annotate plugins/BeatTrack.cpp @ 86:e377296d01b2

* First cut at including Matthew's newer beat tracker
author Chris Cannam <c.cannam@qmul.ac.uk>
date Tue, 20 Jan 2009 15:01:31 +0000
parents 2631d0b3d7eb
children 790e051896a9
rev   line source
c@27 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@27 2
c@27 3 /*
c@27 4 QM Vamp Plugin Set
c@27 5
c@27 6 Centre for Digital Music, Queen Mary, University of London.
c@27 7 All rights reserved.
c@27 8 */
c@27 9
c@27 10 #include "BeatTrack.h"
c@27 11
c@27 12 #include <dsp/onsets/DetectionFunction.h>
c@27 13 #include <dsp/onsets/PeakPicking.h>
c@27 14 #include <dsp/tempotracking/TempoTrack.h>
c@86 15 #include <dsp/tempotracking/TempoTrackV2.h>
c@27 16
c@27 17 using std::string;
c@27 18 using std::vector;
c@27 19 using std::cerr;
c@27 20 using std::endl;
c@27 21
c@86 22 float BeatTracker::m_stepSecs = 0.01161; // 512 samples at 44100
c@86 23
c@86 24 #define METHOD_OLD 0
c@86 25 #define METHOD_NEW 1
c@27 26
c@27 27 class BeatTrackerData
c@27 28 {
c@27 29 public:
c@27 30 BeatTrackerData(const DFConfig &config) : dfConfig(config) {
c@27 31 df = new DetectionFunction(config);
c@27 32 }
c@27 33 ~BeatTrackerData() {
c@27 34 delete df;
c@27 35 }
c@27 36 void reset() {
c@27 37 delete df;
c@27 38 df = new DetectionFunction(dfConfig);
c@27 39 dfOutput.clear();
c@85 40 origin = Vamp::RealTime::zeroTime;
c@27 41 }
c@27 42
c@27 43 DFConfig dfConfig;
c@27 44 DetectionFunction *df;
c@27 45 vector<double> dfOutput;
c@85 46 Vamp::RealTime origin;
c@27 47 };
c@27 48
c@27 49
c@27 50 BeatTracker::BeatTracker(float inputSampleRate) :
c@27 51 Vamp::Plugin(inputSampleRate),
c@27 52 m_d(0),
c@86 53 m_method(METHOD_NEW),
c@30 54 m_dfType(DF_COMPLEXSD),
c@30 55 m_whiten(false)
c@27 56 {
c@27 57 }
c@27 58
c@27 59 BeatTracker::~BeatTracker()
c@27 60 {
c@27 61 delete m_d;
c@27 62 }
c@27 63
c@27 64 string
c@27 65 BeatTracker::getIdentifier() const
c@27 66 {
c@27 67 return "qm-tempotracker";
c@27 68 }
c@27 69
c@27 70 string
c@27 71 BeatTracker::getName() const
c@27 72 {
c@27 73 return "Tempo and Beat Tracker";
c@27 74 }
c@27 75
c@27 76 string
c@27 77 BeatTracker::getDescription() const
c@27 78 {
c@27 79 return "Estimate beat locations and tempo";
c@27 80 }
c@27 81
c@27 82 string
c@27 83 BeatTracker::getMaker() const
c@27 84 {
c@50 85 return "Queen Mary, University of London";
c@27 86 }
c@27 87
c@27 88 int
c@27 89 BeatTracker::getPluginVersion() const
c@27 90 {
c@27 91 return 3;
c@27 92 }
c@27 93
c@27 94 string
c@27 95 BeatTracker::getCopyright() const
c@27 96 {
c@50 97 return "Plugin by Christian Landone and Matthew Davies. Copyright (c) 2006-2008 QMUL - All Rights Reserved";
c@27 98 }
c@27 99
c@27 100 BeatTracker::ParameterList
c@27 101 BeatTracker::getParameterDescriptors() const
c@27 102 {
c@27 103 ParameterList list;
c@27 104
c@27 105 ParameterDescriptor desc;
c@86 106
c@86 107 desc.identifier = "method";
c@86 108 desc.name = "Beat Tracking Method";
c@86 109 desc.description = ""; //!!!
