c@27
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@27
|
2
|
c@27
|
3 /*
|
c@27
|
4 QM Vamp Plugin Set
|
c@27
|
5
|
c@27
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@135
|
7
|
c@135
|
8 This program is free software; you can redistribute it and/or
|
c@135
|
9 modify it under the terms of the GNU General Public License as
|
c@135
|
10 published by the Free Software Foundation; either version 2 of the
|
c@135
|
11 License, or (at your option) any later version. See the file
|
c@135
|
12 COPYING included with this distribution for more information.
|
c@27
|
13 */
|
c@27
|
14
|
c@27
|
15 #include "BeatTrack.h"
|
c@27
|
16
|
c@27
|
17 #include <dsp/onsets/DetectionFunction.h>
|
c@27
|
18 #include <dsp/onsets/PeakPicking.h>
|
c@27
|
19 #include <dsp/tempotracking/TempoTrack.h>
|
c@86
|
20 #include <dsp/tempotracking/TempoTrackV2.h>
|
c@27
|
21
|
c@27
|
22 using std::string;
|
c@27
|
23 using std::vector;
|
c@27
|
24 using std::cerr;
|
c@27
|
25 using std::endl;
|
c@27
|
26
|
c@86
|
27 float BeatTracker::m_stepSecs = 0.01161; // 512 samples at 44100
|
c@86
|
28
|
c@86
|
29 #define METHOD_OLD 0
|
c@86
|
30 #define METHOD_NEW 1
|
c@27
|
31
|
c@27
|
32 class BeatTrackerData
|
c@27
|
33 {
|
c@27
|
34 public:
|
c@27
|
35 BeatTrackerData(const DFConfig &config) : dfConfig(config) {
|
c@27
|
36 df = new DetectionFunction(config);
|
c@27
|
37 }
|
c@27
|
38 ~BeatTrackerData() {
|
c@27
|
39 delete df;
|
c@27
|
40 }
|
c@27
|
41 void reset() {
|
c@27
|
42 delete df;
|
c@27
|
43 df = new DetectionFunction(dfConfig);
|
c@27
|
44 dfOutput.clear();
|
c@85
|
45 origin = Vamp::RealTime::zeroTime;
|
c@27
|
46 }
|
c@27
|
47
|
c@27
|
48 DFConfig dfConfig;
|
c@27
|
49 DetectionFunction *df;
|
c@27
|
50 vector<double> dfOutput;
|
c@85
|
51 Vamp::RealTime origin;
|
c@27
|
52 };
|
c@27
|
53
|
c@27
|
54
|
c@27
|
55 BeatTracker::BeatTracker(float inputSampleRate) :
|
c@27
|
56 Vamp::Plugin(inputSampleRate),
|
c@27
|
57 m_d(0),
|
c@86
|
58 m_method(METHOD_NEW),
|
c@30
|
59 m_dfType(DF_COMPLEXSD),
|
c@30
|
60 m_whiten(false)
|
c@27
|
61 {
|
c@27
|
62 }
|
c@27
|
63
|
c@27
|
64 BeatTracker::~BeatTracker()
|
c@27
|
65 {
|
c@27
|
66 delete m_d;
|
c@27
|
67 }
|
c@27
|
68
|
c@27
|
69 string
|
c@27
|
70 BeatTracker::getIdentifier() const
|
c@27
|
71 {
|
c@27
|
72 return "qm-tempotracker";
|
c@27
|
73 }
|
c@27
|
74
|
c@27
|
75 string
|
c@27
|
76 BeatTracker::getName() const
|
c@27
|
77 {
|
c@27
|
78 return "Tempo and Beat Tracker";
|
c@27
|
79 }
|
c@27
|
80
|
c@27
|
81 string
|
c@27
|
82 BeatTracker::getDescription() const
|
c@27
|
83 {
|
c@27
|
84 return "Estimate beat locations and tempo";
|
c@27
|
85 }
|
c@27
|
86
|
c@27
|
87 string
|
c@27
|
88 BeatTracker::getMaker() const
|
c@27
|
89 {
|
c@50
|
90 return "Queen Mary, University of London";
|
c@27
|
91 }
|
c@27
|
92
|
c@27
|
93 int
|
c@27
|
94 BeatTracker::getPluginVersion() const
|
c@27
|
95 {
|
c@131
|
96 return 5;
|
c@27
|
97 }
|
c@27
|
98
|
c@27
|
99 string
|
c@27
|
100 BeatTracker::getCopyright() const
|
c@27
|
101 {
|
c@89
|
102 return "Plugin by Christian Landone and Matthew Davies. Copyright (c) 2006-2009 QMUL - All Rights Reserved";
