annotate plugins/BeatTrack.cpp @ 52:4fe04e706839

* Add some descriptions etc
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 30 Jan 2008 13:33:23 +0000
parents df7a0bc46592
children 2631d0b3d7eb
rev   line source
c@27 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@27 2
c@27 3 /*
c@27 4 QM Vamp Plugin Set
c@27 5
c@27 6 Centre for Digital Music, Queen Mary, University of London.
c@27 7 All rights reserved.
c@27 8 */
c@27 9
c@27 10 #include "BeatTrack.h"
c@27 11
c@27 12 #include <dsp/onsets/DetectionFunction.h>
c@27 13 #include <dsp/onsets/PeakPicking.h>
c@27 14 #include <dsp/tempotracking/TempoTrack.h>
c@27 15
c@27 16 using std::string;
c@27 17 using std::vector;
c@27 18 using std::cerr;
c@27 19 using std::endl;
c@27 20
c@27 21 float BeatTracker::m_stepSecs = 0.01161;
c@27 22
c@27 23 class BeatTrackerData
c@27 24 {
c@27 25 public:
c@27 26 BeatTrackerData(const DFConfig &config) : dfConfig(config) {
c@27 27 df = new DetectionFunction(config);
c@27 28 }
c@27 29 ~BeatTrackerData() {
c@27 30 delete df;
c@27 31 }
c@27 32 void reset() {
c@27 33 delete df;
c@27 34 df = new DetectionFunction(dfConfig);
c@27 35 dfOutput.clear();
c@27 36 }
c@27 37
c@27 38 DFConfig dfConfig;
c@27 39 DetectionFunction *df;
c@27 40 vector<double> dfOutput;
c@27 41 };
c@27 42
c@27 43
c@27 44 BeatTracker::BeatTracker(float inputSampleRate) :
c@27 45 Vamp::Plugin(inputSampleRate),
c@27 46 m_d(0),
c@30 47 m_dfType(DF_COMPLEXSD),
c@30 48 m_whiten(false)
c@27 49 {
c@27 50 }
c@27 51
c@27 52 BeatTracker::~BeatTracker()
c@27 53 {
c@27 54 delete m_d;
c@27 55 }
c@27 56
c@27 57 string
c@27 58 BeatTracker::getIdentifier() const
c@27 59 {
c@27 60 return "qm-tempotracker";
c@27 61 }
c@27 62
c@27 63 string
c@27 64 BeatTracker::getName() const
c@27 65 {
c@27 66 return "Tempo and Beat Tracker";
c@27 67 }
c@27 68
c@27 69 string
c@27 70 BeatTracker::getDescription() const
c@27 71 {
c@27 72 return "Estimate beat locations and tempo";
c@27 73 }
c@27 74
c@27 75 string
c@27 76 BeatTracker::getMaker() const
c@27 77 {
c@50 78 return "Queen Mary, University of London";
c@27 79 }
c@27 80
c@27 81 int
c@27 82 BeatTracker::getPluginVersion() const
c@27 83 {
c@27 84 return 3;
c@27 85 }
c@27 86
c@27 87 string
c@27 88 BeatTracker::getCopyright() const
c@27 89 {
c@50 90 return "Plugin by Christian Landone and Matthew Davies. Copyright (c) 2006-2008 QMUL - All Rights Reserved";
c@27 91 }
c@27 92
c@27 93 BeatTracker::ParameterList
c@27 94 BeatTracker::getParameterDescriptors() const
c@27 95 {
c@27 96 ParameterList list;
c@27 97
c@27 98 ParameterDescriptor desc;
c@27 99 desc.identifier = "dftype";
c@27 100 desc.name = "Onset Detection Function Type";
c@27 101 desc.description = "Method used to calculate the onset detection function";
c@27 102 desc.minValue = 0;
c@31 103 desc.maxValue = 4;
c@27 104 desc.defaultValue = 3;
c@27 105 desc.isQuantized = true;
c@27 106 desc.quantizeStep = 1;
c@27 107 desc.valueNames.push_back("High-Frequency Content");
c@27 108 desc.valueNames.push_back("Spectral Difference");
c@27 109 desc.valueNames.push_back("Phase Deviation");
c@27 110 desc.valueNames.push_back("Complex Domain");