c@86 110 desc.minValue = 0;
c@86 111 desc.maxValue = 1;
c@86 112 desc.defaultValue = METHOD_NEW;
c@86 113 desc.isQuantized = true;
c@86 114 desc.quantizeStep = 1;
c@86 115 desc.valueNames.push_back("Old");
c@86 116 desc.valueNames.push_back("New");
c@86 117 list.push_back(desc);
c@86 118
c@27 119 desc.identifier = "dftype";
c@27 120 desc.name = "Onset Detection Function Type";
c@27 121 desc.description = "Method used to calculate the onset detection function";
c@27 122 desc.minValue = 0;
c@31 123 desc.maxValue = 4;
c@27 124 desc.defaultValue = 3;
c@86 125 desc.valueNames.clear();
c@27 126 desc.valueNames.push_back("High-Frequency Content");
c@27 127 desc.valueNames.push_back("Spectral Difference");
c@27 128 desc.valueNames.push_back("Phase Deviation");
c@27 129 desc.valueNames.push_back("Complex Domain");
c@27 130 desc.valueNames.push_back("Broadband Energy Rise");
c@27 131 list.push_back(desc);
c@27 132
c@30 133 desc.identifier = "whiten";
c@30 134 desc.name = "Adaptive Whitening";
c@30 135 desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
c@30 136 desc.minValue = 0;
c@30 137 desc.maxValue = 1;
c@30 138 desc.defaultValue = 0;
c@30 139 desc.isQuantized = true;
c@30 140 desc.quantizeStep = 1;
c@30 141 desc.unit = "";
c@30 142 desc.valueNames.clear();
c@30 143 list.push_back(desc);
c@30 144
c@27 145 return list;
c@27 146 }
c@27 147
c@27 148 float
c@27 149 BeatTracker::getParameter(std::string name) const
c@27 150 {
c@27 151 if (name == "dftype") {
c@27 152 switch (m_dfType) {
c@27 153 case DF_HFC: return 0;
c@27 154 case DF_SPECDIFF: return 1;
c@27 155 case DF_PHASEDEV: return 2;
c@27 156 default: case DF_COMPLEXSD: return 3;
c@27 157 case DF_BROADBAND: return 4;
c@27 158 }
c@86 159 } else if (name == "method") {
c@86 160 return m_method;
c@30 161 } else if (name == "whiten") {
c@30 162 return m_whiten ? 1.0 : 0.0;
c@27 163 }
c@27 164 return 0.0;
c@27 165 }
c@27 166
c@27 167 void
c@27 168 BeatTracker::setParameter(std::string name, float value)
c@27 169 {
c@27 170 if (name == "dftype") {
c@27 171 switch (lrintf(value)) {
c@27 172 case 0: m_dfType = DF_HFC; break;
c@27 173 case 1: m_dfType = DF_SPECDIFF; break;
c@27 174 case 2: m_dfType = DF_PHASEDEV; break;
c@27 175 default: case 3: m_dfType = DF_COMPLEXSD; break;
c@27 176 case 4: m_dfType = DF_BROADBAND; break;
c@27 177 }
c@86 178 } else if (name == "method") {
c@86 179 m_method = lrintf(value);
c@30 180 } else if (name == "whiten") {
c@30 181 m_whiten = (value > 0.5);
c@27 182 }
c@27 183 }
c@27 184
c@27 185 bool
c@27 186 BeatTracker::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@27 187 {
c@27 188 if (m_d) {
c@27 189 delete m_d;
c@27 190 m_d = 0;
c@27 191 }
c@27 192
c@27 193 if (channels < getMinChannelCount() ||
c@27 194 channels > getMaxChannelCount()) {
c@27 195 std::cerr << "BeatTracker::initialise: Unsupported channel count: "
c@27 196 << channels << std::endl;
c@27 197 return false;
c@27 198 }
c@27 199
c@28 200 if (stepSize != getPreferredStepSize()) {
c@28 201 std::cerr << "ERROR: BeatTracker::initialise: Unsupported step size for this sample rate: "
c@28 202 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