|
c@27
|
103 }
|
c@27
|
104
|
c@27
|
105 BeatTracker::ParameterList
|
c@27
|
106 BeatTracker::getParameterDescriptors() const
|
c@27
|
107 {
|
c@27
|
108 ParameterList list;
|
c@27
|
109
|
c@27
|
110 ParameterDescriptor desc;
|
c@86
|
111
|
c@86
|
112 desc.identifier = "method";
|
c@86
|
113 desc.name = "Beat Tracking Method";
|
c@119
|
114 desc.description = "Basic method to use ";
|
c@86
|
115 desc.minValue = 0;
|
c@86
|
116 desc.maxValue = 1;
|
c@86
|
117 desc.defaultValue = METHOD_NEW;
|
c@86
|
118 desc.isQuantized = true;
|
c@86
|
119 desc.quantizeStep = 1;
|
c@86
|
120 desc.valueNames.push_back("Old");
|
c@86
|
121 desc.valueNames.push_back("New");
|
c@86
|
122 list.push_back(desc);
|
c@86
|
123
|
c@27
|
124 desc.identifier = "dftype";
|
c@27
|
125 desc.name = "Onset Detection Function Type";
|
c@27
|
126 desc.description = "Method used to calculate the onset detection function";
|
c@27
|
127 desc.minValue = 0;
|
c@31
|
128 desc.maxValue = 4;
|
c@27
|
129 desc.defaultValue = 3;
|
c@86
|
130 desc.valueNames.clear();
|
c@27
|
131 desc.valueNames.push_back("High-Frequency Content");
|
c@27
|
132 desc.valueNames.push_back("Spectral Difference");
|
c@27
|
133 desc.valueNames.push_back("Phase Deviation");
|
c@27
|
134 desc.valueNames.push_back("Complex Domain");
|
c@27
|
135 desc.valueNames.push_back("Broadband Energy Rise");
|
c@27
|
136 list.push_back(desc);
|
c@27
|
137
|
c@30
|
138 desc.identifier = "whiten";
|
c@30
|
139 desc.name = "Adaptive Whitening";
|
c@30
|
140 desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
|
c@30
|
141 desc.minValue = 0;
|
c@30
|
142 desc.maxValue = 1;
|
c@30
|
143 desc.defaultValue = 0;
|
c@30
|
144 desc.isQuantized = true;
|
c@30
|
145 desc.quantizeStep = 1;
|
c@30
|
146 desc.unit = "";
|
c@30
|
147 desc.valueNames.clear();
|
c@30
|
148 list.push_back(desc);
|
c@30
|
149
|
c@27
|
150 return list;
|
c@27
|
151 }
|
c@27
|
152
|
c@27
|
153 float
|
c@27
|
154 BeatTracker::getParameter(std::string name) const
|
c@27
|
155 {
|
c@27
|
156 if (name == "dftype") {
|
c@27
|
157 switch (m_dfType) {
|
c@27
|
158 case DF_HFC: return 0;
|
c@27
|
159 case DF_SPECDIFF: return 1;
|
c@27
|
160 case DF_PHASEDEV: return 2;
|
c@27
|
161 default: case DF_COMPLEXSD: return 3;
|
c@27
|
162 case DF_BROADBAND: return 4;
|
c@27
|
163 }
|
c@86
|
164 } else if (name == "method") {
|
c@86
|
165 return m_method;
|
c@30
|
166 } else if (name == "whiten") {
|
c@30
|
167 return m_whiten ? 1.0 : 0.0;
|
c@27
|
168 }
|
c@27
|
169 return 0.0;
|
c@27
|
170 }
|
c@27
|
171
|
c@27
|
172 void
|
c@27
|
173 BeatTracker::setParameter(std::string name, float value)
|
c@27
|
174 {
|
c@27
|
175 if (name == "dftype") {
|
c@27
|
176 switch (lrintf(value)) {
|
c@27
|
177 case 0: m_dfType = DF_HFC; break;
|
c@27
|
178 case 1: m_dfType = DF_SPECDIFF; break;
|
c@27
|
179 case 2: m_dfType = DF_PHASEDEV; break;
|
c@27
|
180 default: case 3: m_dfType = DF_COMPLEXSD; break;
|
c@27
|
181 case 4: m_dfType = DF_BROADBAND; break;
|
c@27
|
182 }
|
c@86
|
183 } else if (name == "method") {
|
c@86
|
184 m_method = lrintf(value);