c@27 111 desc.valueNames.push_back("Broadband Energy Rise");
c@27 112 list.push_back(desc);
c@27 113
c@30 114 desc.identifier = "whiten";
c@30 115 desc.name = "Adaptive Whitening";
c@30 116 desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
c@30 117 desc.minValue = 0;
c@30 118 desc.maxValue = 1;
c@30 119 desc.defaultValue = 0;
c@30 120 desc.isQuantized = true;
c@30 121 desc.quantizeStep = 1;
c@30 122 desc.unit = "";
c@30 123 desc.valueNames.clear();
c@30 124 list.push_back(desc);
c@30 125
c@27 126 return list;
c@27 127 }
c@27 128
c@27 129 float
c@27 130 BeatTracker::getParameter(std::string name) const
c@27 131 {
c@27 132 if (name == "dftype") {
c@27 133 switch (m_dfType) {
c@27 134 case DF_HFC: return 0;
c@27 135 case DF_SPECDIFF: return 1;
c@27 136 case DF_PHASEDEV: return 2;
c@27 137 default: case DF_COMPLEXSD: return 3;
c@27 138 case DF_BROADBAND: return 4;
c@27 139 }
c@30 140 } else if (name == "whiten") {
c@30 141 return m_whiten ? 1.0 : 0.0;
c@27 142 }
c@27 143 return 0.0;
c@27 144 }
c@27 145
c@27 146 void
c@27 147 BeatTracker::setParameter(std::string name, float value)
c@27 148 {
c@27 149 if (name == "dftype") {
c@27 150 switch (lrintf(value)) {
c@27 151 case 0: m_dfType = DF_HFC; break;
c@27 152 case 1: m_dfType = DF_SPECDIFF; break;
c@27 153 case 2: m_dfType = DF_PHASEDEV; break;
c@27 154 default: case 3: m_dfType = DF_COMPLEXSD; break;
c@27 155 case 4: m_dfType = DF_BROADBAND; break;
c@27 156 }
c@30 157 } else if (name == "whiten") {
c@30 158 m_whiten = (value > 0.5);
c@27 159 }
c@27 160 }
c@27 161
c@27 162 bool
c@27 163 BeatTracker::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@27 164 {
c@27 165 if (m_d) {
c@27 166 delete m_d;
c@27 167 m_d = 0;
c@27 168 }
c@27 169
c@27 170 if (channels < getMinChannelCount() ||
c@27 171 channels > getMaxChannelCount()) {
c@27 172 std::cerr << "BeatTracker::initialise: Unsupported channel count: "
c@27 173 << channels << std::endl;
c@27 174 return false;
c@27 175 }
c@27 176
c@28 177 if (stepSize != getPreferredStepSize()) {
c@28 178 std::cerr << "ERROR: BeatTracker::initialise: Unsupported step size for this sample rate: "
c@28 179 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
c@27 180 return false;
c@27 181 }
c@27 182
c@28 183 if (blockSize != getPreferredBlockSize()) {
c@29 184 std::cerr << "WARNING: BeatTracker::initialise: Sub-optimal block size for this sample rate: "
c@28 185 << blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
c@28 186 // return false;
c@27 187 }
c@27 188
c@27 189 DFConfig dfConfig;
c@27 190 dfConfig.DFType = m_dfType;
c@27 191 dfConfig.stepSecs = float(stepSize) / m_inputSampleRate;
c@27 192 dfConfig.stepSize = stepSize;
c@27 193 dfConfig.frameLength = blockSize;
c@27 194 dfConfig.dbRise = 3;
c@30 195 dfConfig.adaptiveWhitening = m_whiten;
c@30 196 dfConfig.whiteningRelaxCoeff = -1;
c@30 197 dfConfig.whiteningFloor = -1;
c@27 198
c@27 199 m_d = new BeatTrackerData(dfConfig);
c@27 200 return true;
c@27 201 }
c@27 202
c@27 203 void
c@27 204 BeatTracker::reset()
c@27 205 {
c@27 206 if (m_d) m_d->reset();
c@27 207 }
c@27 208
c@27 209 size_t
c@27 210 BeatTracker::getPreferredStepSize() const
c@27 211 {