c@27 203 return false;
c@27 204 }
c@27 205
c@28 206 if (blockSize != getPreferredBlockSize()) {
c@29 207 std::cerr << "WARNING: BeatTracker::initialise: Sub-optimal block size for this sample rate: "
c@28 208 << blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
c@28 209 // return false;
c@27 210 }
c@27 211
c@27 212 DFConfig dfConfig;
c@27 213 dfConfig.DFType = m_dfType;
c@27 214 dfConfig.stepSecs = float(stepSize) / m_inputSampleRate;
c@27 215 dfConfig.stepSize = stepSize;
c@27 216 dfConfig.frameLength = blockSize;
c@27 217 dfConfig.dbRise = 3;
c@30 218 dfConfig.adaptiveWhitening = m_whiten;
c@30 219 dfConfig.whiteningRelaxCoeff = -1;
c@30 220 dfConfig.whiteningFloor = -1;
c@27 221
c@27 222 m_d = new BeatTrackerData(dfConfig);
c@27 223 return true;
c@27 224 }
c@27 225
c@27 226 void
c@27 227 BeatTracker::reset()
c@27 228 {
c@27 229 if (m_d) m_d->reset();
c@27 230 }
c@27 231
c@27 232 size_t
c@27 233 BeatTracker::getPreferredStepSize() const
c@27 234 {
c@27 235 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
c@27 236 // std::cerr << "BeatTracker::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
c@27 237 return step;
c@27 238 }
c@27 239
c@27 240 size_t
c@27 241 BeatTracker::getPreferredBlockSize() const
c@27 242 {
c@28 243 size_t theoretical = getPreferredStepSize() * 2;
c@28 244
c@52 245 // I think this is not necessarily going to be a power of two, and
c@52 246 // the host might have a problem with that, but I'm not sure we
c@52 247 // can do much about it here
c@28 248 return theoretical;
c@27 249 }
c@27 250
c@27 251 BeatTracker::OutputList
c@27 252 BeatTracker::getOutputDescriptors() const
c@27 253 {
c@27 254 OutputList list;
c@27 255
c@27 256 OutputDescriptor beat;
c@27 257 beat.identifier = "beats";
c@27 258 beat.name = "Beats";
c@27 259 beat.description = "Estimated metrical beat locations";
c@27 260 beat.unit = "";
c@27 261 beat.hasFixedBinCount = true;
c@27 262 beat.binCount = 0;
c@27 263 beat.sampleType = OutputDescriptor::VariableSampleRate;
c@27 264 beat.sampleRate = 1.0 / m_stepSecs;
c@27 265
c@27 266 OutputDescriptor df;
c@27 267 df.identifier = "detection_fn";
c@27 268 df.name = "Onset Detection Function";
c@27 269 df.description = "Probability function of note onset likelihood";
c@27 270 df.unit = "";
c@27 271 df.hasFixedBinCount = true;
c@27 272 df.binCount = 1;
c@27 273 df.hasKnownExtents = false;
c@27 274 df.isQuantized = false;
c@27 275 df.sampleType = OutputDescriptor::OneSamplePerStep;
c@27 276
c@27 277 OutputDescriptor tempo;
c@27 278 tempo.identifier = "tempo";
c@27 279 tempo.name = "Tempo";
c@27 280 tempo.description = "Locked tempo estimates";
c@27 281 tempo.unit = "bpm";
c@27 282 tempo.hasFixedBinCount = true;
c@27 283 tempo.binCount = 1;
c@31 284 tempo.hasKnownExtents = false;
c@31 285 tempo.isQuantized = false;
c@27 286 tempo.sampleType = OutputDescriptor::VariableSampleRate;
c@27 287 tempo.sampleRate = 1.0 / m_stepSecs;
c@27 288
c@27 289 list.push_back(beat);
c@27 290 list.push_back(df);
c@27 291 list.push_back(tempo);
c@27 292
c@27 293 return list;
c@27 294 }
c@27 295
c@27 296 BeatTracker::FeatureSet
