annotate core/RTAudio.cpp @ 175:9bfe04d184fb experimental-fixing-AuxiliaryTask

Demonstrates issue #1374
author Giulio Moro <giuliomoro@yahoo.it>
date Mon, 28 Dec 2015 15:00:34 +0100
parents 1e629f126322
children
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@45 27 #include <native/intr.h>
andrewm@0 28 #include <rtdk.h>
andrewm@0 29
andrewm@45 30 #include "../include/BeagleRT.h"
andrewm@0 31 #include "../include/PRU.h"
andrewm@0 32 #include "../include/I2c_Codec.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
andrewm@0 34
andrewm@45 35 // ARM interrupt number for PRU event EVTOUT7
andrewm@45 36 #define PRU_RTAUDIO_IRQ 21
andrewm@45 37
andrewm@0 38 using namespace std;
andrewm@0 39
andrewm@0 40 // Data structure to keep track of auxiliary tasks we
andrewm@0 41 // can schedule
andrewm@0 42 typedef struct {
andrewm@0 43 RT_TASK task;
andrewm@0 44 void (*function)(void);
andrewm@0 45 char *name;
andrewm@0 46 int priority;
giuliomoro@174 47 bool started;
andrewm@0 48 } InternalAuxiliaryTask;
andrewm@0 49
andrewm@0 50 const char gRTAudioThreadName[] = "beaglert-audio";
andrewm@45 51 const char gRTAudioInterruptName[] = "beaglert-pru-irq";
andrewm@0 52
andrewm@0 53 // Real-time tasks and objects
andrewm@0 54 RT_TASK gRTAudioThread;
andrewm@50 55 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 56 RT_INTR gRTAudioInterrupt;
andrewm@50 57 #endif
andrewm@0 58 PRU *gPRU = 0;
andrewm@0 59 I2c_Codec *gAudioCodec = 0;
andrewm@0 60
andrewm@0 61 vector<InternalAuxiliaryTask*> gAuxTasks;
andrewm@0 62
giuliomoro@175 63 void dumpAuxTasks(){
giuliomoro@175 64 printf("Aux tasks:\n");
giuliomoro@175 65 printf("size: %d\n", gAuxTasks.size());
giuliomoro@175 66 vector<InternalAuxiliaryTask*>::iterator it;
giuliomoro@175 67 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
giuliomoro@175 68 InternalAuxiliaryTask* task = *it;
giuliomoro@175 69 printf("[%d] Name: %s\n", it-gAuxTasks.begin(), task->name);
giuliomoro@175 70 }
giuliomoro@175 71 printf("----------\n\n");
giuliomoro@175 72 }
andrewm@0 73 // Flag which tells the audio task to stop
andrewm@0 74 bool gShouldStop = false;
andrewm@0 75
andrewm@0 76 // general settings
andrewm@45 77 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
andrewm@0 78 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 79 int gAmplifierMutePin = -1;
andrewm@5 80 int gAmplifierShouldBeginMuted = 0;
andrewm@0 81
andrewm@45 82 // Context which holds all the audio/sensor data passed to the render routines
andrewm@45 83 BeagleRTContext gContext;
andrewm@45 84
andrewm@45 85 // User data passed in from main()
andrewm@45 86 void *gUserData;
andrewm@0 87
andrewm@0 88 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 89 // audio, but does not actually start the calculations.
andrewm@0 90 // periodSize indicates the number of _sensor_ frames per period: the audio period size
andrewm@0 91 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
andrewm@0 92 // plus any latency inherent in the ADCs and DACs themselves.
giuliomoro@19 93 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
giuliomoro@19 94 // numAnalogChannels indicates how many ADC and DAC channels to use.
andrewm@56 95 // userData is an opaque pointer which will be passed through to the setup()
andrewm@0 96 // function for application-specific use
andrewm@0 97 //
andrewm@0 98 // Returns 0 on success.