|
c@30
|
185 } else if (name == "whiten") {
|
c@30
|
186 m_whiten = (value > 0.5);
|
c@27
|
187 }
|
c@27
|
188 }
|
c@27
|
189
|
c@27
|
190 bool
|
c@27
|
191 BeatTracker::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@27
|
192 {
|
c@27
|
193 if (m_d) {
|
c@27
|
194 delete m_d;
|
c@27
|
195 m_d = 0;
|
c@27
|
196 }
|
c@27
|
197
|
c@27
|
198 if (channels < getMinChannelCount() ||
|
c@27
|
199 channels > getMaxChannelCount()) {
|
c@27
|
200 std::cerr << "BeatTracker::initialise: Unsupported channel count: "
|
c@27
|
201 << channels << std::endl;
|
c@27
|
202 return false;
|
c@27
|
203 }
|
c@27
|
204
|
c@28
|
205 if (stepSize != getPreferredStepSize()) {
|
c@28
|
206 std::cerr << "ERROR: BeatTracker::initialise: Unsupported step size for this sample rate: "
|
c@28
|
207 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
|
c@27
|
208 return false;
|
c@27
|
209 }
|
c@27
|
210
|
c@28
|
211 if (blockSize != getPreferredBlockSize()) {
|
c@29
|
212 std::cerr << "WARNING: BeatTracker::initialise: Sub-optimal block size for this sample rate: "
|
c@28
|
213 << blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
|
c@28
|
214 // return false;
|
c@27
|
215 }
|
c@27
|
216
|
c@27
|
217 DFConfig dfConfig;
|
c@27
|
218 dfConfig.DFType = m_dfType;
|
c@27
|
219 dfConfig.stepSize = stepSize;
|
c@27
|
220 dfConfig.frameLength = blockSize;
|
c@27
|
221 dfConfig.dbRise = 3;
|
c@30
|
222 dfConfig.adaptiveWhitening = m_whiten;
|
c@30
|
223 dfConfig.whiteningRelaxCoeff = -1;
|
c@30
|
224 dfConfig.whiteningFloor = -1;
|
c@27
|
225
|
c@27
|
226 m_d = new BeatTrackerData(dfConfig);
|
c@27
|
227 return true;
|
c@27
|
228 }
|
c@27
|
229
|
c@27
|
230 void
|
c@27
|
231 BeatTracker::reset()
|
c@27
|
232 {
|
c@27
|
233 if (m_d) m_d->reset();
|
c@27
|
234 }
|
c@27
|
235
|
c@27
|
236 size_t
|
c@27
|
237 BeatTracker::getPreferredStepSize() const
|
c@27
|
238 {
|
c@27
|
239 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
|
c@27
|
240 // std::cerr << "BeatTracker::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
|
c@27
|
241 return step;
|
c@27
|
242 }
|
c@27
|
243
|
c@27
|
244 size_t
|
c@27
|
245 BeatTracker::getPreferredBlockSize() const
|
c@27
|
246 {
|
c@28
|
247 size_t theoretical = getPreferredStepSize() * 2;
|
c@28
|
248
|
c@52
|
249 // I think this is not necessarily going to be a power of two, and
|
c@52
|
250 // the host might have a problem with that, but I'm not sure we
|
c@52
|
251 // can do much about it here
|
c@28
|
252 return theoretical;
|
c@27
|
253 }
|
c@27
|
254
|
c@27
|
255 BeatTracker::OutputList
|
c@27
|
256 BeatTracker::getOutputDescriptors() const
|
c@27
|
257 {
|
c@27
|
258 OutputList list;
|
c@27
|
259
|
c@27
|
260 OutputDescriptor beat;
|
c@27
|
261 beat.identifier = "beats";
|
c@27
|
262 beat.name = "Beats";
|
c@27
|
263 beat.description = "Estimated metrical beat locations";
|
c@27
|
264 beat.unit = "";
|
c@27
|
265 beat.hasFixedBinCount = true;
|
c@27
|
266 beat.binCount = 0;
|
c@27
|
267 beat.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
268 beat.sampleRate = 1.0 / m_stepSecs;
|
c@27
|
269
|
c@27
|
