2) {
|
c@279
|
106 m_decimator1->process(audio, m_decbuf);
|
c@279
|
107 m_decimator2->process(m_decbuf, m_buffer + m_buffill);
|
c@283
|
108 } else if (m_decimator1) {
|
c@283
|
109 m_decimator1->process(audio, m_buffer + m_buffill);
|
c@279
|
110 } else {
|
c@283
|
111 // just copy across (m_factor is presumably 1)
|
c@302
|
112 for (size_t i = 0; i < m_increment; ++i) {
|
c@283
|
113 (m_buffer + m_buffill)[i] = audio[i];
|
c@283
|
114 }
|
c@279
|
115 }
|
c@279
|
116 m_buffill += m_increment / m_factor;
|
c@279
|
117 }
|
c@279
|
118
|
c@280
|
119 const float *
|
c@279
|
120 DownBeat::getBufferedAudio(size_t &length) const
|
c@279
|
121 {
|
c@279
|
122 length = m_buffill;
|
c@279
|
123 return m_buffer;
|
c@279
|
124 }
|
c@279
|
125
|
c@279
|
126 void
|
c@280
|
127 DownBeat::resetAudioBuffer()
|
c@280
|
128 {
|
cannam@479
|
129 if (m_buffer) {
|
cannam@479
|
130 free(m_buffer);
|
cannam@479
|
131 }
|
c@283
|
132 m_buffer = 0;
|
c@280
|
133 m_buffill = 0;
|
c@280
|
134 m_bufsiz = 0;
|
c@280
|
135 }
|
c@280
|
136
|
c@280
|
137 void
|
c@280
|
138 DownBeat::findDownBeats(const float *audio,
|
c@279
|
139 size_t audioLength,
|
c@279
|
140 const d_vec_t &beats,
|
c@279
|
141 i_vec_t &downbeats)
|
c@279
|
142 {
|
c@279
|
143 // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS
|
c@279
|
144 // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz)
|
c@279
|
145 // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES
|
c@279
|
146
|
c@279
|
147 // IMPLEMENTATION (MOSTLY) FOLLOWS:
|
c@279
|
148 // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO"
|
c@279
|
149 // EUSIPCO 2006, FLORENCE, ITALY
|
c@279
|
150
|
c@279
|
151 d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat
|
c@279
|
152 d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat
|
c@281
|
153
|
c@281
|
154 m_beatsd.clear();
|
c@279
|
155
|
c@279
|
156 if (audioLength == 0) return;
|
c@279
|
157
|
c@279
|
158 for (size_t i = 0; i + 1 < beats.size(); ++i) {
|
c@279
|
159
|
c@279
|
160 // Copy the extents of the current beat from downsampled array
|
c@279
|
161 // into beat frame buffer
|
c@279
|
162
|
c@279
|
163 size_t beatstart = (beats[i] * m_increment) / m_factor;
|
c@280
|
164 size_t beatend = (beats[i+1] * m_increment) / m_factor;
|
c@279
|
165 if (beatend >= audioLength) beatend = audioLength - 1;
|
c@279
|
166 if (beatend < beatstart) beatend = beatstart;
|
c@279
|
167 size_t beatlen = beatend - beatstart;
|
c@279
|
168
|
c@279
|
169 // Also apply a Hanning window to the beat frame buffer, sized
|
c@279
|
170 // to the beat extents rather than the frame size. (Because
|
c@279
|
171 // the size varies, it's easier to do this by hand than use
|
c@279
|
172 // our Window abstraction.)
|
c@279
|
173
|
c@283
|
174 for (size_t j = 0; j < beatlen && j < m_beatframesize; ++j) {
|
c@279
|
175 double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen))));
|
c@279
|
176 m_beatframe[j] = audio[beatstart + j] * mul;
|
c@279
|
177 }
|
c@279
|
178
|
c@279
|
179 for (size_t j = beatlen; j < m_beatframesize; ++j) {
|
c@279
|
180 m_beatframe[j] = 0.0;
|
c@279
|
181 }
|
c@279
|
182
|
c@279
|
183 // Now FFT beat frame
|
c@279
|
184
|
c@339
|
185 m_fft->forward(m_beatframe, m_fftRealOut, m_fftImagOut);
|
c@279
|
186
|
c@279
|
187 // Calculate magnitudes
|
c@279
|
188
|
c@279
|
189 for (size_t j = 0; j < m_beatframesize/2; ++j) {
|
c@279
|
190 newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] +
|
c@279
|
191 m_fftImagOut[j] * m_fftImagOut[j]);
|
c@279
|
192 }
|
c@279
|
193
|
c@279
|
194 // Preserve peaks by applying adaptive threshold
|
c@279
|
195
|
c@279
|
196 MathUtilities::adaptiveThreshold(newspec);
