c@27
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@27
|
2
|
c@27
|
3 /*
|
c@27
|
4 QM Vamp Plugin Set
|
c@27
|
5
|
c@27
|
6 Centre for Digital Music, Queen Mary, University of London.
|
c@27
|
7 All rights reserved.
|
c@27
|
8 */
|
c@27
|
9
|
c@27
|
10 #include "BeatTrack.h"
|
c@27
|
11
|
c@27
|
12 #include <dsp/onsets/DetectionFunction.h>
|
c@27
|
13 #include <dsp/onsets/PeakPicking.h>
|
c@27
|
14 #include <dsp/tempotracking/TempoTrack.h>
|
c@27
|
15
|
c@27
|
16 using std::string;
|
c@27
|
17 using std::vector;
|
c@27
|
18 using std::cerr;
|
c@27
|
19 using std::endl;
|
c@27
|
20
|
c@27
|
21 float BeatTracker::m_stepSecs = 0.01161;
|
c@27
|
22
|
c@27
|
23 class BeatTrackerData
|
c@27
|
24 {
|
c@27
|
25 public:
|
c@27
|
26 BeatTrackerData(const DFConfig &config) : dfConfig(config) {
|
c@27
|
27 df = new DetectionFunction(config);
|
c@27
|
28 }
|
c@27
|
29 ~BeatTrackerData() {
|
c@27
|
30 delete df;
|
c@27
|
31 }
|
c@27
|
32 void reset() {
|
c@27
|
33 delete df;
|
c@27
|
34 df = new DetectionFunction(dfConfig);
|
c@27
|
35 dfOutput.clear();
|
c@27
|
36 }
|
c@27
|
37
|
c@27
|
38 DFConfig dfConfig;
|
c@27
|
39 DetectionFunction *df;
|
c@27
|
40 vector<double> dfOutput;
|
c@27
|
41 };
|
c@27
|
42
|
c@27
|
43
|
c@27
|
44 BeatTracker::BeatTracker(float inputSampleRate) :
|
c@27
|
45 Vamp::Plugin(inputSampleRate),
|
c@27
|
46 m_d(0),
|
c@30
|
47 m_dfType(DF_COMPLEXSD),
|
c@30
|
48 m_whiten(false)
|
c@27
|
49 {
|
c@27
|
50 }
|
c@27
|
51
|
c@27
|
52 BeatTracker::~BeatTracker()
|
c@27
|
53 {
|
c@27
|
54 delete m_d;
|
c@27
|
55 }
|
c@27
|
56
|
c@27
|
57 string
|
c@27
|
58 BeatTracker::getIdentifier() const
|
c@27
|
59 {
|
c@27
|
60 return "qm-tempotracker";
|
c@27
|
61 }
|
c@27
|
62
|
c@27
|
63 string
|
c@27
|
64 BeatTracker::getName() const
|
c@27
|
65 {
|
c@27
|
66 return "Tempo and Beat Tracker";
|
c@27
|
67 }
|
c@27
|
68
|
c@27
|
69 string
|
c@27
|
70 BeatTracker::getDescription() const
|
c@27
|
71 {
|
c@27
|
72 return "Estimate beat locations and tempo";
|
c@27
|
73 }
|
c@27
|
74
|
c@27
|
75 string
|
c@27
|
76 BeatTracker::getMaker() const
|
c@27
|
77 {
|
c@50
|
78 return "Queen Mary, University of London";
|
c@27
|
79 }
|
c@27
|
80
|
c@27
|
81 int
|
c@27
|
82 BeatTracker::getPluginVersion() const
|
c@27
|
83 {
|
c@27
|
84 return 3;
|
c@27
|
85 }
|
c@27
|
86
|
c@27
|
87 string
|
c@27
|
88 BeatTracker::getCopyright() const
|
c@27
|
89 {
|
c@50
|
90 return "Plugin by Christian Landone and Matthew Davies. Copyright (c) 2006-2008 QMUL - All Rights Reserved";
|
c@27
|
91 }
|
c@27
|
92
|
c@27
|
93 BeatTracker::ParameterList
|
c@27
|
94 BeatTracker::getParameterDescriptors() const
|
c@27
|
95 {
|
c@27
|
96 ParameterList list;
|
c@27
|
97
|
c@27
|
98 ParameterDescriptor desc;
|
c@27
|
99 desc.identifier = "dftype";
|
c@27
|