c@27 212 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
c@27 213 // std::cerr << "BeatTracker::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
c@27 214 return step;
c@27 215 }
c@27 216
c@27 217 size_t
c@27 218 BeatTracker::getPreferredBlockSize() const
c@27 219 {
c@28 220 size_t theoretical = getPreferredStepSize() * 2;
c@28 221
c@52 222 // I think this is not necessarily going to be a power of two, and
c@52 223 // the host might have a problem with that, but I'm not sure we
c@52 224 // can do much about it here
c@28 225 return theoretical;
c@27 226 }
c@27 227
c@27 228 BeatTracker::OutputList
c@27 229 BeatTracker::getOutputDescriptors() const
c@27 230 {
c@27 231 OutputList list;
c@27 232
c@27 233 OutputDescriptor beat;
c@27 234 beat.identifier = "beats";
c@27 235 beat.name = "Beats";
c@27 236 beat.description = "Estimated metrical beat locations";
c@27 237 beat.unit = "";
c@27 238 beat.hasFixedBinCount = true;
c@27 239 beat.binCount = 0;
c@27 240 beat.sampleType = OutputDescriptor::VariableSampleRate;
c@27 241 beat.sampleRate = 1.0 / m_stepSecs;
c@27 242
c@27 243 OutputDescriptor df;
c@27 244 df.identifier = "detection_fn";
c@27 245 df.name = "Onset Detection Function";
c@27 246 df.description = "Probability function of note onset likelihood";
c@27 247 df.unit = "";
c@27 248 df.hasFixedBinCount = true;
c@27 249 df.binCount = 1;
c@27 250 df.hasKnownExtents = false;
c@27 251 df.isQuantized = false;
c@27 252 df.sampleType = OutputDescriptor::OneSamplePerStep;
c@27 253
c@27 254 OutputDescriptor tempo;
c@27 255 tempo.identifier = "tempo";
c@27 256 tempo.name = "Tempo";
c@27 257 tempo.description = "Locked tempo estimates";
c@27 258 tempo.unit = "bpm";
c@27 259 tempo.hasFixedBinCount = true;
c@27 260 tempo.binCount = 1;
c@31 261 tempo.hasKnownExtents = false;
c@31 262 tempo.isQuantized = false;
c@27 263 tempo.sampleType = OutputDescriptor::VariableSampleRate;
c@27 264 tempo.sampleRate = 1.0 / m_stepSecs;
c@27 265
c@27 266 list.push_back(beat);
c@27 267 list.push_back(df);
c@27 268 list.push_back(tempo);
c@27 269
c@27 270 return list;
c@27 271 }
c@27 272
c@27 273 BeatTracker::FeatureSet
c@27 274 BeatTracker::process(const float *const *inputBuffers,
c@27 275 Vamp::RealTime /* timestamp */)
c@27 276 {
c@27 277 if (!m_d) {
c@27 278 cerr << "ERROR: BeatTracker::process: "
c@27 279 << "BeatTracker has not been initialised"
c@27 280 << endl;
c@27 281 return FeatureSet();
c@27 282 }
c@27 283
c@27 284 size_t len = m_d->dfConfig.frameLength / 2;
c@27 285
c@27 286 double *magnitudes = new double[len];
c@27 287 double *phases = new double[len];
c@27 288
c@27 289 // We only support a single input channel
c@27 290
c@27 291 for (size_t i = 0; i < len; ++i) {
c@27 292
c@27 293 magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
c@27 294 inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
c@27 295
c@27 296 phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
c@27 297 }
c@27 298
c@27 299 double output = m_d->df->process(magnitudes, phases);
c@27 300
c@27 301 delete[] magnitudes;
c@27 302 delete[] phases;
c@27 303
c@27 304 m_d->dfOutput.push_back(output);
c@27 305
c@27 306 FeatureSet returnFeatures;
