annotate plugins/BeatTrack.cpp @ 85:2631d0b3d7eb

* Ensure beat tracker, onset detector & tonal change detector return results timed from the first input timestamp, not always from zero
author Chris Cannam <c.cannam@qmul.ac.uk>
date Thu, 04 Dec 2008 12:03:51 +0000
parents 4fe04e706839
children e377296d01b2
rev   line source
c@27 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@27 2
c@27 3 /*
c@27 4 QM Vamp Plugin Set
c@27 5
c@27 6 Centre for Digital Music, Queen Mary, University of London.
c@27 7 All rights reserved.
c@27 8 */
c@27 9
c@27 10 #include "BeatTrack.h"
c@27 11
c@27 12 #include <dsp/onsets/DetectionFunction.h>
c@27 13 #include <dsp/onsets/PeakPicking.h>
c@27 14 #include <dsp/tempotracking/TempoTrack.h>
c@27 15
c@27 16 using std::string;
c@27 17 using std::vector;
c@27 18 using std::cerr;
c@27 19 using std::endl;
c@27 20
c@27 21 float BeatTracker::m_stepSecs = 0.01161;
c@27 22
c@27 23 class BeatTrackerData
c@27 24 {
c@27 25 public:
c@27 26 BeatTrackerData(const DFConfig &config) : dfConfig(config) {
c@27 27 df = new DetectionFunction(config);
c@27 28 }
c@27 29 ~BeatTrackerData() {
c@27 30 delete df;
c@27 31 }
c@27 32 void reset() {
c@27 33 delete df;
c@27 34 df = new DetectionFunction(dfConfig);
c@27 35 dfOutput.clear();
c@85 36 origin = Vamp::RealTime::zeroTime;
c@27 37 }
c@27 38
c@27 39 DFConfig dfConfig;
c@27 40 DetectionFunction *df;
c@27 41 vector<double> dfOutput;
c@85 42 Vamp::RealTime origin;
c@27 43 };
c@27 44
c@27 45
c@27 46 BeatTracker::BeatTracker(float inputSampleRate) :
c@27 47 Vamp::Plugin(inputSampleRate),
c@27 48 m_d(0),
c@30 49 m_dfType(DF_COMPLEXSD),
c@30 50 m_whiten(false)
c@27 51 {
c@27 52 }
c@27 53
c@27 54 BeatTracker::~BeatTracker()
c@27 55 {
c@27 56 delete m_d;
c@27 57 }
c@27 58
c@27 59 string
c@27 60 BeatTracker::getIdentifier() const
c@27 61 {
c@27 62 return "qm-tempotracker";
c@27 63 }
c@27 64
c@27 65 string
c@27 66 BeatTracker::getName() const
c@27 67 {
c@27 68 return "Tempo and Beat Tracker";
c@27 69 }
c@27 70
c@27 71 string
c@27 72 BeatTracker::getDescription() const
c@27 73 {
c@27 74 return "Estimate beat locations and tempo";
c@27 75 }
c@27 76
c@27 77 string
c@27 78 BeatTracker::getMaker() const
c@27 79 {
c@50 80 return "Queen Mary, University of London";
c@27 81 }
c@27 82
c@27 83 int
c@27 84 BeatTracker::getPluginVersion() const
c@27 85 {
c@27 86 return 3;
c@27 87 }
c@27 88
c@27 89 string
c@27 90 BeatTracker::getCopyright() const
c@27 91 {
c@50 92 return "Plugin by Christian Landone and Matthew Davies. Copyright (c) 2006-2008 QMUL - All Rights Reserved";
c@27 93 }
c@27 94
c@27 95 BeatTracker::ParameterList
c@27 96 BeatTracker::getParameterDescriptors() const
c@27 97 {
c@27 98 ParameterList list;
c@27 99
c@27 100 ParameterDescriptor desc;
c@27 101 desc.identifier = "dftype";
c@27 102 desc.name = "Onset Detection Function Type";
c@27 103 desc.description = "Method used to calculate the onset detection function";
c@27 104 desc.minValue = 0;
c@31 105 desc.maxValue = 4;
c@27 106 desc.defaultValue = 3;
c@27 107 desc.isQuantized = true;
c@27 108 desc.quantizeStep = 1;
c@27 109 desc.valueNames.push_back("High-Frequency Content");
c@27 110 desc.valueNames.push_back("Spectral Difference");