100 desc.name = "Onset Detection Function Type";
|
c@27
|
101 desc.description = "Method used to calculate the onset detection function";
|
c@27
|
102 desc.minValue = 0;
|
c@31
|
103 desc.maxValue = 4;
|
c@27
|
104 desc.defaultValue = 3;
|
c@27
|
105 desc.isQuantized = true;
|
c@27
|
106 desc.quantizeStep = 1;
|
c@27
|
107 desc.valueNames.push_back("High-Frequency Content");
|
c@27
|
108 desc.valueNames.push_back("Spectral Difference");
|
c@27
|
109 desc.valueNames.push_back("Phase Deviation");
|
c@27
|
110 desc.valueNames.push_back("Complex Domain");
|
c@27
|
111 desc.valueNames.push_back("Broadband Energy Rise");
|
c@27
|
112 list.push_back(desc);
|
c@27
|
113
|
c@30
|
114 desc.identifier = "whiten";
|
c@30
|
115 desc.name = "Adaptive Whitening";
|
c@30
|
116 desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
|
c@30
|
117 desc.minValue = 0;
|
c@30
|
118 desc.maxValue = 1;
|
c@30
|
119 desc.defaultValue = 0;
|
c@30
|
120 desc.isQuantized = true;
|
c@30
|
121 desc.quantizeStep = 1;
|
c@30
|
122 desc.unit = "";
|
c@30
|
123 desc.valueNames.clear();
|
c@30
|
124 list.push_back(desc);
|
c@30
|
125
|
c@27
|
126 return list;
|
c@27
|
127 }
|
c@27
|
128
|
c@27
|
129 float
|
c@27
|
130 BeatTracker::getParameter(std::string name) const
|
c@27
|
131 {
|
c@27
|
132 if (name == "dftype") {
|
c@27
|
133 switch (m_dfType) {
|
c@27
|
134 case DF_HFC: return 0;
|
c@27
|
135 case DF_SPECDIFF: return 1;
|
c@27
|
136 case DF_PHASEDEV: return 2;
|
c@27
|
137 default: case DF_COMPLEXSD: return 3;
|
c@27
|
138 case DF_BROADBAND: return 4;
|
c@27
|
139 }
|
c@30
|
140 } else if (name == "whiten") {
|
c@30
|
141 return m_whiten ? 1.0 : 0.0;
|
c@27
|
142 }
|
c@27
|
143 return 0.0;
|
c@27
|
144 }
|
c@27
|
145
|
c@27
|
146 void
|
c@27
|
147 BeatTracker::setParameter(std::string name, float value)
|
c@27
|
148 {
|
c@27
|
149 if (name == "dftype") {
|
c@27
|
150 switch (lrintf(value)) {
|
c@27
|
151 case 0: m_dfType = DF_HFC; break;
|
c@27
|
152 case 1: m_dfType = DF_SPECDIFF; break;
|
c@27
|
153 case 2: m_dfType = DF_PHASEDEV; break;
|
c@27
|
154 default: case 3: m_dfType = DF_COMPLEXSD; break;
|
c@27
|
155 case 4: m_dfType = DF_BROADBAND; break;
|
c@27
|
156 }
|
c@30
|
157 } else if (name == "whiten") {
|
c@30
|
158 m_whiten = (value > 0.5);
|
c@27
|
159 }
|
c@27
|
160 }
|
c@27
|
161
|
c@27
|
162 bool
|
c@27
|
163 BeatTracker::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
c@27
|
164 {
|
c@27
|
165 if (m_d) {
|
c@27
|
166 delete m_d;
|
c@27
|
167 m_d = 0;
|
c@27
|
168 }
|
c@27
|
169
|
c@27
|
170 if (channels < getMinChannelCount() ||
|
c@27
|
171 channels > getMaxChannelCount()) {
|
c@27
|
172 std::cerr << "BeatTracker::initialise: Unsupported channel count: "
|
c@27
|
173 << channels << std::endl;
|
c@27
|
174 return false;
|
c@27
|
175 }
|
c@27
|
176
|
c@28