andrewm@0 99
andrewm@45 100 int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData)
andrewm@0 101 {
giuliomoro@175 102 printf("initaudio\n");
giuliomoro@175 103 dumpAuxTasks();
andrewm@0 104 rt_print_auto_init(1);
andrewm@45 105
andrewm@45 106 BeagleRT_setVerboseLevel(settings->verbose);
andrewm@45 107 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
andrewm@45 108 gUserData = userData;
andrewm@45 109
andrewm@45 110 // Initialise context data structure
andrewm@45 111 memset(&gContext, 0, sizeof(BeagleRTContext));
andrewm@0 112
andrewm@5 113 if(gRTAudioVerbose) {
andrewm@5 114 cout << "Starting with period size " << settings->periodSize << "; ";
giuliomoro@19 115 if(settings->useAnalog)
giuliomoro@19 116 cout << "analog enabled\n";
andrewm@5 117 else
giuliomoro@19 118 cout << "analog disabled\n";
andrewm@5 119 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
andrewm@5 120 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
andrewm@5 121 if(settings->beginMuted)
andrewm@5 122 cout << "Beginning with speaker muted\n";
andrewm@5 123 }
andrewm@0 124
andrewm@0 125 // Prepare GPIO pins for amplifier mute and status LED
andrewm@5 126 if(settings->ampMutePin >= 0) {
andrewm@5 127 gAmplifierMutePin = settings->ampMutePin;
andrewm@5 128 gAmplifierShouldBeginMuted = settings->beginMuted;
andrewm@0 129
andrewm@5 130 if(gpio_export(settings->ampMutePin)) {
andrewm@0 131 if(gRTAudioVerbose)
giuliomoro@16 132 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
andrewm@0 133 }
andrewm@5 134 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
andrewm@0 135 if(gRTAudioVerbose)
andrewm@0 136 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 137 return -1;
andrewm@0 138 }
andrewm@5 139 if(gpio_set_value(settings->ampMutePin, LOW)) {
andrewm@0 140 if(gRTAudioVerbose)
andrewm@0 141 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 142 return -1;
andrewm@0 143 }
andrewm@0 144 }
andrewm@0 145
giuliomoro@19 146 // Limit the analog channels to sane values
giuliomoro@19 147 if(settings->numAnalogChannels >= 8)
giuliomoro@19 148 settings->numAnalogChannels = 8;
giuliomoro@19 149 else if(settings->numAnalogChannels >= 4)
giuliomoro@19 150 settings->numAnalogChannels = 4;
andrewm@12 151 else
giuliomoro@19 152 settings->numAnalogChannels = 2;
andrewm@12 153
andrewm@12 154 // Sanity check the combination of channels and period size
giuliomoro@19 155 if(settings->numAnalogChannels <= 4 && settings->periodSize < 2) {
giuliomoro@19 156 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 157 return 1;
andrewm@12 158 }
giuliomoro@19 159 if(settings->numAnalogChannels <= 2 && settings->periodSize < 4) {
giuliomoro@19 160 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 161 return 1;
andrewm@12 162 }
andrewm@12 163
andrewm@45 164 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
andrewm@45 165 gContext.audioSampleRate = 44100.0;
andrewm@45 166 gContext.audioChannels = 2;
andrewm@45 167
andrewm@45 168 if(settings->useAnalog) {
andrewm@45 169 gContext.audioFrames = settings->periodSize * settings->numAnalogChannels / 4;
andrewm@45 170
andrewm@45 171 gContext.analogFrames = settings->periodSize;
andrewm@45 172 gContext.analogChannels = settings->numAnalogChannels;
andrewm@45 173 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
andrewm@45 174 }
andrewm@45 175 else {
andrewm@45 176 gContext.audioFrames = settings->periodSize * 2;
andrewm@45 177
andrewm@45 178 gContext.analogFrames = 0;
andrewm@45 179 gContext.analogChannels = 0;
andrewm@45 180 gContext.analogSampleRate = 0;
andrewm@45 181 }
andrewm@45 182
andrewm@45 183 // For now, digital frame rate is equal to audio frame rate
andrewm@45 184 if(settings->useDigital) {
andrewm@45 185 gContext.digitalFrames = gContext.audioFrames;
andrewm@45 186 gContext.digitalSampleRate = gContext.audioSampleRate;
andrewm@45 187 gContext.digitalChannels = settings->numDigitalChannels;
andrewm@45 188 }
andrewm@45 189 else {
andrewm@45 190 gContext.digitalFrames = 0;
andrewm@45 191 gContext.digitalSampleRate = 0;
andrewm@45 192 gContext.digitalChannels = 0;
andrewm@45 193 }
andrewm@45 194
andrewm@45 195 // Set flags based on init settings
andrewm@45 196 if(settings->interleave)