c@27 297 BeatTracker::process(const float *const *inputBuffers,
c@85 298 Vamp::RealTime timestamp)
c@27 299 {
c@27 300 if (!m_d) {
c@27 301 cerr << "ERROR: BeatTracker::process: "
c@27 302 << "BeatTracker has not been initialised"
c@27 303 << endl;
c@27 304 return FeatureSet();
c@27 305 }
c@27 306
c@27 307 size_t len = m_d->dfConfig.frameLength / 2;
c@27 308
c@27 309 double *magnitudes = new double[len];
c@27 310 double *phases = new double[len];
c@27 311
c@27 312 // We only support a single input channel
c@27 313
c@27 314 for (size_t i = 0; i < len; ++i) {
c@27 315
c@27 316 magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
c@27 317 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
c@27 318
c@27 319 phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
c@27 320 }
c@27 321
c@27 322 double output = m_d->df->process(magnitudes, phases);
c@27 323
c@27 324 delete[] magnitudes;
c@27 325 delete[] phases;
c@27 326
c@85 327 if (m_d->dfOutput.empty()) m_d->origin = timestamp;
c@85 328
c@27 329 m_d->dfOutput.push_back(output);
c@27 330
c@27 331 FeatureSet returnFeatures;
c@27 332
c@27 333 Feature feature;
c@27 334 feature.hasTimestamp = false;
c@27 335 feature.values.push_back(output);
c@27 336
c@27 337 returnFeatures[1].push_back(feature); // detection function is output 1
c@27 338 return returnFeatures;
c@27 339 }
c@27 340
c@27 341 BeatTracker::FeatureSet
c@27 342 BeatTracker::getRemainingFeatures()
c@27 343 {
c@27 344 if (!m_d) {
c@27 345 cerr << "ERROR: BeatTracker::getRemainingFeatures: "
c@27 346 << "BeatTracker has not been initialised"
c@27 347 << endl;
c@27 348 return FeatureSet();
c@27 349 }
c@27 350
c@86 351 if (m_method == METHOD_OLD) return beatTrackOld();
c@86 352 else return beatTrackNew();
c@86 353 }
c@86 354
c@86 355 BeatTracker::FeatureSet
c@86 356 BeatTracker::beatTrackOld()
c@86 357 {
c@27 358 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
c@27 359 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
c@27 360
c@27 361 TTParams ttParams;
c@27 362 ttParams.winLength = 512;
c@27 363 ttParams.lagLength = 128;
c@27 364 ttParams.LPOrd = 2;
c@27 365 ttParams.LPACoeffs = aCoeffs;
c@27 366 ttParams.LPBCoeffs = bCoeffs;
c@27 367 ttParams.alpha = 9;
c@27 368 ttParams.WinT.post = 8;
c@27 369 ttParams.WinT.pre = 7;
c@27 370
c@27 371 TempoTrack tempoTracker(ttParams);
c@27 372
c@27 373 vector<double> tempos;
c@27 374 vector<int> beats = tempoTracker.process(m_d->dfOutput, &tempos);
c@27 375
c@27 376 FeatureSet returnFeatures;
c@27 377
c@27 378 char label[100];
c@27 379
c@27 380 for (size_t i = 0; i < beats.size(); ++i) {
c@27 381
c@27 382 size_t frame = beats[i] * m_d->dfConfig.stepSize;
c@27 383
c@27 384 Feature feature;
c@27 385 feature.hasTimestamp = true;
c@85 386 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
c@27 387 (frame, lrintf(m_inputSampleRate));
c@27 388
c@27 389 float bpm = 0.0;
c@27 390 int frameIncrement = 0;
c@27 391
c@27 392 if (i < beats.size() - 1) {
c@27 393
c@27 394 frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;
c@27 395
c@27 396 // one beat is frameIncrement frames, so there are
c@27 397 // samplerate/frameIncrement bps, so