|
177 if (stepSize != getPreferredStepSize()) {
|
c@28
|
178 std::cerr << "ERROR: BeatTracker::initialise: Unsupported step size for this sample rate: "
|
c@28
|
179 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
|
c@27
|
180 return false;
|
c@27
|
181 }
|
c@27
|
182
|
c@28
|
183 if (blockSize != getPreferredBlockSize()) {
|
c@29
|
184 std::cerr << "WARNING: BeatTracker::initialise: Sub-optimal block size for this sample rate: "
|
c@28
|
185 << blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
|
c@28
|
186 // return false;
|
c@27
|
187 }
|
c@27
|
188
|
c@27
|
189 DFConfig dfConfig;
|
c@27
|
190 dfConfig.DFType = m_dfType;
|
c@27
|
191 dfConfig.stepSecs = float(stepSize) / m_inputSampleRate;
|
c@27
|
192 dfConfig.stepSize = stepSize;
|
c@27
|
193 dfConfig.frameLength = blockSize;
|
c@27
|
194 dfConfig.dbRise = 3;
|
c@30
|
195 dfConfig.adaptiveWhitening = m_whiten;
|
c@30
|
196 dfConfig.whiteningRelaxCoeff = -1;
|
c@30
|
197 dfConfig.whiteningFloor = -1;
|
c@27
|
198
|
c@27
|
199 m_d = new BeatTrackerData(dfConfig);
|
c@27
|
200 return true;
|
c@27
|
201 }
|
c@27
|
202
|
c@27
|
203 void
|
c@27
|
204 BeatTracker::reset()
|
c@27
|
205 {
|
c@27
|
206 if (m_d) m_d->reset();
|
c@27
|
207 }
|
c@27
|
208
|
c@27
|
209 size_t
|
c@27
|
210 BeatTracker::getPreferredStepSize() const
|
c@27
|
211 {
|
c@27
|
212 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
|
c@27
|
213 // std::cerr << "BeatTracker::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
|
c@27
|
214 return step;
|
c@27
|
215 }
|
c@27
|
216
|
c@27
|
217 size_t
|
c@27
|
218 BeatTracker::getPreferredBlockSize() const
|
c@27
|
219 {
|
c@28
|
220 size_t theoretical = getPreferredStepSize() * 2;
|
c@28
|
221
|
c@52
|
222 // I think this is not necessarily going to be a power of two, and
|
c@52
|
223 // the host might have a problem with that, but I'm not sure we
|
c@52
|
224 // can do much about it here
|
c@28
|
225 return theoretical;
|
c@27
|
226 }
|
c@27
|
227
|
c@27
|
228 BeatTracker::OutputList
|
c@27
|
229 BeatTracker::getOutputDescriptors() const
|
c@27
|
230 {
|
c@27
|
231 OutputList list;
|
c@27
|
232
|
c@27
|
233 OutputDescriptor beat;
|
c@27
|
234 beat.identifier = "beats";
|
c@27
|
235 beat.name = "Beats";
|
c@27
|
236 beat.description = "Estimated metrical beat locations";
|
c@27
|
237 beat.unit = "";
|
c@27
|
238 beat.hasFixedBinCount = true;
|
c@27
|
239 beat.binCount = 0;
|
c@27
|
240 beat.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
241 beat.sampleRate = 1.0 / m_stepSecs;
|
c@27
|
242
|
c@27
|
243 OutputDescriptor df;
|
c@27
|
244 df.identifier = "detection_fn";
|
c@27
|
245 df.name = "Onset Detection Function";
|
c@27
|
246 df.description = "Probability function of note onset likelihood";
|
c@27
|
247 df.unit = "";
|
c@27
|