andrewm@45 197 gContext.flags |= BEAGLERT_FLAG_INTERLEAVED;
andrewm@45 198 if(settings->analogOutputsPersist)
andrewm@45 199 gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST;
andrewm@45 200
andrewm@0 201 // Use PRU for audio
andrewm@45 202 gPRU = new PRU(&gContext);
andrewm@0 203 gAudioCodec = new I2c_Codec();
andrewm@0 204
andrewm@45 205 // Initialise the GPIO pins, including possibly the digital pins in the render routines
andrewm@45 206 if(gPRU->prepareGPIO(1, 1)) {
andrewm@0 207 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 208 return 1;
andrewm@0 209 }
andrewm@45 210
andrewm@45 211 // Get the PRU memory buffers ready to go
giuliomoro@19 212 if(gPRU->initialise(0, settings->periodSize, settings->numAnalogChannels, true)) {
andrewm@0 213 cout << "Error: unable to initialise PRU\n";
andrewm@0 214 return 1;
andrewm@0 215 }
andrewm@45 216
andrewm@45 217 // Prepare the audio codec, which clocks the whole system
andrewm@5 218 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
andrewm@0 219 cout << "Unable to open codec I2C\n";
andrewm@0 220 return 1;
andrewm@0 221 }
andrewm@0 222 if(gAudioCodec->initCodec()) {
andrewm@0 223 cout << "Error: unable to initialise audio codec\n";
andrewm@0 224 return 1;
andrewm@0 225 }
giuliomoro@172 226
andrewm@5 227 // Set default volume levels
andrewm@5 228 BeagleRT_setDACLevel(settings->dacLevel);
andrewm@5 229 BeagleRT_setADCLevel(settings->adcLevel);
giuliomoro@174 230 // TODO: add more argument checks
giuliomoro@171 231 for(int n = 0; n < 2; n++){
giuliomoro@172 232 if(settings->pgaGain[n] > 59.5){
giuliomoro@172 233 std::cerr << "PGA gain out of range [0,59.5]\n";
giuliomoro@172 234 exit(1);
giuliomoro@172 235 }
giuliomoro@171 236 BeagleRT_setPgaGain(settings->pgaGain[n], n);
giuliomoro@171 237 }
andrewm@5 238 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
andrewm@5 239
andrewm@45 240 // Call the user-defined initialisation function
andrewm@56 241 if(!setup(&gContext, userData)) {
andrewm@0 242 cout << "Couldn't initialise audio rendering\n";
andrewm@0 243 return 1;
andrewm@0 244 }
andrewm@0 245
andrewm@0 246 return 0;
andrewm@0 247 }
andrewm@0 248
andrewm@0 249 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 250 // and then transfers control to the PRU object. The PRU object in
andrewm@0 251 // turn will call the audio render() callback function every time
andrewm@0 252 // there is new data to process.
andrewm@0 253
andrewm@0 254 void audioLoop(void *)
andrewm@0 255 {
andrewm@0 256 if(gRTAudioVerbose==1)
andrewm@0 257 rt_printf("_________________Audio Thread!\n");
andrewm@0 258
andrewm@0 259 // PRU audio
andrewm@0 260 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 261
andrewm@0 262 if(gAudioCodec->startAudio(0)) {
andrewm@0 263 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 264 gShouldStop = 1;
andrewm@0 265 }
andrewm@0 266 else {
giuliomoro@16 267 if(gPRU->start(gPRUFilename)) {
giuliomoro@16 268 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 269 gShouldStop = 1;
andrewm@0 270 }
andrewm@0 271 else {
andrewm@0 272 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@5 273
andrewm@5 274 if(!gAmplifierShouldBeginMuted) {
andrewm@5 275 // First unmute the amplifier
andrewm@5 276 if(BeagleRT_muteSpeakers(0)) {
andrewm@5 277 if(gRTAudioVerbose)
andrewm@5 278 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@5 279 }
andrewm@0 280 }
andrewm@0 281
andrewm@50 282 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 283 gPRU->loop(&gRTAudioInterrupt, gUserData);
andrewm@50 284 #else
andrewm@50 285 gPRU->loop(0, gUserData);
andrewm@50 286 #endif
andrewm@0 287 // Now clean up
andrewm@0 288 // gPRU->waitForFinish();
andrewm@0 289 gPRU->disable();
andrewm@0 290 gAudioCodec->stopAudio();
andrewm@0 291 gPRU->cleanupGPIO();
andrewm@0 292 }
andrewm@0 293 }
andrewm@0 294
andrewm@0 295 if(gRTAudioVerbose == 1)
andrewm@0 296 rt_printf("audio thread ended\n");
andrewm@0 297 }
andrewm@0 298
andrewm@0 299 // Create a calculation loop which can run independently of the audio, at a different
andrewm@45 300 // (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY;
andrewm@45 301 // priority should be generally be less than this.