c@27 307
c@27 308 Feature feature;
c@27 309 feature.hasTimestamp = false;
c@27 310 feature.values.push_back(output);
c@27 311
c@27 312 returnFeatures[1].push_back(feature); // detection function is output 1
c@27 313 return returnFeatures;
c@27 314 }
c@27 315
c@27 316 BeatTracker::FeatureSet
c@27 317 BeatTracker::getRemainingFeatures()
c@27 318 {
c@27 319 if (!m_d) {
c@27 320 cerr << "ERROR: BeatTracker::getRemainingFeatures: "
c@27 321 << "BeatTracker has not been initialised"
c@27 322 << endl;
c@27 323 return FeatureSet();
c@27 324 }
c@27 325
c@27 326 double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
c@27 327 double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
c@27 328
c@27 329 TTParams ttParams;
c@27 330 ttParams.winLength = 512;
c@27 331 ttParams.lagLength = 128;
c@27 332 ttParams.LPOrd = 2;
c@27 333 ttParams.LPACoeffs = aCoeffs;
c@27 334 ttParams.LPBCoeffs = bCoeffs;
c@27 335 ttParams.alpha = 9;
c@27 336 ttParams.WinT.post = 8;
c@27 337 ttParams.WinT.pre = 7;
c@27 338
c@27 339 TempoTrack tempoTracker(ttParams);
c@27 340
c@27 341 vector<double> tempos;
c@27 342 vector<int> beats = tempoTracker.process(m_d->dfOutput, &tempos);
c@27 343
c@27 344 FeatureSet returnFeatures;
c@27 345
c@27 346 char label[100];
c@27 347
c@27 348 for (size_t i = 0; i < beats.size(); ++i) {
c@27 349
c@27 350 size_t frame = beats[i] * m_d->dfConfig.stepSize;
c@27 351
c@27 352 Feature feature;
c@27 353 feature.hasTimestamp = true;
c@27 354 feature.timestamp = Vamp::RealTime::frame2RealTime
c@27 355 (frame, lrintf(m_inputSampleRate));
c@27 356
c@27 357 float bpm = 0.0;
c@27 358 int frameIncrement = 0;
c@27 359
c@27 360 if (i < beats.size() - 1) {
c@27 361
c@27 362 frameIncrement = (beats[i+1] - beats[i]) * m_d->dfConfig.stepSize;
c@27 363
c@27 364 // one beat is frameIncrement frames, so there are
c@27 365 // samplerate/frameIncrement bps, so
c@27 366 // 60*samplerate/frameIncrement bpm
c@27 367
c@27 368 if (frameIncrement > 0) {
c@27 369 bpm = (60.0 * m_inputSampleRate) / frameIncrement;
c@27 370 bpm = int(bpm * 100.0 + 0.5) / 100.0;
c@27 371 sprintf(label, "%.2f bpm", bpm);
c@27 372 feature.label = label;
c@27 373 }
c@27 374 }
c@27 375
c@27 376 returnFeatures[0].push_back(feature); // beats are output 0
c@27 377 }
c@27 378
c@27 379 double prevTempo = 0.0;
c@27 380
c@27 381 for (size_t i = 0; i < tempos.size(); ++i) {
c@27 382
c@27 383 size_t frame = i * m_d->dfConfig.stepSize * ttParams.lagLength;
c@27 384
c@27 385 // std::cerr << "unit " << i << ", step size " << m_d->dfConfig.stepSize << ", hop " << ttParams.lagLength << ", frame = " << frame << std::endl;
c@27 386
c@27 387 if (tempos[i] > 1 && int(tempos[i] * 100) != int(prevTempo * 100)) {
c@27 388 Feature feature;
c@27 389 feature.hasTimestamp = true;
c@27 390 feature.timestamp = Vamp::RealTime::frame2RealTime
c@27 391 (frame, lrintf(m_inputSampleRate));
c@27 392 feature.values.push_back(tempos[i]);
c@27 393 sprintf(label, "%.2f bpm", tempos[i]);
c@27 394 feature.label = label;
c@27 395 returnFeatures[2].push_back(feature); // tempo is output 2
c@27 396 }
c@27 397 }
c@27 398
c@27 399 return returnFeatures;
c@27 400 }
c@27 401