c@27 398 // 60*samplerate/frameIncrement bpm
c@27 399
c@27 400 if (frameIncrement > 0) {
c@27 401 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
c@27 402 bpm = int(bpm * 100.0 + 0.5) / 100.0;
c@27 403 sprintf(label, "%.2f bpm", bpm);
c@27 404 feature.label = label;
c@27 405 }
c@27 406 }
c@27 407
c@27 408 returnFeatures[0].push_back(feature); // beats are output 0
c@27 409 }
c@27 410
c@27 411 double prevTempo = 0.0;
c@27 412
c@27 413 for (size_t i = 0; i < tempos.size(); ++i) {
c@27 414
c@27 415 size_t frame = i * m_d->dfConfig.stepSize * ttParams.lagLength;
c@27 416
c@27 417 // std::cerr << "unit " << i << ", step size " << m_d->dfConfig.stepSize << ", hop " << ttParams.lagLength << ", frame = " << frame << std::endl;
c@27 418
c@27 419 if (tempos[i] > 1 && int(tempos[i] * 100) != int(prevTempo * 100)) {
c@27 420 Feature feature;
c@27 421 feature.hasTimestamp = true;
c@85 422 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
c@27 423 (frame, lrintf(m_inputSampleRate));
c@27 424 feature.values.push_back(tempos[i]);
c@27 425 sprintf(label, "%.2f bpm", tempos[i]);
c@27 426 feature.label = label;
c@27 427 returnFeatures[2].push_back(feature); // tempo is output 2
c@27 428 }
c@27 429 }
c@27 430
c@27 431 return returnFeatures;
c@27 432 }
c@27 433
c@86 434 BeatTracker::FeatureSet
c@86 435 BeatTracker::beatTrackNew()
c@86 436 {
c@86 437 vector<double> df;
c@86 438 vector<double> beatPeriod;
c@86 439
c@86 440 for (size_t i = 2; i < m_d->dfOutput.size(); ++i) { // discard first two elts
c@86 441 df.push_back(m_d->dfOutput[i]);
c@86 442 beatPeriod.push_back(0.0);
c@86 443 }
c@86 444 if (df.empty()) return FeatureSet();
c@86 445
c@86 446 TempoTrackV2 tt;
c@86 447
c@86 448 tt.calculateBeatPeriod(df, beatPeriod);
c@86 449
c@86 450 vector<double> beats;
c@86 451 tt.calculateBeats(df, beatPeriod, beats);
c@86 452
c@86 453 FeatureSet returnFeatures;
c@86 454
c@86 455 char label[100];
c@86 456
c@86 457 for (size_t i = 0; i < beats.size(); ++i) {
c@86 458
c@86 459 // beats are returned in reverse order?
c@86 460
c@86 461 size_t index = beats.size() - i - 1;
c@86 462
c@86 463 size_t frame = beats[index] * m_d->dfConfig.stepSize;
c@86 464
c@86 465 Feature feature;
c@86 466 feature.hasTimestamp = true;
c@86 467 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
c@86 468 (frame, lrintf(m_inputSampleRate));
c@86 469
c@86 470 float bpm = 0.0;
c@86 471 int frameIncrement = 0;
c@86 472
c@86 473 if (index > 0) {
c@86 474
c@86 475 frameIncrement = (beats[index - 1] - beats[index]) * m_d->dfConfig.stepSize;
c@86 476
c@86 477 // one beat is frameIncrement frames, so there are
c@86 478 // samplerate/frameIncrement bps, so
c@86 479 // 60*samplerate/frameIncrement bpm
c@86 480
c@86 481 if (frameIncrement > 0) {
c@86 482 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
c@86 483 bpm = int(bpm * 100.0 + 0.5) / 100.0;
c@86 484 sprintf(label, "%.2f bpm", bpm);
c@86 485 feature.label = label;
c@86 486 }
c@86 487 }
c@86 488
c@86 489 returnFeatures[0].push_back(feature); // beats are output 0
c@86 490 }
c@86 491
c@86 492 return returnFeatures;
c@86 493 }
c@86 494