c@27 111 desc.valueNames.push_back("Phase Deviation");
c@27 112 desc.valueNames.push_back("Complex Domain");
c@27 113 desc.valueNames.push_back("Broadband Energy Rise");
c@27 114 list.push_back(desc);
c@27 115
c@30 116 desc.identifier = "whiten";
c@30 117 desc.name = "Adaptive Whitening";
c@30 118 desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
c@30 119 desc.minValue = 0;
c@30 120 desc.maxValue = 1;
c@30 121 desc.defaultValue = 0;
c@30 122 desc.isQuantized = true;
c@30 123 desc.quantizeStep = 1;
c@30 124 desc.unit = "";
c@30 125 desc.valueNames.clear();
c@30 126 list.push_back(desc);
c@30 127
c@27 128 return list;
c@27 129 }
c@27 130
c@27 131 float
c@27 132 BeatTracker::getParameter(std::string name) const
c@27 133 {
c@27 134 if (name == "dftype") {
c@27 135 switch (m_dfType) {
c@27 136 case DF_HFC: return 0;
c@27 137 case DF_SPECDIFF: return 1;
c@27 138 case DF_PHASEDEV: return 2;
c@27 139 default: case DF_COMPLEXSD: return 3;
c@27 140 case DF_BROADBAND: return 4;
c@27 141 }
c@30 142 } else if (name == "whiten") {
c@30 143 return m_whiten ? 1.0 : 0.0;
c@27 144 }
c@27 145 return 0.0;
c@27 146 }
c@27 147
c@27 148 void
c@27 149 BeatTracker::setParameter(std::string name, float value)
c@27 150 {
c@27 151 if (name == "dftype") {
c@27 152 switch (lrintf(value)) {
c@27 153 case 0: m_dfType = DF_HFC; break;
c@27 154 case 1: m_dfType = DF_SPECDIFF; break;
c@27 155 case 2: m_dfType = DF_PHASEDEV; break;
c@27 156 default: case 3: m_dfType = DF_COMPLEXSD; break;
c@27 157 case 4: m_dfType = DF_BROADBAND; break;
c@27 158 }
c@30 159 } else if (name == "whiten") {
c@30 160 m_whiten = (value > 0.5);
c@27 161 }
c@27 162 }
c@27 163
c@27 164 bool
c@27 165 BeatTracker::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@27 166 {
c@27 167 if (m_d) {
c@27 168 delete m_d;
c@27 169 m_d = 0;
c@27 170 }
c@27 171
c@27 172 if (channels < getMinChannelCount() ||
c@27 173 channels > getMaxChannelCount()) {
c@27 174 std::cerr << "BeatTracker::initialise: Unsupported channel count: "
c@27 175 << channels << std::endl;
c@27 176 return false;
c@27 177 }
c@27 178
c@28 179 if (stepSize != getPreferredStepSize()) {
c@28 180 std::cerr << "ERROR: BeatTracker::initialise: Unsupported step size for this sample rate: "
c@28 181 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
c@27 182 return false;
c@27 183 }
c@27 184
c@28 185 if (blockSize != getPreferredBlockSize()) {
c@29 186 std::cerr << "WARNING: BeatTracker::initialise: Sub-optimal block size for this sample rate: "
c@28 187 << blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
c@28 188 // return false;
c@27 189 }
c@27 190
c@27 191 DFConfig dfConfig;
c@27 192 dfConfig.DFType = m_dfType;
c@27 193 dfConfig.stepSecs = float(stepSize) / m_inputSampleRate;
c@27 194 dfConfig.stepSize = stepSize;
c@27 195 dfConfig.frameLength = blockSize;
c@27 196 dfConfig.dbRise = 3;
c@30 197 dfConfig.adaptiveWhitening = m_whiten;
c@30 198 dfConfig.whiteningRelaxCoeff = -1;
c@30 199 dfConfig.whiteningFloor = -1;
c@27 200
c@27 201 m_d = new BeatTrackerData(dfConfig);
c@27 202 return true;
c@27 203 }
c@27 204
c@27 205 void
c@27 206 BeatTracker::reset()
c@27 207 {
c@27 208 if (m_d) m_d->reset();
c@27 209 }
c@27 210
c@27 211 size_t