270 OutputDescriptor df;
|
c@27
|
271 df.identifier = "detection_fn";
|
c@27
|
272 df.name = "Onset Detection Function";
|
c@27
|
273 df.description = "Probability function of note onset likelihood";
|
c@27
|
274 df.unit = "";
|
c@27
|
275 df.hasFixedBinCount = true;
|
c@27
|
276 df.binCount = 1;
|
c@27
|
277 df.hasKnownExtents = false;
|
c@27
|
278 df.isQuantized = false;
|
c@27
|
279 df.sampleType = OutputDescriptor::OneSamplePerStep;
|
c@27
|
280
|
c@27
|
281 OutputDescriptor tempo;
|
c@27
|
282 tempo.identifier = "tempo";
|
c@27
|
283 tempo.name = "Tempo";
|
c@27
|
284 tempo.description = "Locked tempo estimates";
|
c@27
|
285 tempo.unit = "bpm";
|
c@27
|
286 tempo.hasFixedBinCount = true;
|
c@27
|
287 tempo.binCount = 1;
|
c@31
|
288 tempo.hasKnownExtents = false;
|
c@31
|
289 tempo.isQuantized = false;
|
c@27
|
290 tempo.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
291 tempo.sampleRate = 1.0 / m_stepSecs;
|
c@27
|
292
|
c@27
|
293 list.push_back(beat);
|
c@27
|
294 list.push_back(df);
|
c@27
|
295 list.push_back(tempo);
|
c@27
|
296
|
c@27
|
297 return list;
|
c@27
|
298 }
|
c@27
|
299
|
c@27
|
300 BeatTracker::FeatureSet
|
c@27
|
301 BeatTracker::process(const float *const *inputBuffers,
|
c@85
|
302 Vamp::RealTime timestamp)
|
c@27
|
303 {
|
c@27
|
304 if (!m_d) {
|
c@27
|
305 cerr << "ERROR: BeatTracker::process: "
|
c@27
|
306 << "BeatTracker has not been initialised"
|
c@27
|
307 << endl;
|
c@27
|
308 return FeatureSet();
|
c@27
|
309 }
|
c@27
|
310
|
c@27
|
311 size_t len = m_d->dfConfig.frameLength / 2;
|
c@27
|
312
|
c@27
|
313 double *magnitudes = new double[len];
|
c@27
|
314 double *phases = new double[len];
|
c@27
|
315
|
c@27
|
316 // We only support a single input channel
|
c@27
|
317
|
c@27
|
318 for (size_t i = 0; i < len; ++i) {
|
c@27
|
319
|
c@27
|
320 magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
|
c@27
|
321 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
|
c@27
|
322
|
c@27
|
323 phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
|
c@27
|
324 }
|
c@27
|
325
|
c@27
|
326 double output = m_d->df->process(magnitudes, phases);
|
c@27
|
327
|
c@27
|
328 delete[] magnitudes;
|
c@27
|
329 delete[] phases;
|
c@27
|
330
|
c@85
|
331 if (m_d->dfOutput.empty()) m_d->origin = timestamp;
|
c@85
|
332
|
c@27
|
333 m_d->dfOutput.push_back(output);
|
c@27
|
334
|
c@27
|
335 FeatureSet returnFeatures;
|
c@27
|
336
|
c@27
|
337 Feature feature;
|
c@27
|
338 feature.hasTimestamp = false;
|
c@27
|
339 feature.values.push_back(output);
|
c@27
|
340
|
c@27
|
341 returnFeatures[1].push_back(feature); // detection function is output 1
|
c@27
|
342 return returnFeatures;
|
c@27
|
343 }
|
c@27
|
344
|
c@27
|
345 BeatTracker::FeatureSet
|
c@27
|
346 BeatTracker::getRemainingFeatures()
|
c@27
|
347 {
|
c@27
|
348 if (!m_d) {
|
c@27
|
349 cerr << "ERROR: BeatTracker::getRemainingFeatures: "
|
c@27
|
350 << "BeatTracker has not been initialised"
|
c@27
|
351 << endl;
|
c@27
|
352 return FeatureSet();
|
c@27
|
353 }
|
c@27
|
354
|
c@86
|
355 if (m_method == METHOD_OLD) return beatTrackOld();
|
c@86
|