andrewm@0 302 // Returns an (opaque) pointer to the created task on success; 0 on failure
andrewm@47 303 AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name)
andrewm@0 304 {
andrewm@0 305 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 306
andrewm@0 307 // Attempt to create the task
andrewm@0 308 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 309 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 310 free(newTask);
andrewm@0 311 return 0;
andrewm@0 312 }
andrewm@0 313
andrewm@0 314 // Populate the rest of the data structure and store it in the vector
andrewm@0 315 newTask->function = functionToCall;
andrewm@0 316 newTask->name = strdup(name);
andrewm@0 317 newTask->priority = priority;
giuliomoro@174 318 newTask->started = false;
andrewm@0 319
andrewm@0 320 gAuxTasks.push_back(newTask);
andrewm@0 321
andrewm@0 322 return (AuxiliaryTask)newTask;
andrewm@0 323 }
andrewm@0 324
giuliomoro@174 325 // Schedule a previously created (and started) auxiliary task. It will run when the priority rules next
andrewm@0 326 // allow it to be scheduled.
andrewm@47 327 void BeagleRT_scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 328 {
andrewm@0 329 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
giuliomoro@174 330 if(taskToSchedule->started == false){ // Note: this is not the safest method to check if a task
giuliomoro@174 331 BeagleRT_startAuxiliaryTask(task); // is started (or ready to be resumed), but it probably is the fastest.
giuliomoro@174 332 // A safer approach would use rt_task_inquire()
giuliomoro@174 333 }
andrewm@0 334 rt_task_resume(&taskToSchedule->task);
andrewm@0 335 }
andrewm@0 336
andrewm@0 337 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 338 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 339 // Treat the argument as containing the task structure
andrewm@0 340 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 341 {
andrewm@0 342 // Get function to call from the argument
andrewm@0 343 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
andrewm@0 344 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
andrewm@0 345
andrewm@0 346 // Wait for a notification
andrewm@0 347 rt_task_suspend(NULL);
andrewm@0 348
andrewm@0 349 while(!gShouldStop) {
andrewm@0 350 // Then run the calculations
andrewm@0 351 auxiliary_function();
andrewm@0 352
andrewm@0 353 // Wait for a notification
andrewm@0 354 rt_task_suspend(NULL);
andrewm@0 355 }
andrewm@0 356
andrewm@0 357 if(gRTAudioVerbose == 1)
andrewm@0 358 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 359 }
andrewm@0 360
giuliomoro@174 361
giuliomoro@174 362 int BeagleRT_startAuxiliaryTask(AuxiliaryTask task){
giuliomoro@174 363 InternalAuxiliaryTask *taskStruct;
giuliomoro@174 364 taskStruct = (InternalAuxiliaryTask *)task;
giuliomoro@174 365 if(taskStruct->started == true)
giuliomoro@174 366 return 0;
giuliomoro@174 367 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
giuliomoro@174 368 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
giuliomoro@174 369 return -1;
giuliomoro@174 370 }
giuliomoro@174 371 taskStruct->started = true;
giuliomoro@174 372 return 0;
giuliomoro@174 373 }
giuliomoro@174 374
andrewm@0 375 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 376 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 377 // on success.
andrewm@0 378
andrewm@5 379 int BeagleRT_startAudio()
andrewm@0 380 {
andrewm@45 381 // Create audio thread with high Xenomai priority
andrewm@45 382 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
andrewm@0 383 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 384 return -1;
andrewm@0 385 }
andrewm@0 386
andrewm@50 387 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 388 // Create an interrupt which the audio thread receives from the PRU
andrewm@45 389 int result = 0;
andrewm@45 390 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
andrewm@45 391 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
andrewm@45 392 return -1;
andrewm@45 393 }
andrewm@50 394 #endif
andrewm@45 395
andrewm@0 396 // Start all RT threads
andrewm@0 397 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 398 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 399 return -1;
andrewm@0 400 }
andrewm@0 401
andrewm@0 402 // The user may have created other tasks. Start those also.
andrewm@0 403 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 404 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
giuliomoro@174 405 return BeagleRT_startAuxiliaryTask(*it);
andrewm@0 406 }
andrewm@0 407
andrewm@0 408 return 0;
andrewm@0 409 }
andrewm@0 410
andrewm@0 411 // Stop the PRU-based audio from running and wait
andrewm@0 412 // for the tasks to complete before returning.
andrewm@0 413
andrewm@5 414 void BeagleRT_stopAudio()
andrewm@0 415 {
andrewm@0 416 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 417 gShouldStop = true;
andrewm@0 418
andrewm@5 419 if(gRTAudioVerbose)
andrewm@5 420 cout << "Stopping audio...\n";
andrewm@5 421
andrewm@0 422 // Now wait for threads to respond and actually stop...