c@27 212 BeatTracker::getPreferredStepSize() const
c@27 213 {
c@27 214 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
c@27 215 // std::cerr << "BeatTracker::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
c@27 216 return step;
c@27 217 }
c@27 218
c@27 219 size_t
c@27 220 BeatTracker::getPreferredBlockSize() const
c@27 221 {
c@28 222 size_t theoretical = getPreferredStepSize() * 2;
c@28 223
c@52 224 // I think this is not necessarily going to be a power of two, and
c@52 225 // the host might have a problem with that, but I'm not sure we
c@52 226 // can do much about it here
c@28 227 return theoretical;
c@27 228 }
c@27 229
c@27 230 BeatTracker::OutputList
c@27 231 BeatTracker::getOutputDescriptors() const
c@27 232 {
c@27 233 OutputList list;
c@27 234
c@27 235 OutputDescriptor beat;
c@27 236 beat.identifier = "beats";
c@27 237 beat.name = "Beats";
c@27 238 beat.description = "Estimated metrical beat locations";
c@27 239 beat.unit = "";
c@27 240 beat.hasFixedBinCount = true;
c@27 241 beat.binCount = 0;
c@27 242 beat.sampleType = OutputDescriptor::VariableSampleRate;
c@27 243 beat.sampleRate = 1.0 / m_stepSecs;
c@27 244
c@27 245 OutputDescriptor df;
c@27 246 df.identifier = "detection_fn";
c@27 247 df.name = "Onset Detection Function";
c@27 248 df.description = "Probability function of note onset likelihood";
c@27 249 df.unit = "";
c@27 250 df.hasFixedBinCount = true;
c@27 251 df.binCount = 1;
c@27 252 df.hasKnownExtents = false;
c@27 253 df.isQuantized = false;
c@27 254 df.sampleType = OutputDescriptor::OneSamplePerStep;
c@27 255
c@27 256 OutputDescriptor tempo;
c@27 257 tempo.identifier = "tempo";
c@27 258 tempo.name = "Tempo";
c@27 259 tempo.description = "Locked tempo estimates";
c@27 260 tempo.unit = "bpm";
c@27 261 tempo.hasFixedBinCount = true;
c@27 262 tempo.binCount = 1;
c@31 263 tempo.hasKnownExtents = false;
c@31 264 tempo.isQuantized = false;
c@27 265 tempo.sampleType = OutputDescriptor::VariableSampleRate;
c@27 266 tempo.sampleRate = 1.0 / m_stepSecs;
c@27 267
c@27 268 list.push_back(beat);
c@27 269 list.push_back(df);
c@27 270 list.push_back(tempo);
c@27 271
c@27 272 return list;
c@27 273 }
c@27 274
c@27 275 BeatTracker::FeatureSet
c@27 276 BeatTracker::process(const float *const *inputBuffers,
c@85 277 Vamp::RealTime timestamp)
c@27 278 {
c@27 279 if (!m_d) {
c@27 280 cerr << "ERROR: BeatTracker::process: "
c@27 281 << "BeatTracker has not been initialised"
c@27 282 << endl;
c@27 283 return FeatureSet();
c@27 284 }
c@27 285
c@27 286 size_t len = m_d->dfConfig.frameLength / 2;
c@27 287
c@27 288 double *magnitudes = new double[len];
c@27 289 double *phases = new double[len];
c@27 290
c@27 291 // We only support a single input channel
c@27 292
c@27 293 for (size_t i = 0; i < len; ++i) {
c@27 294
c@27 295 magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
c@27 296 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
c@27 297
c@27 298 phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
c@27 299 }
c@27 300
c@27 301 double output = m_d->df->process(magnitudes, phases);
c@27 302
c@27 303 delete[] magnitudes;
c@27 304 delete[] phases;
c@27 305
c@85 306 if (m_d->dfOutput.empty()) m_d->origin = timestamp;
c@85 307