356 else return beatTrackNew();
|
c@86
|
357 }
|
c@86
|
358
|
c@86
|
359 BeatTracker::FeatureSet
|
c@86
|
360 BeatTracker::beatTrackOld()
|
c@86
|
361 {
|
c@27
|
362 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
|
c@27
|
363 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
|
c@27
|
364
|
c@27
|
365 TTParams ttParams;
|
c@27
|
366 ttParams.winLength = 512;
|
c@27
|
367 ttParams.lagLength = 128;
|
c@27
|
368 ttParams.LPOrd = 2;
|
c@27
|
369 ttParams.LPACoeffs = aCoeffs;
|
c@27
|
370 ttParams.LPBCoeffs = bCoeffs;
|
c@27
|
371 ttParams.alpha = 9;
|
c@27
|
372 ttParams.WinT.post = 8;
|
c@27
|
373 ttParams.WinT.pre = 7;
|
c@27
|
374
|
c@27
|
375 TempoTrack tempoTracker(ttParams);
|
c@27
|
376
|
c@87
|
377 vector<double> tempi;
|
c@87
|
378 vector<int> beats = tempoTracker.process(m_d->dfOutput, &tempi);
|
c@27
|
379
|
c@27
|
380 FeatureSet returnFeatures;
|
c@27
|
381
|
c@27
|
382 char label[100];
|
c@27
|
383
|
c@27
|
384 for (size_t i = 0; i < beats.size(); ++i) {
|
c@27
|
385
|
c@27
|
386 size_t frame = beats[i] * m_d->dfConfig.stepSize;
|
c@27
|
387
|
c@27
|
388 Feature feature;
|
c@27
|
389 feature.hasTimestamp = true;
|
c@85
|
390 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@27
|
391 (frame, lrintf(m_inputSampleRate));
|
c@27
|
392
|
c@27
|
393 float bpm = 0.0;
|
c@27
|
394 int frameIncrement = 0;
|
c@27
|
395
|
c@27
|
396 if (i < beats.size() - 1) {
|
c@27
|
397
|
c@27
|
398 frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;
|
c@27
|
399
|
c@27
|
400 // one beat is frameIncrement frames, so there are
|
c@27
|
401 // samplerate/frameIncrement bps, so
|
c@27
|
402 // 60*samplerate/frameIncrement bpm
|
c@27
|
403
|
c@27
|
404 if (frameIncrement > 0) {
|
c@27
|
405 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
|
c@27
|
406 bpm = int(bpm * 100.0 + 0.5) / 100.0;
|
c@27
|
407 sprintf(label, "%.2f bpm", bpm);
|
c@27
|
408 feature.label = label;
|
c@27
|
409 }
|
c@27
|
410 }
|
c@27
|
411
|
c@27
|
412 returnFeatures[0].push_back(feature); // beats are output 0
|
c@27
|
413 }
|
c@27
|
414
|
c@27
|
415 double prevTempo = 0.0;
|
c@27
|
416
|
c@87
|
417 for (size_t i = 0; i < tempi.size(); ++i) {
|
c@27
|
418
|
c@27
|
419 size_t frame = i * m_d->dfConfig.stepSize * ttParams.lagLength;
|
c@27
|
420
|
c@27
|
421 // std::cerr << "unit " << i << ", step size " << m_d->dfConfig.stepSize << ", hop " << ttParams.lagLength << ", frame = " << frame << std::endl;
|
c@27
|
422
|
c@87
|
423 if (tempi[i] > 1 && int(tempi[i] * 100) != int(prevTempo * 100)) {
|
c@27
|
424 Feature feature;
|
c@27
|
425 feature.hasTimestamp = true;
|
c@85
|
426 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@27
|
427 (frame, lrintf(m_inputSampleRate));
|
c@87
|
428 feature.values.push_back(tempi[i]);
|
c@87
|
429 sprintf(label, "%.2f bpm", tempi[i]);
|
c@27
|
430 feature.label = label;
|
c@27
|
431 returnFeatures[2].push_back(feature); // tempo is output 2
|
c@87
|
432 prevTempo = tempi[i];
|
c@27
|
433 }
|
c@27
|
434 }
|
c@27
|
435
|
c@27
|
436 return returnFeatures;
|
c@27
|
437 }
|
c@27
|
438
|
c@86
|
439 BeatTracker::FeatureSet
|
c@86