andrewm@0 423 rt_task_join(&gRTAudioThread);
andrewm@0 424
andrewm@0 425 // Stop all the auxiliary threads too
andrewm@0 426 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 427 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 428 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 429
andrewm@0 430 // Wake up each thread and join it
andrewm@0 431 rt_task_resume(&(taskStruct->task));
andrewm@0 432 rt_task_join(&(taskStruct->task));
andrewm@0 433 }
andrewm@0 434 }
andrewm@0 435
andrewm@0 436 // Free any resources associated with PRU real-time audio
andrewm@5 437 void BeagleRT_cleanupAudio()
andrewm@0 438 {
andrewm@56 439 cleanup(&gContext, gUserData);
andrewm@0 440
andrewm@0 441 // Clean up the auxiliary tasks
andrewm@0 442 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 443 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 444 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 445
andrewm@45 446 // Delete the task
andrewm@45 447 rt_task_delete(&taskStruct->task);
andrewm@45 448
andrewm@0 449 // Free the name string and the struct itself
andrewm@0 450 free(taskStruct->name);
andrewm@0 451 free(taskStruct);
andrewm@0 452 }
andrewm@0 453 gAuxTasks.clear();
giuliomoro@175 454 printf("CLEARED_-------------------------------------\n");
andrewm@0 455
andrewm@45 456 // Delete the audio task and its interrupt
andrewm@50 457 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 458 rt_intr_delete(&gRTAudioInterrupt);
andrewm@50 459 #endif
andrewm@45 460 rt_task_delete(&gRTAudioThread);
andrewm@45 461
andrewm@0 462 if(gPRU != 0)
andrewm@0 463 delete gPRU;
andrewm@0 464 if(gAudioCodec != 0)
andrewm@0 465 delete gAudioCodec;
andrewm@0 466
andrewm@0 467 if(gAmplifierMutePin >= 0)
andrewm@0 468 gpio_unexport(gAmplifierMutePin);
andrewm@0 469 gAmplifierMutePin = -1;
andrewm@0 470 }
andrewm@0 471
andrewm@5 472 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
andrewm@5 473 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 474 int BeagleRT_setDACLevel(float decibels)
andrewm@5 475 {
andrewm@5 476 if(gAudioCodec == 0)
andrewm@5 477 return -1;
andrewm@5 478 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 479 }
andrewm@5 480
andrewm@5 481 // Set the level of the ADC
andrewm@5 482 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
andrewm@5 483 int BeagleRT_setADCLevel(float decibels)
andrewm@5 484 {
andrewm@5 485 if(gAudioCodec == 0)
andrewm@5 486 return -1;
andrewm@5 487 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 488 }
andrewm@5 489
giuliomoro@171 490 // Set the level of the Programmable Gain Amplifier
giuliomoro@171 491 // 59.5dB is maximum, 0dB is minimum; 0.5dB steps
giuliomoro@171 492 int BeagleRT_setPgaGain(float decibels, int channel){
giuliomoro@171 493 if(gAudioCodec == 0)
giuliomoro@171 494 return -1;
giuliomoro@171 495 return gAudioCodec->setPga(decibels, channel);
giuliomoro@171 496 }
giuliomoro@171 497
andrewm@5 498 // Set the level of the onboard headphone amplifier; affects headphone
andrewm@5 499 // output only (not line out or speaker)
andrewm@5 500 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 501 int BeagleRT_setHeadphoneLevel(float decibels)
andrewm@5 502 {
andrewm@5 503 if(gAudioCodec == 0)
andrewm@5 504 return -1;
andrewm@5 505 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 506 }
andrewm@5 507
andrewm@5 508 // Mute or unmute the onboard speaker amplifiers
andrewm@5 509 // mute == 0 means unmute; otherwise mute
andrewm@5 510 // Returns 0 on success
andrewm@5 511 int BeagleRT_muteSpeakers(int mute)
andrewm@5 512 {
andrewm@5 513 int pinValue = mute ? LOW : HIGH;
andrewm@5 514
andrewm@5 515 // Check that we have an enabled pin for controlling the mute
andrewm@5 516 if(gAmplifierMutePin < 0)
andrewm@5 517 return -1;
andrewm@5 518
andrewm@5 519 return gpio_set_value(gAmplifierMutePin, pinValue);
andrewm@5 520 }
andrewm@5 521
andrewm@0 522 // Set the verbosity level
andrewm@45 523 void BeagleRT_setVerboseLevel(int level)
andrewm@0 524 {
andrewm@0 525 gRTAudioVerbose = level;
andrewm@0 526 }