c@27 308 m_d->dfOutput.push_back(output);
c@27 309
c@27 310 FeatureSet returnFeatures;
c@27 311
c@27 312 Feature feature;
c@27 313 feature.hasTimestamp = false;
c@27 314 feature.values.push_back(output);
c@27 315
c@27 316 returnFeatures[1].push_back(feature); // detection function is output 1
c@27 317 return returnFeatures;
c@27 318 }
c@27 319
c@27 320 BeatTracker::FeatureSet
c@27 321 BeatTracker::getRemainingFeatures()
c@27 322 {
c@27 323 if (!m_d) {
c@27 324 cerr << "ERROR: BeatTracker::getRemainingFeatures: "
c@27 325 << "BeatTracker has not been initialised"
c@27 326 << endl;
c@27 327 return FeatureSet();
c@27 328 }
c@27 329
c@27 330 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
c@27 331 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
c@27 332
c@27 333 TTParams ttParams;
c@27 334 ttParams.winLength = 512;
c@27 335 ttParams.lagLength = 128;
c@27 336 ttParams.LPOrd = 2;
c@27 337 ttParams.LPACoeffs = aCoeffs;
c@27 338 ttParams.LPBCoeffs = bCoeffs;
c@27 339 ttParams.alpha = 9;
c@27 340 ttParams.WinT.post = 8;
c@27 341 ttParams.WinT.pre = 7;
c@27 342
c@27 343 TempoTrack tempoTracker(ttParams);
c@27 344
c@27 345 vector<double> tempos;
c@27 346 vector<int> beats = tempoTracker.process(m_d->dfOutput, &tempos);
c@27 347
c@27 348 FeatureSet returnFeatures;
c@27 349
c@27 350 char label[100];
c@27 351
c@27 352 for (size_t i = 0; i < beats.size(); ++i) {
c@27 353
c@27 354 size_t frame = beats[i] * m_d->dfConfig.stepSize;
c@27 355
c@27 356 Feature feature;
c@27 357 feature.hasTimestamp = true;
c@85 358 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
c@27 359 (frame, lrintf(m_inputSampleRate));
c@27 360
c@27 361 float bpm = 0.0;
c@27 362 int frameIncrement = 0;
c@27 363
c@27 364 if (i < beats.size() - 1) {
c@27 365
c@27 366 frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;
c@27 367
c@27 368 // one beat is frameIncrement frames, so there are
c@27 369 // samplerate/frameIncrement bps, so
c@27 370 // 60*samplerate/frameIncrement bpm
c@27 371
c@27 372 if (frameIncrement > 0) {
c@27 373 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
c@27 374 bpm = int(bpm * 100.0 + 0.5) / 100.0;
c@27 375 sprintf(label, "%.2f bpm", bpm);
c@27 376 feature.label = label;
c@27 377 }
c@27 378 }
c@27 379
c@27 380 returnFeatures[0].push_back(feature); // beats are output 0
c@27 381 }
c@27 382
c@27 383 double prevTempo = 0.0;
c@27 384
c@27 385 for (size_t i = 0; i < tempos.size(); ++i) {
c@27 386
c@27 387 size_t frame = i * m_d->dfConfig.stepSize * ttParams.lagLength;
c@27 388
c@27 389 // std::cerr << "unit " << i << ", step size " << m_d->dfConfig.stepSize << ", hop " << ttParams.lagLength << ", frame = " << frame << std::endl;
c@27 390
c@27 391 if (tempos[i] > 1 && int(tempos[i] * 100) != int(prevTempo * 100)) {
c@27 392 Feature feature;
c@27 393 feature.hasTimestamp = true;
c@85 394 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
c@27 395 (frame, lrintf(m_inputSampleRate));
c@27 396 feature.values.push_back(tempos[i]);
c@27 397 sprintf(label, "%.2f bpm", tempos[i]);
c@27 398 feature.label = label;
c@27 399 returnFeatures[2].push_back(feature); // tempo is output 2
c@27 400 }
c@27 401 }
c@27 402
c@27 403 return returnFeatures;
c@27 404 }
c@27 405