|
440 BeatTracker::beatTrackNew()
|
c@86
|
441 {
|
c@86
|
442 vector<double> df;
|
c@86
|
443 vector<double> beatPeriod;
|
c@87
|
444 vector<double> tempi;
|
c@86
|
445
|
c@120
|
446 size_t nonZeroCount = m_d->dfOutput.size();
|
c@120
|
447 while (nonZeroCount > 0) {
|
c@120
|
448 if (m_d->dfOutput[nonZeroCount-1] > 0.0) {
|
c@120
|
449 break;
|
c@120
|
450 }
|
c@120
|
451 --nonZeroCount;
|
c@120
|
452 }
|
c@120
|
453
|
c@120
|
454 std::cerr << "Note: nonZeroCount was " << m_d->dfOutput.size() << ", is now " << nonZeroCount << std::endl;
|
c@120
|
455
|
c@120
|
456 for (size_t i = 2; i < nonZeroCount; ++i) { // discard first two elts
|
c@86
|
457 df.push_back(m_d->dfOutput[i]);
|
c@86
|
458 beatPeriod.push_back(0.0);
|
c@86
|
459 }
|
c@86
|
460 if (df.empty()) return FeatureSet();
|
c@86
|
461
|
c@88
|
462 TempoTrackV2 tt(m_inputSampleRate, m_d->dfConfig.stepSize);
|
c@86
|
463
|
c@87
|
464 tt.calculateBeatPeriod(df, beatPeriod, tempi);
|
c@86
|
465
|
c@86
|
466 vector<double> beats;
|
c@86
|
467 tt.calculateBeats(df, beatPeriod, beats);
|
c@86
|
468
|
c@86
|
469 FeatureSet returnFeatures;
|
c@86
|
470
|
c@86
|
471 char label[100];
|
c@86
|
472
|
c@86
|
473 for (size_t i = 0; i < beats.size(); ++i) {
|
c@86
|
474
|
c@87
|
475 size_t frame = beats[i] * m_d->dfConfig.stepSize;
|
c@86
|
476
|
c@86
|
477 Feature feature;
|
c@86
|
478 feature.hasTimestamp = true;
|
c@86
|
479 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@86
|
480 (frame, lrintf(m_inputSampleRate));
|
c@86
|
481
|
c@86
|
482 float bpm = 0.0;
|
c@86
|
483 int frameIncrement = 0;
|
c@86
|
484
|
c@87
|
485 if (i+1 < beats.size()) {
|
c@86
|
486
|
c@87
|
487 frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;
|
c@86
|
488
|
c@86
|
489 // one beat is frameIncrement frames, so there are
|
c@86
|
490 // samplerate/frameIncrement bps, so
|
c@86
|
491 // 60*samplerate/frameIncrement bpm
|
c@86
|
492
|
c@86
|
493 if (frameIncrement > 0) {
|
c@86
|
494 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
|
c@86
|
495 bpm = int(bpm * 100.0 + 0.5) / 100.0;
|
c@86
|
496 sprintf(label, "%.2f bpm", bpm);
|
c@86
|
497 feature.label = label;
|
c@86
|
498 }
|
c@86
|
499 }
|
c@86
|
500
|
c@86
|
501 returnFeatures[0].push_back(feature); // beats are output 0
|
c@86
|
502 }
|
c@86
|
503
|
c@87
|
504 double prevTempo = 0.0;
|
c@87
|
505
|
c@87
|
506 for (size_t i = 0; i < tempi.size(); ++i) {
|
c@87
|
507
|
c@87
|
508 size_t frame = i * m_d->dfConfig.stepSize;
|
c@87
|
509
|
c@87
|
510 if (tempi[i] > 1 && int(tempi[i] * 100) != int(prevTempo * 100)) {
|
c@87
|
511 Feature feature;
|
c@87
|
512 feature.hasTimestamp = true;
|
c@87
|
513 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
c@87
|
514 (frame, lrintf(m_inputSampleRate));
|
c@87
|
515 feature.values.push_back(tempi[i]);
|
c@87
|
516 sprintf(label, "%.2f bpm", tempi[i]);
|
c@87
|
517 feature.label = label;
|
c@87
|
518 returnFeatures[2].push_back(feature); // tempo is output 2
|
c@87
|
519 prevTempo = tempi[i];
|
c@87
|
520 }
|
c@87
|
521 }
|
c@87
|
522
|
c@86
|
523 return returnFeatures;
|
c@86
|
524 }
|
c@86
|
525
|