248 df.hasFixedBinCount = true;
|
c@27
|
249 df.binCount = 1;
|
c@27
|
250 df.hasKnownExtents = false;
|
c@27
|
251 df.isQuantized = false;
|
c@27
|
252 df.sampleType = OutputDescriptor::OneSamplePerStep;
|
c@27
|
253
|
c@27
|
254 OutputDescriptor tempo;
|
c@27
|
255 tempo.identifier = "tempo";
|
c@27
|
256 tempo.name = "Tempo";
|
c@27
|
257 tempo.description = "Locked tempo estimates";
|
c@27
|
258 tempo.unit = "bpm";
|
c@27
|
259 tempo.hasFixedBinCount = true;
|
c@27
|
260 tempo.binCount = 1;
|
c@31
|
261 tempo.hasKnownExtents = false;
|
c@31
|
262 tempo.isQuantized = false;
|
c@27
|
263 tempo.sampleType = OutputDescriptor::VariableSampleRate;
|
c@27
|
264 tempo.sampleRate = 1.0 / m_stepSecs;
|
c@27
|
265
|
c@27
|
266 list.push_back(beat);
|
c@27
|
267 list.push_back(df);
|
c@27
|
268 list.push_back(tempo);
|
c@27
|
269
|
c@27
|
270 return list;
|
c@27
|
271 }
|
c@27
|
272
|
c@27
|
273 BeatTracker::FeatureSet
|
c@27
|
274 BeatTracker::process(const float *const *inputBuffers,
|
c@27
|
275 Vamp::RealTime /* timestamp */)
|
c@27
|
276 {
|
c@27
|
277 if (!m_d) {
|
c@27
|
278 cerr << "ERROR: BeatTracker::process: "
|
c@27
|
279 << "BeatTracker has not been initialised"
|
c@27
|
280 << endl;
|
c@27
|
281 return FeatureSet();
|
c@27
|
282 }
|
c@27
|
283
|
c@27
|
284 size_t len = m_d->dfConfig.frameLength / 2;
|
c@27
|
285
|
c@27
|
286 double *magnitudes = new double[len];
|
c@27
|
287 double *phases = new double[len];
|
c@27
|
288
|
c@27
|
289 // We only support a single input channel
|
c@27
|
290
|
c@27
|
291 for (size_t i = 0; i < len; ++i) {
|
c@27
|
292
|
c@27
|
293 magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
|
c@27
|
294 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
|
c@27
|
295
|
c@27
|
296 phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
|
c@27
|
297 }
|
c@27
|
298
|
c@27
|
299 double output = m_d->df->process(magnitudes, phases);
|
c@27
|
300
|
c@27
|
301 delete[] magnitudes;
|
c@27
|
302 delete[] phases;
|
c@27
|
303
|
c@27
|
304 m_d->dfOutput.push_back(output);
|
c@27
|
305
|
c@27
|
306 FeatureSet returnFeatures;
|
c@27
|
307
|
c@27
|
308 Feature feature;
|
c@27
|
309 feature.hasTimestamp = false;
|
c@27
|
310 feature.values.push_back(output);
|
c@27
|
311
|
c@27
|
312 returnFeatures[1].push_back(feature); // detection function is output 1
|
c@27
|
313 return returnFeatures;
|
c@27
|
314 }
|
c@27
|
315
|
c@27
|
316 BeatTracker::FeatureSet
|
c@27
|
317 BeatTracker::getRemainingFeatures()
|
c@27
|
318 {
|
c@27
|
319 if (!m_d) {
|
c@27
|
320 cerr << "ERROR: BeatTracker::getRemainingFeatures: "
|
c@27
|
321 << "BeatTracker has not been initialised"
|
c@27
|
322 << endl;
|
c@27
|
323 return FeatureSet();
|
c@27
|
324 }
|
c@27
|
325
|
c@27
|
326 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
|
c@27
|