|
c@279
|
197
|
c@279
|
198 // Calculate JS divergence between new and old spectral frames
|
c@279
|
199
|
c@281
|
200 if (i > 0) { // otherwise we have no previous frame
|
c@281
|
201 m_beatsd.push_back(measureSpecDiff(oldspec, newspec));
|
c@281
|
202 }
|
c@279
|
203
|
c@279
|
204 // Copy newspec across to old
|
c@279
|
205
|
c@279
|
206 for (size_t j = 0; j < m_beatframesize/2; ++j) {
|
c@279
|
207 oldspec[j] = newspec[j];
|
c@279
|
208 }
|
c@279
|
209 }
|
c@279
|
210
|
c@279
|
211 // We now have all spectral difference measures in specdiff
|
c@279
|
212
|
c@302
|
213 int timesig = m_bpb;
|
c@280
|
214 if (timesig == 0) timesig = 4;
|
c@280
|
215
|
c@279
|
216 d_vec_t dbcand(timesig); // downbeat candidates
|
c@279
|
217
|
c@280
|
218 for (int beat = 0; beat < timesig; ++beat) {
|
c@280
|
219 dbcand[beat] = 0;
|
c@280
|
220 }
|
c@280
|
221
|
c@301
|
222 // look for beat transition which leads to greatest spectral change
|
c@301
|
223 for (int beat = 0; beat < timesig; ++beat) {
|
c@301
|
224 int count = 0;
|
c@302
|
225 for (int example = beat-1; example < (int)m_beatsd.size(); example += timesig) {
|
c@301
|
226 if (example < 0) continue;
|
c@301
|
227 dbcand[beat] += (m_beatsd[example]) / timesig;
|
c@301
|
228 ++count;
|
c@301
|
229 }
|
cannam@479
|
230 if (count > 0) {
|
cannam@479
|
231 dbcand[beat] /= count;
|
cannam@479
|
232 }
|
c@301
|
233 }
|
c@280
|
234
|
c@279
|
235 // first downbeat is beat at index of maximum value of dbcand
|
c@279
|
236 int dbind = MathUtilities::getMax(dbcand);
|
c@279
|
237
|
c@279
|
238 // remaining downbeats are at timesig intervals from the first
|
c@302
|
239 for (int i = dbind; i < (int)beats.size(); i += timesig) {
|
c@279
|
240 downbeats.push_back(i);
|
c@279
|
241 }
|
c@279
|
242 }
|
c@279
|
243
|
c@279
|
244 double
|
c@279
|
245 DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec)
|
c@279
|
246 {
|
c@279
|
247 // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES
|
c@279
|
248
|
c@295
|
249 unsigned int SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM.
|
c@279
|
250 if (SPECSIZE > oldspec.size()/4) {
|
c@279
|
251 SPECSIZE = oldspec.size()/4;
|
c@279
|
252 }
|
c@279
|
253 double SD = 0.;
|
c@279
|
254 double sd1 = 0.;
|
c@279
|
255
|
c@279
|
256 double sumnew = 0.;
|
c@279
|
257 double sumold = 0.;
|
c@279
|
258
|
cannam@479
|
259 for (unsigned int i = 0;i < SPECSIZE;i++) {
|
cannam@479
|
260
|
c@279
|
261 newspec[i] +=EPS;
|
c@279
|
262 oldspec[i] +=EPS;
|
c@279
|
263
|
c@279
|
264 sumnew+=newspec[i];
|
c@279
|
265 sumold+=oldspec[i];
|
c@279
|
266 }
|
c@279
|
267
|
cannam@479
|
268 for (unsigned int i = 0;i < SPECSIZE;i++) {
|
cannam@479
|
269
|
c@279
|
270 newspec[i] /= (sumnew);
|
c@279
|
271 oldspec[i] /= (sumold);
|
c@279
|
272
|
c@279
|
273 // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1
|
cannam@479
|
274 if (newspec[i] == 0) {
|
c@279
|
275 newspec[i] = 1.;
|
c@279
|
276 }
|
c@279
|
277
|
cannam@479
|
278 if (oldspec[i] == 0) {
|
c@279
|
279 oldspec[i] = 1.;
|
c@279
|
280 }
|
c@279
|
281
|
c@279
|
282 // JENSEN-SHANNON CALCULATION
|
cannam@479
|
283 sd1 = 0.5*oldspec[i] + 0.5*newspec[i];
|
cannam@479
|
284 SD = SD + (-sd1*log(sd1)) +
|
cannam@479
|
285 (0.5*(oldspec[i]*log(oldspec[i]))) +
|
cannam@479
|
286 (0.5*(newspec[i]*log(newspec[i])));
|
c@279
|
287 }
|
c@279
|
288
|
c@279
|
289 return SD;
|
c@279
|
290 }
|
c@279
|
291
|
c@281
|
292 void
|
c@281
|
293 DownBeat::getBeatSD(vector<double> &beatsd) const
|
c@281
|
294 {
|
cannam@479
|
295 for (int i = 0; i < (int)m_beatsd.size(); ++i) {
|
cannam@479
|
296 beatsd.push_back(m_beatsd[i]);
|
cannam@479
|
297 }
|
c@281
|
298 }
|
c@281
|
299
|