327 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
|
c@27
|
328
|
c@27
|
329 TTParams ttParams;
|
c@27
|
330 ttParams.winLength = 512;
|
c@27
|
331 ttParams.lagLength = 128;
|
c@27
|
332 ttParams.LPOrd = 2;
|
c@27
|
333 ttParams.LPACoeffs = aCoeffs;
|
c@27
|
334 ttParams.LPBCoeffs = bCoeffs;
|
c@27
|
335 ttParams.alpha = 9;
|
c@27
|
336 ttParams.WinT.post = 8;
|
c@27
|
337 ttParams.WinT.pre = 7;
|
c@27
|
338
|
c@27
|
339 TempoTrack tempoTracker(ttParams);
|
c@27
|
340
|
c@27
|
341 vector<double> tempos;
|
c@27
|
342 vector<int> beats = tempoTracker.process(m_d->dfOutput, &tempos);
|
c@27
|
343
|
c@27
|
344 FeatureSet returnFeatures;
|
c@27
|
345
|
c@27
|
346 char label[100];
|
c@27
|
347
|
c@27
|
348 for (size_t i = 0; i < beats.size(); ++i) {
|
c@27
|
349
|
c@27
|
350 size_t frame = beats[i] * m_d->dfConfig.stepSize;
|
c@27
|
351
|
c@27
|
352 Feature feature;
|
c@27
|
353 feature.hasTimestamp = true;
|
c@27
|
354 feature.timestamp = Vamp::RealTime::frame2RealTime
|
c@27
|
355 (frame, lrintf(m_inputSampleRate));
|
c@27
|
356
|
c@27
|
357 float bpm = 0.0;
|
c@27
|
358 int frameIncrement = 0;
|
c@27
|
359
|
c@27
|
360 if (i < beats.size() - 1) {
|
c@27
|
361
|
c@27
|
362 frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;
|
c@27
|
363
|
c@27
|
364 // one beat is frameIncrement frames, so there are
|
c@27
|
365 // samplerate/frameIncrement bps, so
|
c@27
|
366 // 60*samplerate/frameIncrement bpm
|
c@27
|
367
|
c@27
|
368 if (frameIncrement > 0) {
|
c@27
|
369 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
|
c@27
|
370 bpm = int(bpm * 100.0 + 0.5) / 100.0;
|
c@27
|
371 sprintf(label, "%.2f bpm", bpm);
|
c@27
|
372 feature.label = label;
|
c@27
|
373 }
|
c@27
|
374 }
|
c@27
|
375
|
c@27
|
376 returnFeatures[0].push_back(feature); // beats are output 0
|
c@27
|
377 }
|
c@27
|
378
|
c@27
|
379 double prevTempo = 0.0;
|
c@27
|
380
|
c@27
|
381 for (size_t i = 0; i < tempos.size(); ++i) {
|
c@27
|
382
|
c@27
|
383 size_t frame = i * m_d->dfConfig.stepSize * ttParams.lagLength;
|
c@27
|
384
|
c@27
|
385 // std::cerr << "unit " << i << ", step size " << m_d->dfConfig.stepSize << ", hop " << ttParams.lagLength << ", frame = " << frame << std::endl;
|
c@27
|
386
|
c@27
|
387 if (tempos[i] > 1 && int(tempos[i] * 100) != int(prevTempo * 100)) {
|
c@27
|
388 Feature feature;
|
c@27
|
389 feature.hasTimestamp = true;
|
c@27
|
390 feature.timestamp = Vamp::RealTime::frame2RealTime
|
c@27
|
391 (frame, lrintf(m_inputSampleRate));
|
c@27
|
392 feature.values.push_back(tempos[i]);
|
c@27
|
393 sprintf(label, "%.2f bpm", tempos[i]);
|
c@27
|
394 feature.label = label;
|
c@27
|
395 returnFeatures[2].push_back(feature); // tempo is output 2
|
c@27
|
396 }
|
c@27
|
397 }
|
c@27
|
398
|
c@27
|
399 return returnFeatures;
|
c@27
|
400 }
|
c@27
|
401
|